onnx2tf 1.27.9__tar.gz → 1.27.10__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. {onnx2tf-1.27.9/onnx2tf.egg-info → onnx2tf-1.27.10}/PKG-INFO +4 -3
  2. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/README.md +3 -2
  3. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/utils/common_functions.py +2 -2
  5. {onnx2tf-1.27.9 → onnx2tf-1.27.10/onnx2tf.egg-info}/PKG-INFO +4 -3
  6. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/LICENSE +0 -0
  7. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/LICENSE_onnx-tensorflow +0 -0
  8. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/__main__.py +0 -0
  9. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/onnx2tf.py +0 -0
  10. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Abs.py +0 -0
  11. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Acos.py +0 -0
  12. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Acosh.py +0 -0
  13. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Add.py +0 -0
  14. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/And.py +0 -0
  15. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ArgMax.py +0 -0
  16. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ArgMin.py +0 -0
  17. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Asin.py +0 -0
  18. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Asinh.py +0 -0
  19. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Atan.py +0 -0
  20. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Atanh.py +0 -0
  21. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/AveragePool.py +0 -0
  22. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/BatchNormalization.py +0 -0
  23. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Bernoulli.py +0 -0
  24. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/BitShift.py +0 -0
  25. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Cast.py +0 -0
  26. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Ceil.py +0 -0
  27. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Celu.py +0 -0
  28. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Clip.py +0 -0
  29. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Col2Im.py +0 -0
  30. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Compress.py +0 -0
  31. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Concat.py +0 -0
  32. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  33. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Constant.py +0 -0
  34. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ConstantOfShape.py +0 -0
  35. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Conv.py +0 -0
  36. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ConvInteger.py +0 -0
  37. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ConvTranspose.py +0 -0
  38. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Cos.py +0 -0
  39. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Cosh.py +0 -0
  40. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/CumSum.py +0 -0
  41. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/DepthToSpace.py +0 -0
  42. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/DequantizeLinear.py +0 -0
  43. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Det.py +0 -0
  44. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Div.py +0 -0
  45. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Dropout.py +0 -0
  46. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  47. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Einsum.py +0 -0
  48. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Elu.py +0 -0
  49. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Equal.py +0 -0
  50. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Erf.py +0 -0
  51. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Exp.py +0 -0
  52. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Expand.py +0 -0
  53. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/EyeLike.py +0 -0
  54. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Flatten.py +0 -0
  55. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Floor.py +0 -0
  56. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/FusedConv.py +0 -0
  57. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/GRU.py +0 -0
  58. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Gather.py +0 -0
  59. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/GatherElements.py +0 -0
  60. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/GatherND.py +0 -0
  61. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Gelu.py +0 -0
  62. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Gemm.py +0 -0
  63. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  64. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/GlobalLpPool.py +0 -0
  65. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  66. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Greater.py +0 -0
  67. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  68. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/GridSample.py +0 -0
  69. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/GroupNorm.py +0 -0
  70. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/HammingWindow.py +0 -0
  71. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/HannWindow.py +0 -0
  72. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/HardSigmoid.py +0 -0
  73. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/HardSwish.py +0 -0
  74. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Hardmax.py +0 -0
  75. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Identity.py +0 -0
  76. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/If.py +0 -0
  77. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Input.py +0 -0
  78. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/InstanceNormalization.py +0 -0
  79. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Inverse.py +0 -0
  80. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/IsInf.py +0 -0
  81. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/IsNaN.py +0 -0
  82. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/LRN.py +0 -0
  83. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/LSTM.py +0 -0
  84. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/LayerNormalization.py +0 -0
  85. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/LeakyRelu.py +0 -0
  86. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Less.py +0 -0
  87. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/LessOrEqual.py +0 -0
  88. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Log.py +0 -0
  89. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/LogSoftmax.py +0 -0
  90. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/LpNormalization.py +0 -0
  91. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/MatMul.py +0 -0
  92. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/MatMulInteger.py +0 -0
  93. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Max.py +0 -0
  94. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/MaxPool.py +0 -0
  95. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/MaxUnpool.py +0 -0
  96. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Mean.py +0 -0
  97. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  98. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  99. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Min.py +0 -0
  100. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Mish.py +0 -0
  101. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Mod.py +0 -0
  102. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Mul.py +0 -0
  103. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Multinomial.py +0 -0
  104. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Neg.py +0 -0
  105. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  106. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/NonZero.py +0 -0
  107. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Not.py +0 -0
  108. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/OneHot.py +0 -0
  109. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/OptionalGetElement.py +0 -0
  110. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/OptionalHasElement.py +0 -0
  111. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Or.py +0 -0
  112. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/PRelu.py +0 -0
  113. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Pad.py +0 -0
  114. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Pow.py +0 -0
  115. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/QLinearAdd.py +0 -0
  116. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/QLinearConcat.py +0 -0
  117. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/QLinearConv.py +0 -0
  118. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  119. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/QLinearMatMul.py +0 -0
  120. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/QLinearMul.py +0 -0
  121. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  122. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  123. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/QuantizeLinear.py +0 -0
  124. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/RNN.py +0 -0
  125. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/RandomNormal.py +0 -0
  126. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/RandomNormalLike.py +0 -0
  127. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/RandomUniform.py +0 -0
  128. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/RandomUniformLike.py +0 -0
  129. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Range.py +0 -0
  130. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Reciprocal.py +0 -0
  131. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ReduceL1.py +0 -0
  132. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ReduceL2.py +0 -0
  133. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ReduceLogSum.py +0 -0
  134. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  135. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ReduceMax.py +0 -0
  136. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ReduceMean.py +0 -0
  137. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ReduceMin.py +0 -0
  138. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ReduceProd.py +0 -0
  139. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ReduceSum.py +0 -0
  140. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  141. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Relu.py +0 -0
  142. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Reshape.py +0 -0
  143. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Resize.py +0 -0
  144. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ReverseSequence.py +0 -0
  145. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/RoiAlign.py +0 -0
  146. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Round.py +0 -0
  147. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/STFT.py +0 -0
  148. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  149. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Scatter.py +0 -0
  150. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ScatterElements.py +0 -0
  151. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ScatterND.py +0 -0
  152. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Selu.py +0 -0
  153. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/SequenceAt.py +0 -0
  154. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/SequenceConstruct.py +0 -0
  155. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/SequenceEmpty.py +0 -0
  156. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/SequenceErase.py +0 -0
  157. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/SequenceInsert.py +0 -0
  158. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/SequenceLength.py +0 -0
  159. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Shape.py +0 -0
  160. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Shrink.py +0 -0
  161. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Sigmoid.py +0 -0
  162. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Sign.py +0 -0
  163. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Sin.py +0 -0
  164. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Sinh.py +0 -0
  165. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Size.py +0 -0
  166. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Slice.py +0 -0
  167. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Softmax.py +0 -0
  168. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Softplus.py +0 -0
  169. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Softsign.py +0 -0
  170. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/SpaceToDepth.py +0 -0
  171. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Split.py +0 -0
  172. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/SplitToSequence.py +0 -0
  173. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Sqrt.py +0 -0
  174. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Squeeze.py +0 -0
  175. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/StringNormalizer.py +0 -0
  176. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Sub.py +0 -0
  177. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Sum.py +0 -0
  178. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Tan.py +0 -0
  179. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Tanh.py +0 -0
  180. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  181. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Tile.py +0 -0
  182. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/TopK.py +0 -0
  183. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Transpose.py +0 -0
  184. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Trilu.py +0 -0
  185. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Unique.py +0 -0
  186. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Unsqueeze.py +0 -0
  187. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Upsample.py +0 -0
  188. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Where.py +0 -0
  189. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/Xor.py +0 -0
  190. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/_Loop.py +0 -0
  191. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/__Loop.py +0 -0
  192. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/ops/__init__.py +0 -0
  193. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/utils/__init__.py +0 -0
  194. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf/utils/logging.py +0 -0
  196. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf.egg-info/SOURCES.txt +0 -0
  197. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf.egg-info/dependency_links.txt +0 -0
  198. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf.egg-info/entry_points.txt +0 -0
  199. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/onnx2tf.egg-info/top_level.txt +0 -0
  200. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/setup.cfg +0 -0
  201. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/setup.py +0 -0
  202. {onnx2tf-1.27.9 → onnx2tf-1.27.10}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.27.9
3
+ Version: 1.27.10
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
334
334
  docker run --rm -it \
335
335
  -v `pwd`:/workdir \
336
336
  -w /workdir \
337
- ghcr.io/pinto0309/onnx2tf:1.27.9
337
+ ghcr.io/pinto0309/onnx2tf:1.27.10
338
338
 
339
339
  or
340
340
 
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
342
342
  docker run --rm -it \
343
343
  -v `pwd`:/workdir \
344
344
  -w /workdir \
345
- docker.io/pinto0309/onnx2tf:1.27.9
345
+ docker.io/pinto0309/onnx2tf:1.27.10
346
346
 
347
347
  or
348
348
 
@@ -1561,6 +1561,7 @@ usage: onnx2tf
1561
1561
  [-nuonag]
1562
1562
  [-b BATCH_SIZE]
1563
1563
  [-ois OVERWRITE_INPUT_SHAPE [OVERWRITE_INPUT_SHAPE ...]]
1564
+ [-sh SHAPE_HINTS [SHAPE_HINTS ...]]
1564
1565
  [-nlt]
1565
1566
  [-onwdt]
1566
1567
  [-snms {v4,v5}]
@@ -309,7 +309,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
309
309
  docker run --rm -it \
310
310
  -v `pwd`:/workdir \
311
311
  -w /workdir \
312
- ghcr.io/pinto0309/onnx2tf:1.27.9
312
+ ghcr.io/pinto0309/onnx2tf:1.27.10
313
313
 
314
314
  or
315
315
 
@@ -317,7 +317,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
317
317
  docker run --rm -it \
318
318
  -v `pwd`:/workdir \
319
319
  -w /workdir \
320
- docker.io/pinto0309/onnx2tf:1.27.9
320
+ docker.io/pinto0309/onnx2tf:1.27.10
321
321
 
322
322
  or
323
323
 
@@ -1536,6 +1536,7 @@ usage: onnx2tf
1536
1536
  [-nuonag]
1537
1537
  [-b BATCH_SIZE]
1538
1538
  [-ois OVERWRITE_INPUT_SHAPE [OVERWRITE_INPUT_SHAPE ...]]
1539
+ [-sh SHAPE_HINTS [SHAPE_HINTS ...]]
1539
1540
  [-nlt]
1540
1541
  [-onwdt]
1541
1542
  [-snms {v4,v5}]
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.27.9'
3
+ __version__ = '1.27.10'
@@ -4306,10 +4306,10 @@ def broadcast_for_gpu_delegate(
4306
4306
  if not optimization_for_gpu_delegate:
4307
4307
  return input_tensor_1, input_tensor_2
4308
4308
  xshapes = input_tensor_1.shape
4309
- xshape_list = [int(dim) for dim in input_tensor_1.shape]
4309
+ xshape_list = [int(dim) if dim is not None else -1 for dim in input_tensor_1.shape]
4310
4310
  xshapes_rank = len(xshapes)
4311
4311
  yshapes = input_tensor_2.shape
4312
- yshape_list = [int(dim) for dim in input_tensor_2.shape]
4312
+ yshape_list = [int(dim) if dim is not None else -1 for dim in input_tensor_2.shape]
4313
4313
  yshapes_rank = len(yshape_list)
4314
4314
 
4315
4315
  try:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.27.9
3
+ Version: 1.27.10
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
334
334
  docker run --rm -it \
335
335
  -v `pwd`:/workdir \
336
336
  -w /workdir \
337
- ghcr.io/pinto0309/onnx2tf:1.27.9
337
+ ghcr.io/pinto0309/onnx2tf:1.27.10
338
338
 
339
339
  or
340
340
 
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
342
342
  docker run --rm -it \
343
343
  -v `pwd`:/workdir \
344
344
  -w /workdir \
345
- docker.io/pinto0309/onnx2tf:1.27.9
345
+ docker.io/pinto0309/onnx2tf:1.27.10
346
346
 
347
347
  or
348
348
 
@@ -1561,6 +1561,7 @@ usage: onnx2tf
1561
1561
  [-nuonag]
1562
1562
  [-b BATCH_SIZE]
1563
1563
  [-ois OVERWRITE_INPUT_SHAPE [OVERWRITE_INPUT_SHAPE ...]]
1564
+ [-sh SHAPE_HINTS [SHAPE_HINTS ...]]
1564
1565
  [-nlt]
1565
1566
  [-onwdt]
1566
1567
  [-snms {v4,v5}]
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes