onnx2tf 1.27.4__tar.gz → 1.27.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. {onnx2tf-1.27.4/onnx2tf.egg-info → onnx2tf-1.27.6}/PKG-INFO +3 -3
  2. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/README.md +2 -2
  3. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/onnx2tf.py +2 -1
  5. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Slice.py +38 -0
  6. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Unsqueeze.py +9 -0
  7. {onnx2tf-1.27.4 → onnx2tf-1.27.6/onnx2tf.egg-info}/PKG-INFO +3 -3
  8. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/LICENSE +0 -0
  9. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/LICENSE_onnx-tensorflow +0 -0
  10. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/__main__.py +0 -0
  11. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Abs.py +0 -0
  12. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Acos.py +0 -0
  13. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Acosh.py +0 -0
  14. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Add.py +0 -0
  15. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/And.py +0 -0
  16. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ArgMax.py +0 -0
  17. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ArgMin.py +0 -0
  18. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Asin.py +0 -0
  19. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Asinh.py +0 -0
  20. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Atan.py +0 -0
  21. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Atanh.py +0 -0
  22. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/AveragePool.py +0 -0
  23. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/BatchNormalization.py +0 -0
  24. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Bernoulli.py +0 -0
  25. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/BitShift.py +0 -0
  26. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Cast.py +0 -0
  27. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Ceil.py +0 -0
  28. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Celu.py +0 -0
  29. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Clip.py +0 -0
  30. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Col2Im.py +0 -0
  31. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Compress.py +0 -0
  32. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Concat.py +0 -0
  33. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  34. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Constant.py +0 -0
  35. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ConstantOfShape.py +0 -0
  36. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Conv.py +0 -0
  37. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ConvInteger.py +0 -0
  38. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ConvTranspose.py +0 -0
  39. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Cos.py +0 -0
  40. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Cosh.py +0 -0
  41. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/CumSum.py +0 -0
  42. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/DepthToSpace.py +0 -0
  43. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/DequantizeLinear.py +0 -0
  44. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Det.py +0 -0
  45. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Div.py +0 -0
  46. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Dropout.py +0 -0
  47. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  48. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Einsum.py +0 -0
  49. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Elu.py +0 -0
  50. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Equal.py +0 -0
  51. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Erf.py +0 -0
  52. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Exp.py +0 -0
  53. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Expand.py +0 -0
  54. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/EyeLike.py +0 -0
  55. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Flatten.py +0 -0
  56. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Floor.py +0 -0
  57. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/FusedConv.py +0 -0
  58. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/GRU.py +0 -0
  59. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Gather.py +0 -0
  60. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/GatherElements.py +0 -0
  61. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/GatherND.py +0 -0
  62. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Gelu.py +0 -0
  63. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Gemm.py +0 -0
  64. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  65. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/GlobalLpPool.py +0 -0
  66. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  67. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Greater.py +0 -0
  68. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  69. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/GridSample.py +0 -0
  70. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/GroupNorm.py +0 -0
  71. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/HammingWindow.py +0 -0
  72. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/HannWindow.py +0 -0
  73. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/HardSigmoid.py +0 -0
  74. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/HardSwish.py +0 -0
  75. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Hardmax.py +0 -0
  76. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Identity.py +0 -0
  77. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/If.py +0 -0
  78. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Input.py +0 -0
  79. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/InstanceNormalization.py +0 -0
  80. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Inverse.py +0 -0
  81. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/IsInf.py +0 -0
  82. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/IsNaN.py +0 -0
  83. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/LRN.py +0 -0
  84. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/LSTM.py +0 -0
  85. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/LayerNormalization.py +0 -0
  86. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/LeakyRelu.py +0 -0
  87. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Less.py +0 -0
  88. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/LessOrEqual.py +0 -0
  89. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Log.py +0 -0
  90. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/LogSoftmax.py +0 -0
  91. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/LpNormalization.py +0 -0
  92. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/MatMul.py +0 -0
  93. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/MatMulInteger.py +0 -0
  94. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Max.py +0 -0
  95. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/MaxPool.py +0 -0
  96. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/MaxUnpool.py +0 -0
  97. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Mean.py +0 -0
  98. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  99. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  100. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Min.py +0 -0
  101. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Mish.py +0 -0
  102. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Mod.py +0 -0
  103. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Mul.py +0 -0
  104. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Multinomial.py +0 -0
  105. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Neg.py +0 -0
  106. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  107. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/NonZero.py +0 -0
  108. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Not.py +0 -0
  109. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/OneHot.py +0 -0
  110. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/OptionalGetElement.py +0 -0
  111. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/OptionalHasElement.py +0 -0
  112. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Or.py +0 -0
  113. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/PRelu.py +0 -0
  114. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Pad.py +0 -0
  115. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Pow.py +0 -0
  116. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/QLinearAdd.py +0 -0
  117. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/QLinearConcat.py +0 -0
  118. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/QLinearConv.py +0 -0
  119. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  120. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/QLinearMatMul.py +0 -0
  121. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/QLinearMul.py +0 -0
  122. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  123. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  124. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/QuantizeLinear.py +0 -0
  125. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/RNN.py +0 -0
  126. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/RandomNormal.py +0 -0
  127. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/RandomNormalLike.py +0 -0
  128. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/RandomUniform.py +0 -0
  129. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/RandomUniformLike.py +0 -0
  130. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Range.py +0 -0
  131. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Reciprocal.py +0 -0
  132. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ReduceL1.py +0 -0
  133. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ReduceL2.py +0 -0
  134. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ReduceLogSum.py +0 -0
  135. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  136. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ReduceMax.py +0 -0
  137. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ReduceMean.py +0 -0
  138. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ReduceMin.py +0 -0
  139. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ReduceProd.py +0 -0
  140. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ReduceSum.py +0 -0
  141. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  142. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Relu.py +0 -0
  143. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Reshape.py +0 -0
  144. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Resize.py +0 -0
  145. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ReverseSequence.py +0 -0
  146. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/RoiAlign.py +0 -0
  147. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Round.py +0 -0
  148. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/STFT.py +0 -0
  149. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  150. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Scatter.py +0 -0
  151. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ScatterElements.py +0 -0
  152. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ScatterND.py +0 -0
  153. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Selu.py +0 -0
  154. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/SequenceAt.py +0 -0
  155. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/SequenceConstruct.py +0 -0
  156. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/SequenceEmpty.py +0 -0
  157. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/SequenceErase.py +0 -0
  158. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/SequenceInsert.py +0 -0
  159. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/SequenceLength.py +0 -0
  160. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Shape.py +0 -0
  161. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Shrink.py +0 -0
  162. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Sigmoid.py +0 -0
  163. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Sign.py +0 -0
  164. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Sin.py +0 -0
  165. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Sinh.py +0 -0
  166. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Size.py +0 -0
  167. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Softmax.py +0 -0
  168. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Softplus.py +0 -0
  169. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Softsign.py +0 -0
  170. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/SpaceToDepth.py +0 -0
  171. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Split.py +0 -0
  172. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/SplitToSequence.py +0 -0
  173. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Sqrt.py +0 -0
  174. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Squeeze.py +0 -0
  175. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/StringNormalizer.py +0 -0
  176. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Sub.py +0 -0
  177. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Sum.py +0 -0
  178. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Tan.py +0 -0
  179. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Tanh.py +0 -0
  180. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  181. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Tile.py +0 -0
  182. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/TopK.py +0 -0
  183. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Transpose.py +0 -0
  184. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Trilu.py +0 -0
  185. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Unique.py +0 -0
  186. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Upsample.py +0 -0
  187. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Where.py +0 -0
  188. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/Xor.py +0 -0
  189. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/_Loop.py +0 -0
  190. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/__Loop.py +0 -0
  191. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/ops/__init__.py +0 -0
  192. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/utils/__init__.py +0 -0
  193. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/utils/common_functions.py +0 -0
  194. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf/utils/logging.py +0 -0
  196. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf.egg-info/SOURCES.txt +0 -0
  197. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf.egg-info/dependency_links.txt +0 -0
  198. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf.egg-info/entry_points.txt +0 -0
  199. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/onnx2tf.egg-info/top_level.txt +0 -0
  200. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/setup.cfg +0 -0
  201. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/setup.py +0 -0
  202. {onnx2tf-1.27.4 → onnx2tf-1.27.6}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.27.4
3
+ Version: 1.27.6
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
334
334
  docker run --rm -it \
335
335
  -v `pwd`:/workdir \
336
336
  -w /workdir \
337
- ghcr.io/pinto0309/onnx2tf:1.27.4
337
+ ghcr.io/pinto0309/onnx2tf:1.27.6
338
338
 
339
339
  or
340
340
 
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
342
342
  docker run --rm -it \
343
343
  -v `pwd`:/workdir \
344
344
  -w /workdir \
345
- docker.io/pinto0309/onnx2tf:1.27.4
345
+ docker.io/pinto0309/onnx2tf:1.27.6
346
346
 
347
347
  or
348
348
 
@@ -309,7 +309,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
309
309
  docker run --rm -it \
310
310
  -v `pwd`:/workdir \
311
311
  -w /workdir \
312
- ghcr.io/pinto0309/onnx2tf:1.27.4
312
+ ghcr.io/pinto0309/onnx2tf:1.27.6
313
313
 
314
314
  or
315
315
 
@@ -317,7 +317,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
317
317
  docker run --rm -it \
318
318
  -v `pwd`:/workdir \
319
319
  -w /workdir \
320
- docker.io/pinto0309/onnx2tf:1.27.4
320
+ docker.io/pinto0309/onnx2tf:1.27.6
321
321
 
322
322
  or
323
323
 
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.27.4'
3
+ __version__ = '1.27.6'
@@ -595,10 +595,11 @@ def convert(
595
595
  with open(param_replacement_file, 'r') as f:
596
596
  replacement_parameters = json.load(f)['operations']
597
597
  for operations in replacement_parameters:
598
+ operations: Dict
598
599
  operations['op_name'] = operations['op_name'].replace(':','_')
599
600
  if output_signaturedefs or output_integer_quantized_tflite:
600
601
  operations['op_name'] = re.sub('^/', 'wa/', operations['op_name'])
601
- operations['param_name'] = re.sub('^/', 'wa/', operations['param_name'])
602
+ operations['param_name'] = re.sub('^/', 'wa/', operations.get('param_name', ""))
602
603
  except json.decoder.JSONDecodeError as ex:
603
604
  error(
604
605
  f'The file specified in param_replacement_file is not in JSON format. \n' +
@@ -14,6 +14,7 @@ from onnx2tf.utils.common_functions import (
14
14
  convert_axis,
15
15
  replace_max_values_negative_values,
16
16
  get_replacement_parameter,
17
+ replace_parameter,
17
18
  pre_process_transpose,
18
19
  post_process_transpose,
19
20
  stridedslice_with_flexing_deterrence,
@@ -278,6 +279,43 @@ def make_node(
278
279
  )
279
280
  sys.exit(1)
280
281
 
282
+ # Param replacement - starts
283
+ if len(graph_node.inputs) >= 2:
284
+ starts = replace_parameter(
285
+ value_before_replacement=starts,
286
+ param_target='inputs',
287
+ param_name=graph_node.inputs[1].name,
288
+ **kwargs,
289
+ )
290
+ starts = tf.convert_to_tensor(starts)
291
+ # Param replacement - ends
292
+ if len(graph_node.inputs) >= 3:
293
+ ends = replace_parameter(
294
+ value_before_replacement=ends,
295
+ param_target='inputs',
296
+ param_name=graph_node.inputs[2].name,
297
+ **kwargs,
298
+ )
299
+ ends = tf.convert_to_tensor(ends)
300
+ # Param replacement - axes
301
+ if len(graph_node.inputs) >= 4:
302
+ axes = replace_parameter(
303
+ value_before_replacement=axes,
304
+ param_target='inputs',
305
+ param_name=graph_node.inputs[3].name,
306
+ **kwargs,
307
+ )
308
+ axes = tf.convert_to_tensor(axes)
309
+ # Param replacement - steps
310
+ if len(graph_node.inputs) >= 5:
311
+ steps = replace_parameter(
312
+ value_before_replacement=steps,
313
+ param_target='inputs',
314
+ param_name=graph_node.inputs[4].name,
315
+ **kwargs,
316
+ )
317
+ steps = tf.convert_to_tensor(steps)
318
+
281
319
  # Generation of TF OP
282
320
  tf_type = None
283
321
  if isinstance(graph_node_input, gs.Variable) \
@@ -7,6 +7,7 @@ import tensorflow as tf
7
7
  import onnx_graphsurgeon as gs
8
8
  from onnx2tf.utils.common_functions import (
9
9
  get_replacement_parameter,
10
+ replace_parameter,
10
11
  get_constant_or_variable,
11
12
  convert_axis,
12
13
  print_node_info,
@@ -119,6 +120,14 @@ def make_node(
119
120
  if axes is not None and isinstance(axes, list) and len(axes) > 0:
120
121
  axes.sort()
121
122
 
123
+ # Param replacement - axes
124
+ axes = replace_parameter(
125
+ value_before_replacement=axes,
126
+ param_target='attributes',
127
+ param_name='axes',
128
+ **kwargs,
129
+ )
130
+
122
131
  new_shape = copy.deepcopy(input_tensor_shape)
123
132
  for idx in axes:
124
133
  new_shape.insert(idx, 1)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.27.4
3
+ Version: 1.27.6
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
334
334
  docker run --rm -it \
335
335
  -v `pwd`:/workdir \
336
336
  -w /workdir \
337
- ghcr.io/pinto0309/onnx2tf:1.27.4
337
+ ghcr.io/pinto0309/onnx2tf:1.27.6
338
338
 
339
339
  or
340
340
 
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
342
342
  docker run --rm -it \
343
343
  -v `pwd`:/workdir \
344
344
  -w /workdir \
345
- docker.io/pinto0309/onnx2tf:1.27.4
345
+ docker.io/pinto0309/onnx2tf:1.27.6
346
346
 
347
347
  or
348
348
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes