onnx2tf 1.26.6__tar.gz → 1.26.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. {onnx2tf-1.26.6/onnx2tf.egg-info → onnx2tf-1.26.7}/PKG-INFO +13 -5
  2. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/README.md +12 -4
  3. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/DequantizeLinear.py +3 -1
  5. {onnx2tf-1.26.6 → onnx2tf-1.26.7/onnx2tf.egg-info}/PKG-INFO +13 -5
  6. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/LICENSE +0 -0
  7. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/LICENSE_onnx-tensorflow +0 -0
  8. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/__main__.py +0 -0
  9. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/onnx2tf.py +0 -0
  10. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Abs.py +0 -0
  11. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Acos.py +0 -0
  12. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Acosh.py +0 -0
  13. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Add.py +0 -0
  14. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/And.py +0 -0
  15. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ArgMax.py +0 -0
  16. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ArgMin.py +0 -0
  17. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Asin.py +0 -0
  18. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Asinh.py +0 -0
  19. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Atan.py +0 -0
  20. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Atanh.py +0 -0
  21. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/AveragePool.py +0 -0
  22. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/BatchNormalization.py +0 -0
  23. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Bernoulli.py +0 -0
  24. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/BitShift.py +0 -0
  25. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Cast.py +0 -0
  26. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Ceil.py +0 -0
  27. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Celu.py +0 -0
  28. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Clip.py +0 -0
  29. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Col2Im.py +0 -0
  30. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Compress.py +0 -0
  31. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Concat.py +0 -0
  32. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  33. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Constant.py +0 -0
  34. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ConstantOfShape.py +0 -0
  35. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Conv.py +0 -0
  36. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ConvInteger.py +0 -0
  37. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ConvTranspose.py +0 -0
  38. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Cos.py +0 -0
  39. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Cosh.py +0 -0
  40. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/CumSum.py +0 -0
  41. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/DepthToSpace.py +0 -0
  42. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Det.py +0 -0
  43. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Div.py +0 -0
  44. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Dropout.py +0 -0
  45. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  46. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Einsum.py +0 -0
  47. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Elu.py +0 -0
  48. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Equal.py +0 -0
  49. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Erf.py +0 -0
  50. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Exp.py +0 -0
  51. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Expand.py +0 -0
  52. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/EyeLike.py +0 -0
  53. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Flatten.py +0 -0
  54. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Floor.py +0 -0
  55. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/FusedConv.py +0 -0
  56. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/GRU.py +0 -0
  57. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Gather.py +0 -0
  58. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/GatherElements.py +0 -0
  59. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/GatherND.py +0 -0
  60. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Gelu.py +0 -0
  61. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Gemm.py +0 -0
  62. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  63. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/GlobalLpPool.py +0 -0
  64. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  65. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Greater.py +0 -0
  66. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  67. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/GridSample.py +0 -0
  68. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/GroupNorm.py +0 -0
  69. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/HammingWindow.py +0 -0
  70. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/HannWindow.py +0 -0
  71. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/HardSigmoid.py +0 -0
  72. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/HardSwish.py +0 -0
  73. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Hardmax.py +0 -0
  74. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Identity.py +0 -0
  75. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/If.py +0 -0
  76. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Input.py +0 -0
  77. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/InstanceNormalization.py +0 -0
  78. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Inverse.py +0 -0
  79. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/IsInf.py +0 -0
  80. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/IsNaN.py +0 -0
  81. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/LRN.py +0 -0
  82. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/LSTM.py +0 -0
  83. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/LayerNormalization.py +0 -0
  84. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/LeakyRelu.py +0 -0
  85. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Less.py +0 -0
  86. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/LessOrEqual.py +0 -0
  87. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Log.py +0 -0
  88. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/LogSoftmax.py +0 -0
  89. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/LpNormalization.py +0 -0
  90. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/MatMul.py +0 -0
  91. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/MatMulInteger.py +0 -0
  92. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Max.py +0 -0
  93. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/MaxPool.py +0 -0
  94. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/MaxUnpool.py +0 -0
  95. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Mean.py +0 -0
  96. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  97. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  98. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Min.py +0 -0
  99. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Mish.py +0 -0
  100. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Mod.py +0 -0
  101. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Mul.py +0 -0
  102. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Multinomial.py +0 -0
  103. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Neg.py +0 -0
  104. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  105. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/NonZero.py +0 -0
  106. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Not.py +0 -0
  107. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/OneHot.py +0 -0
  108. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/OptionalGetElement.py +0 -0
  109. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/OptionalHasElement.py +0 -0
  110. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Or.py +0 -0
  111. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/PRelu.py +0 -0
  112. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Pad.py +0 -0
  113. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Pow.py +0 -0
  114. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/QLinearAdd.py +0 -0
  115. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/QLinearConcat.py +0 -0
  116. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/QLinearConv.py +0 -0
  117. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  118. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/QLinearMatMul.py +0 -0
  119. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/QLinearMul.py +0 -0
  120. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  121. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  122. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/QuantizeLinear.py +0 -0
  123. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/RNN.py +0 -0
  124. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/RandomNormal.py +0 -0
  125. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/RandomNormalLike.py +0 -0
  126. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/RandomUniform.py +0 -0
  127. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/RandomUniformLike.py +0 -0
  128. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Range.py +0 -0
  129. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Reciprocal.py +0 -0
  130. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ReduceL1.py +0 -0
  131. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ReduceL2.py +0 -0
  132. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ReduceLogSum.py +0 -0
  133. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  134. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ReduceMax.py +0 -0
  135. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ReduceMean.py +0 -0
  136. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ReduceMin.py +0 -0
  137. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ReduceProd.py +0 -0
  138. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ReduceSum.py +0 -0
  139. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  140. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Relu.py +0 -0
  141. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Reshape.py +0 -0
  142. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Resize.py +0 -0
  143. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ReverseSequence.py +0 -0
  144. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/RoiAlign.py +0 -0
  145. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Round.py +0 -0
  146. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/STFT.py +0 -0
  147. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  148. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Scatter.py +0 -0
  149. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ScatterElements.py +0 -0
  150. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ScatterND.py +0 -0
  151. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Selu.py +0 -0
  152. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/SequenceAt.py +0 -0
  153. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/SequenceConstruct.py +0 -0
  154. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/SequenceEmpty.py +0 -0
  155. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/SequenceErase.py +0 -0
  156. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/SequenceInsert.py +0 -0
  157. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/SequenceLength.py +0 -0
  158. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Shape.py +0 -0
  159. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Shrink.py +0 -0
  160. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Sigmoid.py +0 -0
  161. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Sign.py +0 -0
  162. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Sin.py +0 -0
  163. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Sinh.py +0 -0
  164. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Size.py +0 -0
  165. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Slice.py +0 -0
  166. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Softmax.py +0 -0
  167. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Softplus.py +0 -0
  168. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Softsign.py +0 -0
  169. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/SpaceToDepth.py +0 -0
  170. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Split.py +0 -0
  171. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/SplitToSequence.py +0 -0
  172. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Sqrt.py +0 -0
  173. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Squeeze.py +0 -0
  174. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/StringNormalizer.py +0 -0
  175. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Sub.py +0 -0
  176. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Sum.py +0 -0
  177. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Tan.py +0 -0
  178. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Tanh.py +0 -0
  179. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  180. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Tile.py +0 -0
  181. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/TopK.py +0 -0
  182. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Transpose.py +0 -0
  183. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Trilu.py +0 -0
  184. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Unique.py +0 -0
  185. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Unsqueeze.py +0 -0
  186. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Upsample.py +0 -0
  187. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Where.py +0 -0
  188. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/Xor.py +0 -0
  189. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/_Loop.py +0 -0
  190. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/__Loop.py +0 -0
  191. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/ops/__init__.py +0 -0
  192. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/utils/__init__.py +0 -0
  193. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/utils/common_functions.py +0 -0
  194. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf/utils/logging.py +0 -0
  196. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf.egg-info/SOURCES.txt +0 -0
  197. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf.egg-info/dependency_links.txt +0 -0
  198. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf.egg-info/entry_points.txt +0 -0
  199. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/onnx2tf.egg-info/top_level.txt +0 -0
  200. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/setup.cfg +0 -0
  201. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/setup.py +0 -0
  202. {onnx2tf-1.26.6 → onnx2tf-1.26.7}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: onnx2tf
3
- Version: 1.26.6
3
+ Version: 1.26.7
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -289,14 +289,22 @@ Video speed is adjusted approximately 50 times slower than actual speed.
289
289
  - psutil==5.9.5
290
290
  - ml_dtypes==0.3.2
291
291
  - flatbuffers-compiler (Optional, Only when using the `-coion` option. Executable file named `flatc`.)
292
- - flatbuffers>=23.5.26
292
+ - flatbuffers>=23.1.21
293
293
  ```bash
294
- # Custom flatc v23.5.26 binary for Ubuntu 20.04+
294
+ # Custom flatc binary for Ubuntu 22.04+
295
295
  # https://github.com/PINTO0309/onnx2tf/issues/196
296
+
297
+ # x86_64/amd64 v23.5.26
296
298
  wget https://github.com/PINTO0309/onnx2tf/releases/download/1.16.31/flatc.tar.gz \
297
299
  && tar -zxvf flatc.tar.gz \
298
300
  && sudo chmod +x flatc \
299
301
  && sudo mv flatc /usr/bin/
302
+
303
+ # arm64 v23.1.21
304
+ wget https://github.com/PINTO0309/onnx2tf/releases/download/1.26.6/flatc_arm64.tar.gz \
305
+ && tar -zxvf flatc_arm64.tar.gz \
306
+ && sudo chmod +x flatc \
307
+ && sudo mv flatc /usr/bin/
300
308
  ```
301
309
 
302
310
  ## Sample Usage
@@ -323,7 +331,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
323
331
  docker run --rm -it \
324
332
  -v `pwd`:/workdir \
325
333
  -w /workdir \
326
- ghcr.io/pinto0309/onnx2tf:1.26.6
334
+ ghcr.io/pinto0309/onnx2tf:1.26.7
327
335
 
328
336
  or
329
337
 
@@ -331,7 +339,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
331
339
  docker run --rm -it \
332
340
  -v `pwd`:/workdir \
333
341
  -w /workdir \
334
- docker.io/pinto0309/onnx2tf:1.26.6
342
+ docker.io/pinto0309/onnx2tf:1.26.7
335
343
 
336
344
  or
337
345
 
@@ -265,14 +265,22 @@ Video speed is adjusted approximately 50 times slower than actual speed.
265
265
  - psutil==5.9.5
266
266
  - ml_dtypes==0.3.2
267
267
  - flatbuffers-compiler (Optional, Only when using the `-coion` option. Executable file named `flatc`.)
268
- - flatbuffers>=23.5.26
268
+ - flatbuffers>=23.1.21
269
269
  ```bash
270
- # Custom flatc v23.5.26 binary for Ubuntu 20.04+
270
+ # Custom flatc binary for Ubuntu 22.04+
271
271
  # https://github.com/PINTO0309/onnx2tf/issues/196
272
+
273
+ # x86_64/amd64 v23.5.26
272
274
  wget https://github.com/PINTO0309/onnx2tf/releases/download/1.16.31/flatc.tar.gz \
273
275
  && tar -zxvf flatc.tar.gz \
274
276
  && sudo chmod +x flatc \
275
277
  && sudo mv flatc /usr/bin/
278
+
279
+ # arm64 v23.1.21
280
+ wget https://github.com/PINTO0309/onnx2tf/releases/download/1.26.6/flatc_arm64.tar.gz \
281
+ && tar -zxvf flatc_arm64.tar.gz \
282
+ && sudo chmod +x flatc \
283
+ && sudo mv flatc /usr/bin/
276
284
  ```
277
285
 
278
286
  ## Sample Usage
@@ -299,7 +307,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
299
307
  docker run --rm -it \
300
308
  -v `pwd`:/workdir \
301
309
  -w /workdir \
302
- ghcr.io/pinto0309/onnx2tf:1.26.6
310
+ ghcr.io/pinto0309/onnx2tf:1.26.7
303
311
 
304
312
  or
305
313
 
@@ -307,7 +315,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
307
315
  docker run --rm -it \
308
316
  -v `pwd`:/workdir \
309
317
  -w /workdir \
310
- docker.io/pinto0309/onnx2tf:1.26.6
318
+ docker.io/pinto0309/onnx2tf:1.26.7
311
319
 
312
320
  or
313
321
 
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.26.6'
3
+ __version__ = '1.26.7'
@@ -101,12 +101,14 @@ def make_node(
101
101
 
102
102
  # Reshape process is needed for per-axis dequantization
103
103
  # when scale is a 1-D tensor
104
- if x_scale_rank == 1:
104
+ if x_scale_rank == 1 and x_scale_shape[0] != 1:
105
105
  shape_broadcast = list([1 for _ in range(axis)] + [input_tensor_shape[axis]] + [1 for _ in range(axis + 1, input_tensor_rank)])
106
106
  x_scale = tf.reshape(
107
107
  tensor=x_scale,
108
108
  shape=shape_broadcast,
109
109
  )
110
+ elif x_scale_rank == 1 and x_scale_shape[0] == 1:
111
+ shape_broadcast = [1 for i in range(input_tensor_rank)]
110
112
 
111
113
  subed_tensor = input_tensor
112
114
  if len(graph_node.inputs) >= 3 and input_tensor.dtype != tf.int32:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: onnx2tf
3
- Version: 1.26.6
3
+ Version: 1.26.7
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -289,14 +289,22 @@ Video speed is adjusted approximately 50 times slower than actual speed.
289
289
  - psutil==5.9.5
290
290
  - ml_dtypes==0.3.2
291
291
  - flatbuffers-compiler (Optional, Only when using the `-coion` option. Executable file named `flatc`.)
292
- - flatbuffers>=23.5.26
292
+ - flatbuffers>=23.1.21
293
293
  ```bash
294
- # Custom flatc v23.5.26 binary for Ubuntu 20.04+
294
+ # Custom flatc binary for Ubuntu 22.04+
295
295
  # https://github.com/PINTO0309/onnx2tf/issues/196
296
+
297
+ # x86_64/amd64 v23.5.26
296
298
  wget https://github.com/PINTO0309/onnx2tf/releases/download/1.16.31/flatc.tar.gz \
297
299
  && tar -zxvf flatc.tar.gz \
298
300
  && sudo chmod +x flatc \
299
301
  && sudo mv flatc /usr/bin/
302
+
303
+ # arm64 v23.1.21
304
+ wget https://github.com/PINTO0309/onnx2tf/releases/download/1.26.6/flatc_arm64.tar.gz \
305
+ && tar -zxvf flatc_arm64.tar.gz \
306
+ && sudo chmod +x flatc \
307
+ && sudo mv flatc /usr/bin/
300
308
  ```
301
309
 
302
310
  ## Sample Usage
@@ -323,7 +331,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
323
331
  docker run --rm -it \
324
332
  -v `pwd`:/workdir \
325
333
  -w /workdir \
326
- ghcr.io/pinto0309/onnx2tf:1.26.6
334
+ ghcr.io/pinto0309/onnx2tf:1.26.7
327
335
 
328
336
  or
329
337
 
@@ -331,7 +339,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
331
339
  docker run --rm -it \
332
340
  -v `pwd`:/workdir \
333
341
  -w /workdir \
334
- docker.io/pinto0309/onnx2tf:1.26.6
342
+ docker.io/pinto0309/onnx2tf:1.26.7
335
343
 
336
344
  or
337
345
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes