onnx2tf 1.27.3__tar.gz → 1.27.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. {onnx2tf-1.27.3/onnx2tf.egg-info → onnx2tf-1.27.5}/PKG-INFO +3 -3
  2. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/README.md +2 -2
  3. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Reshape.py +12 -8
  5. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Resize.py +19 -8
  6. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Slice.py +38 -0
  7. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Unsqueeze.py +9 -0
  8. {onnx2tf-1.27.3 → onnx2tf-1.27.5/onnx2tf.egg-info}/PKG-INFO +3 -3
  9. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/LICENSE +0 -0
  10. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/LICENSE_onnx-tensorflow +0 -0
  11. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/__main__.py +0 -0
  12. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/onnx2tf.py +0 -0
  13. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Abs.py +0 -0
  14. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Acos.py +0 -0
  15. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Acosh.py +0 -0
  16. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Add.py +0 -0
  17. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/And.py +0 -0
  18. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ArgMax.py +0 -0
  19. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ArgMin.py +0 -0
  20. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Asin.py +0 -0
  21. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Asinh.py +0 -0
  22. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Atan.py +0 -0
  23. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Atanh.py +0 -0
  24. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/AveragePool.py +0 -0
  25. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/BatchNormalization.py +0 -0
  26. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Bernoulli.py +0 -0
  27. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/BitShift.py +0 -0
  28. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Cast.py +0 -0
  29. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Ceil.py +0 -0
  30. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Celu.py +0 -0
  31. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Clip.py +0 -0
  32. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Col2Im.py +0 -0
  33. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Compress.py +0 -0
  34. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Concat.py +0 -0
  35. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  36. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Constant.py +0 -0
  37. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ConstantOfShape.py +0 -0
  38. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Conv.py +0 -0
  39. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ConvInteger.py +0 -0
  40. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ConvTranspose.py +0 -0
  41. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Cos.py +0 -0
  42. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Cosh.py +0 -0
  43. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/CumSum.py +0 -0
  44. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/DepthToSpace.py +0 -0
  45. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/DequantizeLinear.py +0 -0
  46. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Det.py +0 -0
  47. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Div.py +0 -0
  48. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Dropout.py +0 -0
  49. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  50. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Einsum.py +0 -0
  51. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Elu.py +0 -0
  52. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Equal.py +0 -0
  53. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Erf.py +0 -0
  54. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Exp.py +0 -0
  55. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Expand.py +0 -0
  56. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/EyeLike.py +0 -0
  57. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Flatten.py +0 -0
  58. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Floor.py +0 -0
  59. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/FusedConv.py +0 -0
  60. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/GRU.py +0 -0
  61. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Gather.py +0 -0
  62. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/GatherElements.py +0 -0
  63. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/GatherND.py +0 -0
  64. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Gelu.py +0 -0
  65. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Gemm.py +0 -0
  66. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  67. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/GlobalLpPool.py +0 -0
  68. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  69. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Greater.py +0 -0
  70. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  71. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/GridSample.py +0 -0
  72. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/GroupNorm.py +0 -0
  73. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/HammingWindow.py +0 -0
  74. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/HannWindow.py +0 -0
  75. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/HardSigmoid.py +0 -0
  76. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/HardSwish.py +0 -0
  77. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Hardmax.py +0 -0
  78. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Identity.py +0 -0
  79. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/If.py +0 -0
  80. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Input.py +0 -0
  81. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/InstanceNormalization.py +0 -0
  82. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Inverse.py +0 -0
  83. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/IsInf.py +0 -0
  84. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/IsNaN.py +0 -0
  85. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/LRN.py +0 -0
  86. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/LSTM.py +0 -0
  87. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/LayerNormalization.py +0 -0
  88. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/LeakyRelu.py +0 -0
  89. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Less.py +0 -0
  90. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/LessOrEqual.py +0 -0
  91. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Log.py +0 -0
  92. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/LogSoftmax.py +0 -0
  93. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/LpNormalization.py +0 -0
  94. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/MatMul.py +0 -0
  95. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/MatMulInteger.py +0 -0
  96. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Max.py +0 -0
  97. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/MaxPool.py +0 -0
  98. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/MaxUnpool.py +0 -0
  99. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Mean.py +0 -0
  100. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  101. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  102. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Min.py +0 -0
  103. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Mish.py +0 -0
  104. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Mod.py +0 -0
  105. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Mul.py +0 -0
  106. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Multinomial.py +0 -0
  107. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Neg.py +0 -0
  108. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  109. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/NonZero.py +0 -0
  110. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Not.py +0 -0
  111. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/OneHot.py +0 -0
  112. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/OptionalGetElement.py +0 -0
  113. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/OptionalHasElement.py +0 -0
  114. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Or.py +0 -0
  115. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/PRelu.py +0 -0
  116. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Pad.py +0 -0
  117. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Pow.py +0 -0
  118. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/QLinearAdd.py +0 -0
  119. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/QLinearConcat.py +0 -0
  120. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/QLinearConv.py +0 -0
  121. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  122. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/QLinearMatMul.py +0 -0
  123. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/QLinearMul.py +0 -0
  124. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  125. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  126. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/QuantizeLinear.py +0 -0
  127. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/RNN.py +0 -0
  128. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/RandomNormal.py +0 -0
  129. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/RandomNormalLike.py +0 -0
  130. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/RandomUniform.py +0 -0
  131. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/RandomUniformLike.py +0 -0
  132. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Range.py +0 -0
  133. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Reciprocal.py +0 -0
  134. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ReduceL1.py +0 -0
  135. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ReduceL2.py +0 -0
  136. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ReduceLogSum.py +0 -0
  137. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  138. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ReduceMax.py +0 -0
  139. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ReduceMean.py +0 -0
  140. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ReduceMin.py +0 -0
  141. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ReduceProd.py +0 -0
  142. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ReduceSum.py +0 -0
  143. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  144. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Relu.py +0 -0
  145. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ReverseSequence.py +0 -0
  146. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/RoiAlign.py +0 -0
  147. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Round.py +0 -0
  148. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/STFT.py +0 -0
  149. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  150. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Scatter.py +0 -0
  151. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ScatterElements.py +0 -0
  152. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ScatterND.py +0 -0
  153. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Selu.py +0 -0
  154. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/SequenceAt.py +0 -0
  155. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/SequenceConstruct.py +0 -0
  156. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/SequenceEmpty.py +0 -0
  157. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/SequenceErase.py +0 -0
  158. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/SequenceInsert.py +0 -0
  159. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/SequenceLength.py +0 -0
  160. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Shape.py +0 -0
  161. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Shrink.py +0 -0
  162. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Sigmoid.py +0 -0
  163. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Sign.py +0 -0
  164. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Sin.py +0 -0
  165. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Sinh.py +0 -0
  166. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Size.py +0 -0
  167. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Softmax.py +0 -0
  168. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Softplus.py +0 -0
  169. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Softsign.py +0 -0
  170. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/SpaceToDepth.py +0 -0
  171. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Split.py +0 -0
  172. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/SplitToSequence.py +0 -0
  173. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Sqrt.py +0 -0
  174. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Squeeze.py +0 -0
  175. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/StringNormalizer.py +0 -0
  176. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Sub.py +0 -0
  177. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Sum.py +0 -0
  178. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Tan.py +0 -0
  179. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Tanh.py +0 -0
  180. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  181. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Tile.py +0 -0
  182. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/TopK.py +0 -0
  183. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Transpose.py +0 -0
  184. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Trilu.py +0 -0
  185. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Unique.py +0 -0
  186. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Upsample.py +0 -0
  187. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Where.py +0 -0
  188. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/Xor.py +0 -0
  189. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/_Loop.py +0 -0
  190. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/__Loop.py +0 -0
  191. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/ops/__init__.py +0 -0
  192. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/utils/__init__.py +0 -0
  193. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/utils/common_functions.py +0 -0
  194. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf/utils/logging.py +0 -0
  196. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf.egg-info/SOURCES.txt +0 -0
  197. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf.egg-info/dependency_links.txt +0 -0
  198. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf.egg-info/entry_points.txt +0 -0
  199. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/onnx2tf.egg-info/top_level.txt +0 -0
  200. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/setup.cfg +0 -0
  201. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/setup.py +0 -0
  202. {onnx2tf-1.27.3 → onnx2tf-1.27.5}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.27.3
3
+ Version: 1.27.5
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
334
334
  docker run --rm -it \
335
335
  -v `pwd`:/workdir \
336
336
  -w /workdir \
337
- ghcr.io/pinto0309/onnx2tf:1.27.3
337
+ ghcr.io/pinto0309/onnx2tf:1.27.5
338
338
 
339
339
  or
340
340
 
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
342
342
  docker run --rm -it \
343
343
  -v `pwd`:/workdir \
344
344
  -w /workdir \
345
- docker.io/pinto0309/onnx2tf:1.27.3
345
+ docker.io/pinto0309/onnx2tf:1.27.5
346
346
 
347
347
  or
348
348
 
@@ -309,7 +309,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
309
309
  docker run --rm -it \
310
310
  -v `pwd`:/workdir \
311
311
  -w /workdir \
312
- ghcr.io/pinto0309/onnx2tf:1.27.3
312
+ ghcr.io/pinto0309/onnx2tf:1.27.5
313
313
 
314
314
  or
315
315
 
@@ -317,7 +317,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
317
317
  docker run --rm -it \
318
318
  -v `pwd`:/workdir \
319
319
  -w /workdir \
320
- docker.io/pinto0309/onnx2tf:1.27.3
320
+ docker.io/pinto0309/onnx2tf:1.27.5
321
321
 
322
322
  or
323
323
 
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.27.3'
3
+ __version__ = '1.27.5'
@@ -136,14 +136,18 @@ def make_node(
136
136
  else:
137
137
  transposed_tensor = input_tensor
138
138
  except:
139
- transposed_tensor = \
140
- transpose_with_flexing_deterrence(
141
- input_tensor=input_tensor,
142
- perm=list(perm) if perm is not None else None,
143
- output_shape=transposed_tensor_output_shape if None not in transposed_tensor_output_shape else None,
144
- name=graph_node.name,
145
- **kwargs,
146
- )
139
+ try:
140
+ transposed_tensor = \
141
+ transpose_with_flexing_deterrence(
142
+ input_tensor=input_tensor,
143
+ perm=list(perm) if perm is not None else None,
144
+ output_shape=transposed_tensor_output_shape if None not in transposed_tensor_output_shape else None,
145
+ name=graph_node.name,
146
+ **kwargs,
147
+ )
148
+ except:
149
+ transposed_tensor = input_tensor
150
+
147
151
  test_data = None
148
152
  if not isinstance(input_tensor, np.ndarray):
149
153
  if not isinstance(graph_node_input_1, np.ndarray) \
@@ -294,14 +294,25 @@ def make_node(
294
294
  else:
295
295
  h_w_scale = scales[1:input_tensor_rank-1]
296
296
  h_w_shape = input_tensor_shape[1:input_tensor_rank-1]
297
- new_size = tf.cast(
298
- h_w_scale * tf.cast(
299
- h_w_shape,
300
- NUMPY_DTYPES_TO_TF_DTYPES[scales.dtype] \
301
- if isinstance(scales.dtype, np.dtype) else scales.dtype,
302
- ),
303
- tf.int32,
304
- )
297
+ if None not in h_w_shape:
298
+ new_size = tf.cast(
299
+ h_w_scale * tf.cast(
300
+ h_w_shape,
301
+ NUMPY_DTYPES_TO_TF_DTYPES[scales.dtype] \
302
+ if isinstance(scales.dtype, np.dtype) else scales.dtype,
303
+ ),
304
+ tf.int32,
305
+ )
306
+ else:
307
+ h_w_shape = tf.shape(input_tensor)[1:input_tensor_rank-1]
308
+ new_size = tf.cast(
309
+ h_w_scale * tf.cast(
310
+ h_w_shape,
311
+ NUMPY_DTYPES_TO_TF_DTYPES[scales.dtype] \
312
+ if isinstance(scales.dtype, np.dtype) else scales.dtype,
313
+ ),
314
+ tf.int32,
315
+ )
305
316
 
306
317
  if hasattr(new_size, '_inferred_value'):
307
318
  new_size_values = new_size._inferred_value
@@ -14,6 +14,7 @@ from onnx2tf.utils.common_functions import (
14
14
  convert_axis,
15
15
  replace_max_values_negative_values,
16
16
  get_replacement_parameter,
17
+ replace_parameter,
17
18
  pre_process_transpose,
18
19
  post_process_transpose,
19
20
  stridedslice_with_flexing_deterrence,
@@ -278,6 +279,43 @@ def make_node(
278
279
  )
279
280
  sys.exit(1)
280
281
 
282
+ # Param replacement - starts
283
+ if len(graph_node.inputs) >= 2:
284
+ starts = replace_parameter(
285
+ value_before_replacement=starts,
286
+ param_target='inputs',
287
+ param_name=graph_node.inputs[1].name,
288
+ **kwargs,
289
+ )
290
+ starts = tf.convert_to_tensor(starts)
291
+ # Param replacement - ends
292
+ if len(graph_node.inputs) >= 3:
293
+ ends = replace_parameter(
294
+ value_before_replacement=ends,
295
+ param_target='inputs',
296
+ param_name=graph_node.inputs[2].name,
297
+ **kwargs,
298
+ )
299
+ ends = tf.convert_to_tensor(ends)
300
+ # Param replacement - axes
301
+ if len(graph_node.inputs) >= 4:
302
+ axes = replace_parameter(
303
+ value_before_replacement=axes,
304
+ param_target='inputs',
305
+ param_name=graph_node.inputs[3].name,
306
+ **kwargs,
307
+ )
308
+ axes = tf.convert_to_tensor(axes)
309
+ # Param replacement - steps
310
+ if len(graph_node.inputs) >= 5:
311
+ steps = replace_parameter(
312
+ value_before_replacement=steps,
313
+ param_target='inputs',
314
+ param_name=graph_node.inputs[4].name,
315
+ **kwargs,
316
+ )
317
+ steps = tf.convert_to_tensor(steps)
318
+
281
319
  # Generation of TF OP
282
320
  tf_type = None
283
321
  if isinstance(graph_node_input, gs.Variable) \
@@ -7,6 +7,7 @@ import tensorflow as tf
7
7
  import onnx_graphsurgeon as gs
8
8
  from onnx2tf.utils.common_functions import (
9
9
  get_replacement_parameter,
10
+ replace_parameter,
10
11
  get_constant_or_variable,
11
12
  convert_axis,
12
13
  print_node_info,
@@ -119,6 +120,14 @@ def make_node(
119
120
  if axes is not None and isinstance(axes, list) and len(axes) > 0:
120
121
  axes.sort()
121
122
 
123
+ # Param replacement - axes
124
+ axes = replace_parameter(
125
+ value_before_replacement=axes,
126
+ param_target='attributes',
127
+ param_name='axes',
128
+ **kwargs,
129
+ )
130
+
122
131
  new_shape = copy.deepcopy(input_tensor_shape)
123
132
  for idx in axes:
124
133
  new_shape.insert(idx, 1)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: onnx2tf
3
- Version: 1.27.3
3
+ Version: 1.27.5
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -334,7 +334,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
334
334
  docker run --rm -it \
335
335
  -v `pwd`:/workdir \
336
336
  -w /workdir \
337
- ghcr.io/pinto0309/onnx2tf:1.27.3
337
+ ghcr.io/pinto0309/onnx2tf:1.27.5
338
338
 
339
339
  or
340
340
 
@@ -342,7 +342,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
342
342
  docker run --rm -it \
343
343
  -v `pwd`:/workdir \
344
344
  -w /workdir \
345
- docker.io/pinto0309/onnx2tf:1.27.3
345
+ docker.io/pinto0309/onnx2tf:1.27.5
346
346
 
347
347
  or
348
348
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes