onnx2tf 1.27.6__tar.gz → 1.27.7__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {onnx2tf-1.27.6/onnx2tf.egg-info → onnx2tf-1.27.7}/PKG-INFO +3 -3
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/README.md +2 -2
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/__init__.py +1 -1
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/onnx2tf.py +5 -3
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/utils/common_functions.py +11 -6
- {onnx2tf-1.27.6 → onnx2tf-1.27.7/onnx2tf.egg-info}/PKG-INFO +3 -3
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/LICENSE +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/LICENSE_onnx-tensorflow +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/__main__.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Abs.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Acos.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Acosh.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Add.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/And.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ArgMax.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ArgMin.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Asin.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Asinh.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Atan.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Atanh.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/AveragePool.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/BatchNormalization.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Bernoulli.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/BitShift.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Cast.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Ceil.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Celu.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Clip.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Col2Im.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Compress.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Concat.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ConcatFromSequence.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Constant.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ConstantOfShape.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Conv.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ConvInteger.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ConvTranspose.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Cos.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Cosh.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/CumSum.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/DepthToSpace.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/DequantizeLinear.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Det.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Div.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Dropout.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Einsum.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Elu.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Equal.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Erf.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Exp.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Expand.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/EyeLike.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Flatten.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Floor.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/FusedConv.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/GRU.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Gather.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/GatherElements.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/GatherND.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Gelu.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Gemm.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/GlobalAveragePool.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/GlobalLpPool.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/GlobalMaxPool.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Greater.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/GreaterOrEqual.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/GridSample.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/GroupNorm.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/HammingWindow.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/HannWindow.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/HardSigmoid.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/HardSwish.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Hardmax.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Identity.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/If.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Input.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/InstanceNormalization.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Inverse.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/IsInf.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/IsNaN.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/LRN.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/LSTM.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/LayerNormalization.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/LeakyRelu.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Less.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/LessOrEqual.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Log.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/LogSoftmax.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/LpNormalization.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/MatMul.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/MatMulInteger.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Max.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/MaxPool.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/MaxUnpool.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Mean.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/MelWeightMatrix.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Min.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Mish.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Mod.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Mul.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Multinomial.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Neg.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/NonMaxSuppression.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/NonZero.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Not.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/OneHot.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/OptionalGetElement.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/OptionalHasElement.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Or.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/PRelu.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Pad.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Pow.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/QLinearAdd.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/QLinearConcat.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/QLinearConv.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/QLinearMatMul.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/QLinearMul.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/QLinearSigmoid.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/QLinearSoftmax.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/QuantizeLinear.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/RNN.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/RandomNormal.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/RandomNormalLike.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/RandomUniform.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/RandomUniformLike.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Range.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Reciprocal.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ReduceL1.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ReduceL2.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ReduceLogSum.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ReduceMax.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ReduceMean.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ReduceMin.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ReduceProd.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ReduceSum.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ReduceSumSquare.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Relu.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Reshape.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Resize.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ReverseSequence.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/RoiAlign.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Round.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/STFT.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Scatter.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ScatterElements.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ScatterND.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Selu.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/SequenceAt.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/SequenceConstruct.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/SequenceEmpty.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/SequenceErase.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/SequenceInsert.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/SequenceLength.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Shape.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Shrink.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Sigmoid.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Sign.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Sin.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Sinh.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Size.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Slice.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Softmax.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Softplus.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Softsign.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/SpaceToDepth.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Split.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/SplitToSequence.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Sqrt.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Squeeze.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/StringNormalizer.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Sub.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Sum.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Tan.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Tanh.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/ThresholdedRelu.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Tile.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/TopK.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Transpose.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Trilu.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Unique.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Unsqueeze.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Upsample.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Where.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/Xor.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/_Loop.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/__Loop.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/ops/__init__.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/utils/__init__.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/utils/enums.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf/utils/logging.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf.egg-info/SOURCES.txt +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf.egg-info/dependency_links.txt +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf.egg-info/entry_points.txt +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/onnx2tf.egg-info/top_level.txt +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/setup.cfg +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/setup.py +0 -0
- {onnx2tf-1.27.6 → onnx2tf-1.27.7}/tests/test_model_convert.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.27.
|
|
3
|
+
Version: 1.27.7
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
334
334
|
docker run --rm -it \
|
|
335
335
|
-v `pwd`:/workdir \
|
|
336
336
|
-w /workdir \
|
|
337
|
-
ghcr.io/pinto0309/onnx2tf:1.27.
|
|
337
|
+
ghcr.io/pinto0309/onnx2tf:1.27.7
|
|
338
338
|
|
|
339
339
|
or
|
|
340
340
|
|
|
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
342
342
|
docker run --rm -it \
|
|
343
343
|
-v `pwd`:/workdir \
|
|
344
344
|
-w /workdir \
|
|
345
|
-
docker.io/pinto0309/onnx2tf:1.27.
|
|
345
|
+
docker.io/pinto0309/onnx2tf:1.27.7
|
|
346
346
|
|
|
347
347
|
or
|
|
348
348
|
|
|
@@ -309,7 +309,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
309
309
|
docker run --rm -it \
|
|
310
310
|
-v `pwd`:/workdir \
|
|
311
311
|
-w /workdir \
|
|
312
|
-
ghcr.io/pinto0309/onnx2tf:1.27.
|
|
312
|
+
ghcr.io/pinto0309/onnx2tf:1.27.7
|
|
313
313
|
|
|
314
314
|
or
|
|
315
315
|
|
|
@@ -317,7 +317,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
317
317
|
docker run --rm -it \
|
|
318
318
|
-v `pwd`:/workdir \
|
|
319
319
|
-w /workdir \
|
|
320
|
-
docker.io/pinto0309/onnx2tf:1.27.
|
|
320
|
+
docker.io/pinto0309/onnx2tf:1.27.7
|
|
321
321
|
|
|
322
322
|
or
|
|
323
323
|
|
|
@@ -1947,6 +1947,8 @@ def convert(
|
|
|
1947
1947
|
validated_onnx_tensor: np.ndarray = checked_value[0]
|
|
1948
1948
|
matched_flg: int = checked_value[1]
|
|
1949
1949
|
max_abs_err: Any = checked_value[2]
|
|
1950
|
+
onnx_shape_tf_shape: str = checked_value[3]
|
|
1951
|
+
|
|
1950
1952
|
message = ''
|
|
1951
1953
|
if matched_flg == 0:
|
|
1952
1954
|
message = \
|
|
@@ -1960,11 +1962,11 @@ def convert(
|
|
|
1960
1962
|
elif matched_flg == 2:
|
|
1961
1963
|
message = \
|
|
1962
1964
|
Color.GREEN(f'validate_result') + ': ' +\
|
|
1963
|
-
Color.REVERSE(f'{Color.BLUE} Skipped (Deleted or Shape Unmatched) ')
|
|
1965
|
+
Color.REVERSE(f'{Color.BLUE} Skipped (Deleted or Shape Unmatched) {onnx_shape_tf_shape}')
|
|
1964
1966
|
print(
|
|
1965
1967
|
Color.GREEN(f'INFO:') + ' '+
|
|
1966
|
-
Color.GREEN(f'onnx_output_name') + f': {onnx_output_name} '+
|
|
1967
|
-
Color.GREEN(f'tf_output_name') + f': {tf_output_name} '+
|
|
1968
|
+
Color.GREEN(f'onnx_output_name') + f': {re.sub("^wa/", "/", onnx_output_name)} '+
|
|
1969
|
+
# Color.GREEN(f'tf_output_name') + f': {tf_output_name} '+
|
|
1968
1970
|
Color.GREEN(f'shape') + f': {validated_onnx_tensor.shape} '+
|
|
1969
1971
|
Color.GREEN(f'dtype') + f': {validated_onnx_tensor.dtype} '+
|
|
1970
1972
|
f'{message}'
|
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
import math
|
|
2
2
|
import os
|
|
3
3
|
import io
|
|
4
|
+
import re
|
|
4
5
|
import sys
|
|
5
6
|
import copy
|
|
6
7
|
import json
|
|
@@ -280,7 +281,7 @@ def print_node_info(func):
|
|
|
280
281
|
if graph_input is not None:
|
|
281
282
|
debug(
|
|
282
283
|
Color.GREEN(f'INFO:') + ' '+
|
|
283
|
-
Color.GREEN(f'input_op_name') + f': {graph_input.name} '+
|
|
284
|
+
Color.GREEN(f'input_op_name') + f': {re.sub("^wa/", "/", graph_input.name)} '+
|
|
284
285
|
Color.GREEN(f'shape') + f': {graph_input.shape} '+
|
|
285
286
|
Color.GREEN(f'dtype') + f': {graph_input.dtype}'
|
|
286
287
|
)
|
|
@@ -294,18 +295,18 @@ def print_node_info(func):
|
|
|
294
295
|
)
|
|
295
296
|
debug(
|
|
296
297
|
Color.GREEN(f'INFO:') + ' ' + Color.MAGENTA(f'onnx_op_type') + ': '+
|
|
297
|
-
f'{graph_node.op}' + Color.MAGENTA(' onnx_op_name') + f': {graph_node.name}')
|
|
298
|
+
f'{graph_node.op}' + Color.MAGENTA(' onnx_op_name') + f': {re.sub("^wa/", "/", graph_node.name)}')
|
|
298
299
|
for idx, graph_node_input in enumerate(graph_node.inputs):
|
|
299
300
|
debug(
|
|
300
301
|
Color.GREEN(f'INFO:') + ' '+
|
|
301
|
-
Color.CYAN(f' input_name.{idx+1}') + f': {graph_node_input.name} '+
|
|
302
|
+
Color.CYAN(f' input_name.{idx+1}') + f': {re.sub("^wa/", "/", graph_node_input.name)} '+
|
|
302
303
|
Color.CYAN(f'shape') + f': {graph_node_input.shape} '+
|
|
303
304
|
Color.CYAN(f'dtype') + f': {graph_node_input.dtype}'
|
|
304
305
|
)
|
|
305
306
|
for idx, graph_node_output in enumerate(graph_node.outputs):
|
|
306
307
|
debug(
|
|
307
308
|
Color.GREEN(f'INFO:') + ' '+
|
|
308
|
-
Color.CYAN(f' output_name.{idx+1}') + f': {graph_node_output.name} '+
|
|
309
|
+
Color.CYAN(f' output_name.{idx+1}') + f': {re.sub("^wa/", "/", graph_node_output.name)} '+
|
|
309
310
|
Color.CYAN(f'shape') + f': {graph_node_output.shape} '+
|
|
310
311
|
Color.CYAN(f'dtype') + f': {graph_node_output.dtype}'
|
|
311
312
|
)
|
|
@@ -4033,18 +4034,19 @@ def onnx_tf_tensor_validation(
|
|
|
4033
4034
|
|
|
4034
4035
|
Returns
|
|
4035
4036
|
----------
|
|
4036
|
-
check_results: Dict[str, List[np.ndarray, int, float|int]]
|
|
4037
|
+
check_results: Dict[str, List[np.ndarray, int, float|int], str]
|
|
4037
4038
|
Tensor Comparison Results
|
|
4038
4039
|
{
|
|
4039
4040
|
onnx_output_name: [
|
|
4040
4041
|
onnx_tensor,
|
|
4041
4042
|
matched_flg, <--- 0: Unmatched, 1: Matched, 2: Skipped (Deleted or Shape Unmatched),
|
|
4042
4043
|
max_abs_err,
|
|
4044
|
+
onnx_shape_tf_shape,
|
|
4043
4045
|
]
|
|
4044
4046
|
}
|
|
4045
4047
|
"""
|
|
4046
4048
|
check_results = {
|
|
4047
|
-
k: [v[0], False, 0.0] \
|
|
4049
|
+
k: [v[0], False, 0.0, ""] \
|
|
4048
4050
|
for k, v in output_pairs.items()
|
|
4049
4051
|
}
|
|
4050
4052
|
|
|
@@ -4120,9 +4122,12 @@ def onnx_tf_tensor_validation(
|
|
|
4120
4122
|
# If there was no match between ONNX and TensorFlow output shapes.
|
|
4121
4123
|
check_results[names_pair][1] = 2
|
|
4122
4124
|
check_results[names_pair][2] = max_abs_err
|
|
4125
|
+
check_results[names_pair][3] = \
|
|
4126
|
+
f"onnx.shape:{onnx_tensor.shape if hasattr(onnx_tensor, 'shape') else 'None'}/tf.shape:{tf_tensor.shape if hasattr(tf_tensor, 'shape') else 'None'}"
|
|
4123
4127
|
else:
|
|
4124
4128
|
check_results[names_pair][1] = validate_result
|
|
4125
4129
|
check_results[names_pair][2] = max_abs_err
|
|
4130
|
+
check_results[names_pair][3] = ""
|
|
4126
4131
|
|
|
4127
4132
|
return check_results
|
|
4128
4133
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.27.
|
|
3
|
+
Version: 1.27.7
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
334
334
|
docker run --rm -it \
|
|
335
335
|
-v `pwd`:/workdir \
|
|
336
336
|
-w /workdir \
|
|
337
|
-
ghcr.io/pinto0309/onnx2tf:1.27.
|
|
337
|
+
ghcr.io/pinto0309/onnx2tf:1.27.7
|
|
338
338
|
|
|
339
339
|
or
|
|
340
340
|
|
|
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
342
342
|
docker run --rm -it \
|
|
343
343
|
-v `pwd`:/workdir \
|
|
344
344
|
-w /workdir \
|
|
345
|
-
docker.io/pinto0309/onnx2tf:1.27.
|
|
345
|
+
docker.io/pinto0309/onnx2tf:1.27.7
|
|
346
346
|
|
|
347
347
|
or
|
|
348
348
|
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|