onnx2tf 1.28.3__tar.gz → 1.28.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (204) hide show
  1. {onnx2tf-1.28.3/onnx2tf.egg-info → onnx2tf-1.28.5}/PKG-INFO +3 -3
  2. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/README.md +2 -2
  3. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/utils/json_auto_generator.py +1 -1
  5. {onnx2tf-1.28.3 → onnx2tf-1.28.5/onnx2tf.egg-info}/PKG-INFO +3 -3
  6. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/LICENSE +0 -0
  7. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/LICENSE_onnx-tensorflow +0 -0
  8. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/__main__.py +0 -0
  9. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/onnx2tf.py +0 -0
  10. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Abs.py +0 -0
  11. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Acos.py +0 -0
  12. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Acosh.py +0 -0
  13. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Add.py +0 -0
  14. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/And.py +0 -0
  15. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ArgMax.py +0 -0
  16. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ArgMin.py +0 -0
  17. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Asin.py +0 -0
  18. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Asinh.py +0 -0
  19. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Atan.py +0 -0
  20. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Atanh.py +0 -0
  21. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/AveragePool.py +0 -0
  22. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/BatchNormalization.py +0 -0
  23. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Bernoulli.py +0 -0
  24. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/BitShift.py +0 -0
  25. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Cast.py +0 -0
  26. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Ceil.py +0 -0
  27. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Celu.py +0 -0
  28. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Clip.py +0 -0
  29. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Col2Im.py +0 -0
  30. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Compress.py +0 -0
  31. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Concat.py +0 -0
  32. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  33. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Constant.py +0 -0
  34. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ConstantOfShape.py +0 -0
  35. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Conv.py +0 -0
  36. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ConvInteger.py +0 -0
  37. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ConvTranspose.py +0 -0
  38. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Cos.py +0 -0
  39. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Cosh.py +0 -0
  40. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/CumSum.py +0 -0
  41. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/DepthToSpace.py +0 -0
  42. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/DequantizeLinear.py +0 -0
  43. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Det.py +0 -0
  44. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Div.py +0 -0
  45. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Dropout.py +0 -0
  46. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  47. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Einsum.py +0 -0
  48. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Elu.py +0 -0
  49. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Equal.py +0 -0
  50. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Erf.py +0 -0
  51. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Exp.py +0 -0
  52. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Expand.py +0 -0
  53. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/EyeLike.py +0 -0
  54. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Flatten.py +0 -0
  55. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Floor.py +0 -0
  56. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/FusedConv.py +0 -0
  57. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/GRU.py +0 -0
  58. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Gather.py +0 -0
  59. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/GatherElements.py +0 -0
  60. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/GatherND.py +0 -0
  61. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Gelu.py +0 -0
  62. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Gemm.py +0 -0
  63. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  64. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/GlobalLpPool.py +0 -0
  65. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  66. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Greater.py +0 -0
  67. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  68. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/GridSample.py +0 -0
  69. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/GroupNorm.py +0 -0
  70. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/HammingWindow.py +0 -0
  71. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/HannWindow.py +0 -0
  72. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/HardSigmoid.py +0 -0
  73. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/HardSwish.py +0 -0
  74. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Hardmax.py +0 -0
  75. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Identity.py +0 -0
  76. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/If.py +0 -0
  77. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Input.py +0 -0
  78. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/InstanceNormalization.py +0 -0
  79. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Inverse.py +0 -0
  80. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/IsInf.py +0 -0
  81. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/IsNaN.py +0 -0
  82. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/LRN.py +0 -0
  83. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/LSTM.py +0 -0
  84. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/LayerNormalization.py +0 -0
  85. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/LeakyRelu.py +0 -0
  86. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Less.py +0 -0
  87. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/LessOrEqual.py +0 -0
  88. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Log.py +0 -0
  89. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/LogSoftmax.py +0 -0
  90. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/LpNormalization.py +0 -0
  91. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/MatMul.py +0 -0
  92. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/MatMulInteger.py +0 -0
  93. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Max.py +0 -0
  94. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/MaxPool.py +0 -0
  95. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/MaxUnpool.py +0 -0
  96. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Mean.py +0 -0
  97. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  98. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  99. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Min.py +0 -0
  100. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Mish.py +0 -0
  101. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Mod.py +0 -0
  102. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Mul.py +0 -0
  103. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Multinomial.py +0 -0
  104. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Neg.py +0 -0
  105. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  106. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/NonZero.py +0 -0
  107. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Not.py +0 -0
  108. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/OneHot.py +0 -0
  109. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/OptionalGetElement.py +0 -0
  110. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/OptionalHasElement.py +0 -0
  111. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Or.py +0 -0
  112. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/PRelu.py +0 -0
  113. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Pad.py +0 -0
  114. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Pow.py +0 -0
  115. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/QLinearAdd.py +0 -0
  116. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/QLinearConcat.py +0 -0
  117. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/QLinearConv.py +0 -0
  118. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  119. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/QLinearMatMul.py +0 -0
  120. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/QLinearMul.py +0 -0
  121. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  122. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  123. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/QuantizeLinear.py +0 -0
  124. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/RNN.py +0 -0
  125. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/RandomNormal.py +0 -0
  126. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/RandomNormalLike.py +0 -0
  127. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/RandomUniform.py +0 -0
  128. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/RandomUniformLike.py +0 -0
  129. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Range.py +0 -0
  130. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Reciprocal.py +0 -0
  131. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ReduceL1.py +0 -0
  132. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ReduceL2.py +0 -0
  133. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ReduceLogSum.py +0 -0
  134. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  135. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ReduceMax.py +0 -0
  136. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ReduceMean.py +0 -0
  137. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ReduceMin.py +0 -0
  138. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ReduceProd.py +0 -0
  139. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ReduceSum.py +0 -0
  140. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  141. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Relu.py +0 -0
  142. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Reshape.py +0 -0
  143. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Resize.py +0 -0
  144. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ReverseSequence.py +0 -0
  145. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/RoiAlign.py +0 -0
  146. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Round.py +0 -0
  147. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/STFT.py +0 -0
  148. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  149. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Scatter.py +0 -0
  150. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ScatterElements.py +0 -0
  151. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ScatterND.py +0 -0
  152. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Selu.py +0 -0
  153. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/SequenceAt.py +0 -0
  154. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/SequenceConstruct.py +0 -0
  155. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/SequenceEmpty.py +0 -0
  156. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/SequenceErase.py +0 -0
  157. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/SequenceInsert.py +0 -0
  158. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/SequenceLength.py +0 -0
  159. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Shape.py +0 -0
  160. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Shrink.py +0 -0
  161. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Sigmoid.py +0 -0
  162. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Sign.py +0 -0
  163. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Sin.py +0 -0
  164. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Sinh.py +0 -0
  165. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Size.py +0 -0
  166. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Slice.py +0 -0
  167. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Softmax.py +0 -0
  168. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Softplus.py +0 -0
  169. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Softsign.py +0 -0
  170. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/SpaceToDepth.py +0 -0
  171. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Split.py +0 -0
  172. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/SplitToSequence.py +0 -0
  173. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Sqrt.py +0 -0
  174. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Squeeze.py +0 -0
  175. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/StringNormalizer.py +0 -0
  176. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Sub.py +0 -0
  177. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Sum.py +0 -0
  178. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Tan.py +0 -0
  179. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Tanh.py +0 -0
  180. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  181. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Tile.py +0 -0
  182. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/TopK.py +0 -0
  183. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Transpose.py +0 -0
  184. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Trilu.py +0 -0
  185. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Unique.py +0 -0
  186. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Unsqueeze.py +0 -0
  187. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Upsample.py +0 -0
  188. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Where.py +0 -0
  189. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/Xor.py +0 -0
  190. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/_Loop.py +0 -0
  191. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/__Loop.py +0 -0
  192. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/ops/__init__.py +0 -0
  193. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/utils/__init__.py +0 -0
  194. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/utils/common_functions.py +0 -0
  195. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/utils/enums.py +0 -0
  196. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/utils/iterative_json_optimizer.py +0 -0
  197. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf/utils/logging.py +0 -0
  198. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf.egg-info/SOURCES.txt +0 -0
  199. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf.egg-info/dependency_links.txt +0 -0
  200. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf.egg-info/entry_points.txt +0 -0
  201. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/onnx2tf.egg-info/top_level.txt +0 -0
  202. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/setup.cfg +0 -0
  203. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/setup.py +0 -0
  204. {onnx2tf-1.28.3 → onnx2tf-1.28.5}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.28.3
3
+ Version: 1.28.5
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
334
334
  docker run --rm -it \
335
335
  -v `pwd`:/workdir \
336
336
  -w /workdir \
337
- ghcr.io/pinto0309/onnx2tf:1.28.3
337
+ ghcr.io/pinto0309/onnx2tf:1.28.5
338
338
 
339
339
  or
340
340
 
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
342
342
  docker run --rm -it \
343
343
  -v `pwd`:/workdir \
344
344
  -w /workdir \
345
- docker.io/pinto0309/onnx2tf:1.28.3
345
+ docker.io/pinto0309/onnx2tf:1.28.5
346
346
 
347
347
  or
348
348
 
@@ -309,7 +309,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
309
309
  docker run --rm -it \
310
310
  -v `pwd`:/workdir \
311
311
  -w /workdir \
312
- ghcr.io/pinto0309/onnx2tf:1.28.3
312
+ ghcr.io/pinto0309/onnx2tf:1.28.5
313
313
 
314
314
  or
315
315
 
@@ -317,7 +317,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
317
317
  docker run --rm -it \
318
318
  -v `pwd`:/workdir \
319
319
  -w /workdir \
320
- docker.io/pinto0309/onnx2tf:1.28.3
320
+ docker.io/pinto0309/onnx2tf:1.28.5
321
321
 
322
322
  or
323
323
 
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.28.3'
3
+ __version__ = '1.28.5'
@@ -1417,7 +1417,7 @@ def generate_auto_replacement_json(
1417
1417
  info(f"Generated {len(candidate_fixes)} candidate fixes")
1418
1418
 
1419
1419
  # Generate fix combinations
1420
- fix_combinations = combine_fixes(candidate_fixes, max_combinations=5)
1420
+ fix_combinations = combine_fixes(candidate_fixes)
1421
1421
 
1422
1422
  # In a real implementation, we would test each combination
1423
1423
  # For now, we'll use heuristics to select the best combination
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.28.3
3
+ Version: 1.28.5
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
334
334
  docker run --rm -it \
335
335
  -v `pwd`:/workdir \
336
336
  -w /workdir \
337
- ghcr.io/pinto0309/onnx2tf:1.28.3
337
+ ghcr.io/pinto0309/onnx2tf:1.28.5
338
338
 
339
339
  or
340
340
 
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
342
342
  docker run --rm -it \
343
343
  -v `pwd`:/workdir \
344
344
  -w /workdir \
345
- docker.io/pinto0309/onnx2tf:1.28.3
345
+ docker.io/pinto0309/onnx2tf:1.28.5
346
346
 
347
347
  or
348
348
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes