onnx2tf 1.26.7__tar.gz → 1.26.9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. {onnx2tf-1.26.7/onnx2tf.egg-info → onnx2tf-1.26.9}/PKG-INFO +3 -3
  2. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/README.md +2 -2
  3. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/GatherElements.py +2 -1
  5. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ReduceL1.py +2 -4
  6. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ReduceL2.py +6 -6
  7. {onnx2tf-1.26.7 → onnx2tf-1.26.9/onnx2tf.egg-info}/PKG-INFO +3 -3
  8. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/LICENSE +0 -0
  9. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/LICENSE_onnx-tensorflow +0 -0
  10. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/__main__.py +0 -0
  11. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/onnx2tf.py +0 -0
  12. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Abs.py +0 -0
  13. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Acos.py +0 -0
  14. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Acosh.py +0 -0
  15. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Add.py +0 -0
  16. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/And.py +0 -0
  17. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ArgMax.py +0 -0
  18. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ArgMin.py +0 -0
  19. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Asin.py +0 -0
  20. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Asinh.py +0 -0
  21. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Atan.py +0 -0
  22. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Atanh.py +0 -0
  23. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/AveragePool.py +0 -0
  24. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/BatchNormalization.py +0 -0
  25. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Bernoulli.py +0 -0
  26. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/BitShift.py +0 -0
  27. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Cast.py +0 -0
  28. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Ceil.py +0 -0
  29. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Celu.py +0 -0
  30. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Clip.py +0 -0
  31. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Col2Im.py +0 -0
  32. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Compress.py +0 -0
  33. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Concat.py +0 -0
  34. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  35. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Constant.py +0 -0
  36. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ConstantOfShape.py +0 -0
  37. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Conv.py +0 -0
  38. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ConvInteger.py +0 -0
  39. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ConvTranspose.py +0 -0
  40. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Cos.py +0 -0
  41. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Cosh.py +0 -0
  42. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/CumSum.py +0 -0
  43. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/DepthToSpace.py +0 -0
  44. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/DequantizeLinear.py +0 -0
  45. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Det.py +0 -0
  46. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Div.py +0 -0
  47. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Dropout.py +0 -0
  48. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  49. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Einsum.py +0 -0
  50. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Elu.py +0 -0
  51. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Equal.py +0 -0
  52. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Erf.py +0 -0
  53. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Exp.py +0 -0
  54. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Expand.py +0 -0
  55. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/EyeLike.py +0 -0
  56. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Flatten.py +0 -0
  57. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Floor.py +0 -0
  58. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/FusedConv.py +0 -0
  59. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/GRU.py +0 -0
  60. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Gather.py +0 -0
  61. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/GatherND.py +0 -0
  62. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Gelu.py +0 -0
  63. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Gemm.py +0 -0
  64. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  65. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/GlobalLpPool.py +0 -0
  66. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  67. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Greater.py +0 -0
  68. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  69. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/GridSample.py +0 -0
  70. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/GroupNorm.py +0 -0
  71. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/HammingWindow.py +0 -0
  72. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/HannWindow.py +0 -0
  73. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/HardSigmoid.py +0 -0
  74. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/HardSwish.py +0 -0
  75. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Hardmax.py +0 -0
  76. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Identity.py +0 -0
  77. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/If.py +0 -0
  78. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Input.py +0 -0
  79. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/InstanceNormalization.py +0 -0
  80. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Inverse.py +0 -0
  81. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/IsInf.py +0 -0
  82. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/IsNaN.py +0 -0
  83. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/LRN.py +0 -0
  84. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/LSTM.py +0 -0
  85. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/LayerNormalization.py +0 -0
  86. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/LeakyRelu.py +0 -0
  87. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Less.py +0 -0
  88. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/LessOrEqual.py +0 -0
  89. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Log.py +0 -0
  90. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/LogSoftmax.py +0 -0
  91. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/LpNormalization.py +0 -0
  92. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/MatMul.py +0 -0
  93. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/MatMulInteger.py +0 -0
  94. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Max.py +0 -0
  95. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/MaxPool.py +0 -0
  96. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/MaxUnpool.py +0 -0
  97. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Mean.py +0 -0
  98. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  99. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  100. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Min.py +0 -0
  101. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Mish.py +0 -0
  102. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Mod.py +0 -0
  103. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Mul.py +0 -0
  104. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Multinomial.py +0 -0
  105. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Neg.py +0 -0
  106. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  107. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/NonZero.py +0 -0
  108. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Not.py +0 -0
  109. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/OneHot.py +0 -0
  110. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/OptionalGetElement.py +0 -0
  111. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/OptionalHasElement.py +0 -0
  112. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Or.py +0 -0
  113. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/PRelu.py +0 -0
  114. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Pad.py +0 -0
  115. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Pow.py +0 -0
  116. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/QLinearAdd.py +0 -0
  117. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/QLinearConcat.py +0 -0
  118. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/QLinearConv.py +0 -0
  119. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  120. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/QLinearMatMul.py +0 -0
  121. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/QLinearMul.py +0 -0
  122. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  123. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  124. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/QuantizeLinear.py +0 -0
  125. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/RNN.py +0 -0
  126. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/RandomNormal.py +0 -0
  127. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/RandomNormalLike.py +0 -0
  128. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/RandomUniform.py +0 -0
  129. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/RandomUniformLike.py +0 -0
  130. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Range.py +0 -0
  131. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Reciprocal.py +0 -0
  132. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ReduceLogSum.py +0 -0
  133. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  134. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ReduceMax.py +0 -0
  135. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ReduceMean.py +0 -0
  136. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ReduceMin.py +0 -0
  137. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ReduceProd.py +0 -0
  138. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ReduceSum.py +0 -0
  139. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  140. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Relu.py +0 -0
  141. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Reshape.py +0 -0
  142. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Resize.py +0 -0
  143. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ReverseSequence.py +0 -0
  144. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/RoiAlign.py +0 -0
  145. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Round.py +0 -0
  146. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/STFT.py +0 -0
  147. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  148. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Scatter.py +0 -0
  149. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ScatterElements.py +0 -0
  150. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ScatterND.py +0 -0
  151. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Selu.py +0 -0
  152. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/SequenceAt.py +0 -0
  153. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/SequenceConstruct.py +0 -0
  154. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/SequenceEmpty.py +0 -0
  155. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/SequenceErase.py +0 -0
  156. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/SequenceInsert.py +0 -0
  157. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/SequenceLength.py +0 -0
  158. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Shape.py +0 -0
  159. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Shrink.py +0 -0
  160. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Sigmoid.py +0 -0
  161. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Sign.py +0 -0
  162. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Sin.py +0 -0
  163. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Sinh.py +0 -0
  164. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Size.py +0 -0
  165. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Slice.py +0 -0
  166. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Softmax.py +0 -0
  167. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Softplus.py +0 -0
  168. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Softsign.py +0 -0
  169. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/SpaceToDepth.py +0 -0
  170. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Split.py +0 -0
  171. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/SplitToSequence.py +0 -0
  172. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Sqrt.py +0 -0
  173. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Squeeze.py +0 -0
  174. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/StringNormalizer.py +0 -0
  175. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Sub.py +0 -0
  176. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Sum.py +0 -0
  177. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Tan.py +0 -0
  178. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Tanh.py +0 -0
  179. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  180. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Tile.py +0 -0
  181. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/TopK.py +0 -0
  182. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Transpose.py +0 -0
  183. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Trilu.py +0 -0
  184. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Unique.py +0 -0
  185. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Unsqueeze.py +0 -0
  186. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Upsample.py +0 -0
  187. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Where.py +0 -0
  188. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/Xor.py +0 -0
  189. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/_Loop.py +0 -0
  190. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/__Loop.py +0 -0
  191. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/ops/__init__.py +0 -0
  192. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/utils/__init__.py +0 -0
  193. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/utils/common_functions.py +0 -0
  194. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf/utils/logging.py +0 -0
  196. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf.egg-info/SOURCES.txt +0 -0
  197. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf.egg-info/dependency_links.txt +0 -0
  198. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf.egg-info/entry_points.txt +0 -0
  199. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/onnx2tf.egg-info/top_level.txt +0 -0
  200. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/setup.cfg +0 -0
  201. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/setup.py +0 -0
  202. {onnx2tf-1.26.7 → onnx2tf-1.26.9}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: onnx2tf
3
- Version: 1.26.7
3
+ Version: 1.26.9
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -331,7 +331,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
331
331
  docker run --rm -it \
332
332
  -v `pwd`:/workdir \
333
333
  -w /workdir \
334
- ghcr.io/pinto0309/onnx2tf:1.26.7
334
+ ghcr.io/pinto0309/onnx2tf:1.26.9
335
335
 
336
336
  or
337
337
 
@@ -339,7 +339,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
339
339
  docker run --rm -it \
340
340
  -v `pwd`:/workdir \
341
341
  -w /workdir \
342
- docker.io/pinto0309/onnx2tf:1.26.7
342
+ docker.io/pinto0309/onnx2tf:1.26.9
343
343
 
344
344
  or
345
345
 
@@ -307,7 +307,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
307
307
  docker run --rm -it \
308
308
  -v `pwd`:/workdir \
309
309
  -w /workdir \
310
- ghcr.io/pinto0309/onnx2tf:1.26.7
310
+ ghcr.io/pinto0309/onnx2tf:1.26.9
311
311
 
312
312
  or
313
313
 
@@ -315,7 +315,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
315
315
  docker run --rm -it \
316
316
  -v `pwd`:/workdir \
317
317
  -w /workdir \
318
- docker.io/pinto0309/onnx2tf:1.26.7
318
+ docker.io/pinto0309/onnx2tf:1.26.9
319
319
 
320
320
  or
321
321
 
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.26.7'
3
+ __version__ = '1.26.9'
@@ -184,7 +184,8 @@ def make_node(
184
184
  tf_layers_dict=tf_layers_dict,
185
185
  )
186
186
  val_model = None
187
- if not isinstance(input_tensor, np.ndarray):
187
+ if not isinstance(input_tensor, np.ndarray) \
188
+ and not hasattr(input_tensor, "numpy"):
188
189
  val_model = tf_keras.Model(
189
190
  inputs=tf_model_inputs,
190
191
  outputs=[
@@ -298,12 +298,10 @@ def make_node(
298
298
  # Generation of TF OP
299
299
  axes = list(axes) if axes is not None else None
300
300
  tf_layers_dict[graph_node_output.name]['tf_node'] = \
301
- tf.norm(
302
- tensor=input_tensor,
303
- ord=1,
301
+ tf.reduce_sum(
302
+ tf.abs(input_tensor),
304
303
  axis=axes if len(axes) > 1 else axes[0],
305
304
  keepdims=keepdims,
306
- name=graph_node.name,
307
305
  )
308
306
 
309
307
  # Post-process transpose
@@ -297,12 +297,12 @@ def make_node(
297
297
  # Generation of TF OP
298
298
  axes = list(axes) if axes is not None else None
299
299
  tf_layers_dict[graph_node_output.name]['tf_node'] = \
300
- tf.norm(
301
- tensor=input_tensor,
302
- ord=2,
303
- axis=axes if len(axes) > 1 else axes[0],
304
- keepdims=keepdims,
305
- name=graph_node.name,
300
+ tf.sqrt(
301
+ tf.reduce_sum(
302
+ tf.square(input_tensor),
303
+ axis=axes,
304
+ keepdims=keepdims
305
+ )
306
306
  )
307
307
 
308
308
  # Post-process transpose
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: onnx2tf
3
- Version: 1.26.7
3
+ Version: 1.26.9
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -331,7 +331,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
331
331
  docker run --rm -it \
332
332
  -v `pwd`:/workdir \
333
333
  -w /workdir \
334
- ghcr.io/pinto0309/onnx2tf:1.26.7
334
+ ghcr.io/pinto0309/onnx2tf:1.26.9
335
335
 
336
336
  or
337
337
 
@@ -339,7 +339,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
339
339
  docker run --rm -it \
340
340
  -v `pwd`:/workdir \
341
341
  -w /workdir \
342
- docker.io/pinto0309/onnx2tf:1.26.7
342
+ docker.io/pinto0309/onnx2tf:1.26.9
343
343
 
344
344
  or
345
345
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes