onnx2tf 1.27.7__tar.gz → 1.27.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {onnx2tf-1.27.7/onnx2tf.egg-info → onnx2tf-1.27.8}/PKG-INFO +3 -3
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/README.md +2 -2
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/__init__.py +1 -1
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/AveragePool.py +85 -24
- {onnx2tf-1.27.7 → onnx2tf-1.27.8/onnx2tf.egg-info}/PKG-INFO +3 -3
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/LICENSE +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/LICENSE_onnx-tensorflow +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/__main__.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/onnx2tf.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Abs.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Acos.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Acosh.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Add.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/And.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ArgMax.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ArgMin.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Asin.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Asinh.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Atan.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Atanh.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/BatchNormalization.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Bernoulli.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/BitShift.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Cast.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Ceil.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Celu.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Clip.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Col2Im.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Compress.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Concat.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ConcatFromSequence.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Constant.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ConstantOfShape.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Conv.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ConvInteger.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ConvTranspose.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Cos.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Cosh.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/CumSum.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/DepthToSpace.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/DequantizeLinear.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Det.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Div.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Dropout.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Einsum.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Elu.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Equal.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Erf.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Exp.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Expand.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/EyeLike.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Flatten.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Floor.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/FusedConv.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/GRU.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Gather.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/GatherElements.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/GatherND.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Gelu.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Gemm.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/GlobalAveragePool.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/GlobalLpPool.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/GlobalMaxPool.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Greater.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/GreaterOrEqual.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/GridSample.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/GroupNorm.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/HammingWindow.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/HannWindow.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/HardSigmoid.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/HardSwish.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Hardmax.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Identity.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/If.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Input.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/InstanceNormalization.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Inverse.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/IsInf.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/IsNaN.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/LRN.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/LSTM.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/LayerNormalization.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/LeakyRelu.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Less.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/LessOrEqual.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Log.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/LogSoftmax.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/LpNormalization.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/MatMul.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/MatMulInteger.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Max.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/MaxPool.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/MaxUnpool.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Mean.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/MelWeightMatrix.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Min.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Mish.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Mod.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Mul.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Multinomial.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Neg.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/NonMaxSuppression.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/NonZero.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Not.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/OneHot.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/OptionalGetElement.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/OptionalHasElement.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Or.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/PRelu.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Pad.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Pow.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/QLinearAdd.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/QLinearConcat.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/QLinearConv.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/QLinearMatMul.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/QLinearMul.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/QLinearSigmoid.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/QLinearSoftmax.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/QuantizeLinear.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/RNN.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/RandomNormal.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/RandomNormalLike.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/RandomUniform.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/RandomUniformLike.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Range.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Reciprocal.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ReduceL1.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ReduceL2.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ReduceLogSum.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ReduceMax.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ReduceMean.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ReduceMin.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ReduceProd.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ReduceSum.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ReduceSumSquare.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Relu.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Reshape.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Resize.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ReverseSequence.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/RoiAlign.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Round.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/STFT.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Scatter.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ScatterElements.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ScatterND.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Selu.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/SequenceAt.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/SequenceConstruct.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/SequenceEmpty.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/SequenceErase.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/SequenceInsert.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/SequenceLength.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Shape.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Shrink.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Sigmoid.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Sign.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Sin.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Sinh.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Size.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Slice.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Softmax.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Softplus.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Softsign.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/SpaceToDepth.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Split.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/SplitToSequence.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Sqrt.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Squeeze.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/StringNormalizer.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Sub.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Sum.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Tan.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Tanh.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/ThresholdedRelu.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Tile.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/TopK.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Transpose.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Trilu.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Unique.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Unsqueeze.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Upsample.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Where.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/Xor.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/_Loop.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/__Loop.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/ops/__init__.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/utils/__init__.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/utils/common_functions.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/utils/enums.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf/utils/logging.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf.egg-info/SOURCES.txt +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf.egg-info/dependency_links.txt +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf.egg-info/entry_points.txt +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/onnx2tf.egg-info/top_level.txt +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/setup.cfg +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/setup.py +0 -0
- {onnx2tf-1.27.7 → onnx2tf-1.27.8}/tests/test_model_convert.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.27.
|
|
3
|
+
Version: 1.27.8
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
334
334
|
docker run --rm -it \
|
|
335
335
|
-v `pwd`:/workdir \
|
|
336
336
|
-w /workdir \
|
|
337
|
-
ghcr.io/pinto0309/onnx2tf:1.27.
|
|
337
|
+
ghcr.io/pinto0309/onnx2tf:1.27.8
|
|
338
338
|
|
|
339
339
|
or
|
|
340
340
|
|
|
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
342
342
|
docker run --rm -it \
|
|
343
343
|
-v `pwd`:/workdir \
|
|
344
344
|
-w /workdir \
|
|
345
|
-
docker.io/pinto0309/onnx2tf:1.27.
|
|
345
|
+
docker.io/pinto0309/onnx2tf:1.27.8
|
|
346
346
|
|
|
347
347
|
or
|
|
348
348
|
|
|
@@ -309,7 +309,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
309
309
|
docker run --rm -it \
|
|
310
310
|
-v `pwd`:/workdir \
|
|
311
311
|
-w /workdir \
|
|
312
|
-
ghcr.io/pinto0309/onnx2tf:1.27.
|
|
312
|
+
ghcr.io/pinto0309/onnx2tf:1.27.8
|
|
313
313
|
|
|
314
314
|
or
|
|
315
315
|
|
|
@@ -317,7 +317,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
317
317
|
docker run --rm -it \
|
|
318
318
|
-v `pwd`:/workdir \
|
|
319
319
|
-w /workdir \
|
|
320
|
-
docker.io/pinto0309/onnx2tf:1.27.
|
|
320
|
+
docker.io/pinto0309/onnx2tf:1.27.8
|
|
321
321
|
|
|
322
322
|
or
|
|
323
323
|
|
|
@@ -167,11 +167,46 @@ def make_node(
|
|
|
167
167
|
input_tensor=input_tensor
|
|
168
168
|
)
|
|
169
169
|
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
170
|
+
if not is_known_shape:
|
|
171
|
+
def compute_output_spatial_shape_from_tensor(input_tensor, pads, kernel_shape, dilations, strides, ceil_mode=False):
|
|
172
|
+
input_shape = tf.shape(input_tensor) # Get dynamic shape
|
|
173
|
+
input_spatial = input_shape[1:-1] # Extract spatial dimensions only (NHWC format)
|
|
174
|
+
|
|
175
|
+
pad_begin = pads[:len(pads) // 2]
|
|
176
|
+
pad_end = pads[len(pads) // 2:]
|
|
177
|
+
|
|
178
|
+
round_func = tf.math.ceil if ceil_mode else tf.math.floor
|
|
179
|
+
|
|
180
|
+
output_spatial = []
|
|
181
|
+
for i, pb, pe, k, d, s in zip(tf.unstack(input_spatial), pad_begin, pad_end, kernel_shape, dilations, strides):
|
|
182
|
+
i = tf.cast(i, tf.float32)
|
|
183
|
+
pb = tf.constant(pb, dtype=tf.float32)
|
|
184
|
+
pe = tf.constant(pe, dtype=tf.float32)
|
|
185
|
+
k = tf.constant(k, dtype=tf.float32)
|
|
186
|
+
d = tf.constant(d, dtype=tf.float32)
|
|
187
|
+
s = tf.constant(s, dtype=tf.float32)
|
|
188
|
+
|
|
189
|
+
numerator = i + pb + pe - d * (k - 1) - 1
|
|
190
|
+
raw_output = numerator / s + 1
|
|
191
|
+
output_dim = tf.cast(round_func(raw_output), tf.int32)
|
|
192
|
+
output_spatial.append(output_dim)
|
|
193
|
+
|
|
194
|
+
return output_spatial
|
|
195
|
+
|
|
196
|
+
output_spatial_shape = compute_output_spatial_shape_from_tensor(
|
|
197
|
+
input_tensor=input_tensor,
|
|
198
|
+
pads=pads,
|
|
199
|
+
kernel_shape=kernel_shape,
|
|
200
|
+
dilations=dilations,
|
|
201
|
+
strides=strides,
|
|
202
|
+
ceil_mode=ceil_mode
|
|
203
|
+
)
|
|
204
|
+
else:
|
|
205
|
+
func = math.ceil if ceil_mode else math.floor
|
|
206
|
+
output_spatial_shape = [
|
|
207
|
+
func((i + pb + pe - d * (k - 1) - 1) / s + 1)
|
|
208
|
+
for i, pb, pe, k, d, s in zip(input_tensor_shape[1:-1], pads[:len(pads) // 2], pads[len(pads) // 2:], kernel_shape, dilations, strides)
|
|
209
|
+
]
|
|
175
210
|
|
|
176
211
|
# onnx padding value is ignored if auto_pad is not 'NOTSET'
|
|
177
212
|
if auto_pad == 'NOTSET':
|
|
@@ -218,28 +253,52 @@ def make_node(
|
|
|
218
253
|
# count nonzero elements in kernel each strides for the case count_include_pad is False
|
|
219
254
|
non_zero_counts = []
|
|
220
255
|
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
256
|
+
if not is_known_shape:
|
|
257
|
+
def compute_non_zero_counts_loop(input_tensor, output_spatial_shape, kernel_shape, dilations, strides, pads):
|
|
258
|
+
|
|
259
|
+
counts_list = []
|
|
260
|
+
|
|
261
|
+
for dim in range(len(kernel_shape)):
|
|
262
|
+
k = kernel_shape[dim]
|
|
263
|
+
counts = [k] * (output_spatial_shape[dim].numpy() if tf.is_tensor(output_spatial_shape[dim]) and hasattr(output_spatial_shape[dim], 'numpy') else output_spatial_shape[dim])
|
|
264
|
+
counts_list.append(counts)
|
|
265
|
+
|
|
266
|
+
return counts_list
|
|
267
|
+
|
|
268
|
+
non_zero_counts = compute_non_zero_counts_loop(
|
|
269
|
+
input_tensor=input_tensor,
|
|
270
|
+
output_spatial_shape=output_spatial_shape,
|
|
271
|
+
kernel_shape=kernel_shape,
|
|
272
|
+
dilations=dilations,
|
|
273
|
+
strides=strides,
|
|
274
|
+
pads=pads
|
|
228
275
|
)
|
|
229
|
-
|
|
230
|
-
|
|
276
|
+
else:
|
|
277
|
+
for input_spatial_shape, output_size, kernel, dilation, stride, pads_begin, pads_end \
|
|
278
|
+
in zip(input_tensor_shape[1:-1], output_spatial_shape, kernel_shape,
|
|
279
|
+
dilations, strides, pads[:len(pads) // 2], pads[len(pads) // 2:]):
|
|
280
|
+
sample_target = np.concatenate([
|
|
281
|
+
np.zeros(pads_begin),
|
|
282
|
+
np.ones(input_spatial_shape),
|
|
283
|
+
np.zeros(pads_end)]
|
|
284
|
+
)
|
|
285
|
+
sample_kernel = np.zeros((kernel - 1) * dilation + 1)
|
|
286
|
+
sample_kernel[::dilation] = 1
|
|
231
287
|
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
288
|
+
counts = []
|
|
289
|
+
for i in range(output_size):
|
|
290
|
+
start = i * stride
|
|
291
|
+
stride_target = sample_target[start:start+len(sample_kernel)]
|
|
292
|
+
# pad target to match size
|
|
293
|
+
stride_target = np.concatenate([stride_target, np.zeros(len(sample_kernel) - len(stride_target))])
|
|
294
|
+
counts.extend(np.convolve(stride_target, sample_kernel, mode='valid'))
|
|
239
295
|
|
|
240
|
-
|
|
296
|
+
non_zero_counts.append(counts)
|
|
241
297
|
|
|
242
|
-
|
|
298
|
+
if not is_known_shape:
|
|
299
|
+
need_multiplier = False # Default to False for dynamic tensors to avoid errors
|
|
300
|
+
else:
|
|
301
|
+
need_multiplier = len(set([i for sublist in non_zero_counts for i in sublist])) != 1
|
|
243
302
|
|
|
244
303
|
# default tensorflow option for count_include_pad is True and cannot control
|
|
245
304
|
# average value should be compensated in cases below
|
|
@@ -295,7 +354,9 @@ def make_node(
|
|
|
295
354
|
multiplier[-1] = k / (k - extra_pad)
|
|
296
355
|
average_multiplier.append(multiplier)
|
|
297
356
|
else:
|
|
298
|
-
for i
|
|
357
|
+
for i in range(len(kernel_shape)):
|
|
358
|
+
k = kernel_shape[i]
|
|
359
|
+
extra_pad = extra_pads[i]
|
|
299
360
|
average_multiplier[i][-1] = k / (k - extra_pad)
|
|
300
361
|
|
|
301
362
|
# Preserving Graph Structure (Dict)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.27.
|
|
3
|
+
Version: 1.27.8
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
334
334
|
docker run --rm -it \
|
|
335
335
|
-v `pwd`:/workdir \
|
|
336
336
|
-w /workdir \
|
|
337
|
-
ghcr.io/pinto0309/onnx2tf:1.27.
|
|
337
|
+
ghcr.io/pinto0309/onnx2tf:1.27.8
|
|
338
338
|
|
|
339
339
|
or
|
|
340
340
|
|
|
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
342
342
|
docker run --rm -it \
|
|
343
343
|
-v `pwd`:/workdir \
|
|
344
344
|
-w /workdir \
|
|
345
|
-
docker.io/pinto0309/onnx2tf:1.27.
|
|
345
|
+
docker.io/pinto0309/onnx2tf:1.27.8
|
|
346
346
|
|
|
347
347
|
or
|
|
348
348
|
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|