onnx2tf 1.26.2__tar.gz → 1.26.4__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {onnx2tf-1.26.2/onnx2tf.egg-info → onnx2tf-1.26.4}/PKG-INFO +19 -6
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/README.md +8 -4
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/__init__.py +1 -1
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/MatMul.py +1 -1
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/utils/common_functions.py +9 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4/onnx2tf.egg-info}/PKG-INFO +19 -6
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/LICENSE +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/LICENSE_onnx-tensorflow +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/__main__.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/onnx2tf.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Abs.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Acos.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Acosh.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Add.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/And.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ArgMax.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ArgMin.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Asin.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Asinh.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Atan.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Atanh.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/AveragePool.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/BatchNormalization.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Bernoulli.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/BitShift.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Cast.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Ceil.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Celu.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Clip.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Col2Im.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Compress.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Concat.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ConcatFromSequence.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Constant.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ConstantOfShape.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Conv.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ConvInteger.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ConvTranspose.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Cos.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Cosh.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/CumSum.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/DepthToSpace.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/DequantizeLinear.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Det.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Div.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Dropout.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Einsum.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Elu.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Equal.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Erf.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Exp.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Expand.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/EyeLike.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Flatten.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Floor.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/FusedConv.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/GRU.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Gather.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/GatherElements.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/GatherND.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Gelu.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Gemm.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/GlobalAveragePool.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/GlobalLpPool.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/GlobalMaxPool.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Greater.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/GreaterOrEqual.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/GridSample.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/GroupNorm.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/HammingWindow.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/HannWindow.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/HardSigmoid.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/HardSwish.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Hardmax.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Identity.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/If.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Input.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/InstanceNormalization.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Inverse.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/IsInf.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/IsNaN.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/LRN.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/LSTM.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/LayerNormalization.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/LeakyRelu.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Less.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/LessOrEqual.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Log.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/LogSoftmax.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/LpNormalization.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/MatMulInteger.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Max.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/MaxPool.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/MaxUnpool.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Mean.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/MelWeightMatrix.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Min.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Mish.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Mod.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Mul.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Multinomial.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Neg.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/NonMaxSuppression.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/NonZero.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Not.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/OneHot.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/OptionalGetElement.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/OptionalHasElement.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Or.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/PRelu.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Pad.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Pow.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/QLinearAdd.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/QLinearConcat.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/QLinearConv.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/QLinearMatMul.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/QLinearMul.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/QLinearSigmoid.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/QLinearSoftmax.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/QuantizeLinear.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/RNN.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/RandomNormal.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/RandomNormalLike.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/RandomUniform.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/RandomUniformLike.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Range.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Reciprocal.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ReduceL1.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ReduceL2.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ReduceLogSum.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ReduceMax.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ReduceMean.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ReduceMin.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ReduceProd.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ReduceSum.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ReduceSumSquare.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Relu.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Reshape.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Resize.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ReverseSequence.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/RoiAlign.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Round.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/STFT.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Scatter.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ScatterElements.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ScatterND.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Selu.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/SequenceAt.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/SequenceConstruct.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/SequenceEmpty.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/SequenceErase.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/SequenceInsert.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/SequenceLength.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Shape.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Shrink.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Sigmoid.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Sign.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Sin.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Sinh.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Size.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Slice.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Softmax.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Softplus.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Softsign.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/SpaceToDepth.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Split.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/SplitToSequence.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Sqrt.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Squeeze.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/StringNormalizer.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Sub.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Sum.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Tan.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Tanh.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/ThresholdedRelu.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Tile.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/TopK.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Transpose.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Trilu.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Unique.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Unsqueeze.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Upsample.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Where.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/Xor.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/_Loop.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/__Loop.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/ops/__init__.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/utils/__init__.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/utils/enums.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf/utils/logging.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf.egg-info/SOURCES.txt +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf.egg-info/dependency_links.txt +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf.egg-info/entry_points.txt +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/onnx2tf.egg-info/top_level.txt +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/setup.cfg +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/setup.py +0 -0
- {onnx2tf-1.26.2 → onnx2tf-1.26.4}/tests/test_model_convert.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.2
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.26.
|
|
3
|
+
Version: 1.26.4
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -12,6 +12,15 @@ Requires-Python: >=3.10
|
|
|
12
12
|
Description-Content-Type: text/markdown
|
|
13
13
|
License-File: LICENSE
|
|
14
14
|
License-File: LICENSE_onnx-tensorflow
|
|
15
|
+
Dynamic: author
|
|
16
|
+
Dynamic: author-email
|
|
17
|
+
Dynamic: description
|
|
18
|
+
Dynamic: description-content-type
|
|
19
|
+
Dynamic: home-page
|
|
20
|
+
Dynamic: license
|
|
21
|
+
Dynamic: platform
|
|
22
|
+
Dynamic: requires-python
|
|
23
|
+
Dynamic: summary
|
|
15
24
|
|
|
16
25
|
# onnx2tf
|
|
17
26
|
Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in [onnx-tensorflow](https://github.com/onnx/onnx-tensorflow) ([onnx-tf](https://pypi.org/project/onnx-tf/)). I don't need a Star, but give me a pull request. Since I am adding challenging model optimizations and fixing bugs almost daily, I frequently embed potential bugs that would otherwise break through CI's regression testing. Therefore, if you encounter new problems, I recommend that you try a package that is a few versions older, or try the latest package that will be released in a few days.
|
|
@@ -314,7 +323,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
314
323
|
docker run --rm -it \
|
|
315
324
|
-v `pwd`:/workdir \
|
|
316
325
|
-w /workdir \
|
|
317
|
-
ghcr.io/pinto0309/onnx2tf:1.26.
|
|
326
|
+
ghcr.io/pinto0309/onnx2tf:1.26.4
|
|
318
327
|
|
|
319
328
|
or
|
|
320
329
|
|
|
@@ -322,7 +331,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
322
331
|
docker run --rm -it \
|
|
323
332
|
-v `pwd`:/workdir \
|
|
324
333
|
-w /workdir \
|
|
325
|
-
docker.io/pinto0309/onnx2tf:1.26.
|
|
334
|
+
docker.io/pinto0309/onnx2tf:1.26.4
|
|
326
335
|
|
|
327
336
|
or
|
|
328
337
|
|
|
@@ -1463,9 +1472,13 @@ For example, take a model with multiple inputs and multiple outputs as shown in
|
|
|
1463
1472
|
When converting to TensorFlow.js, process as follows.
|
|
1464
1473
|
|
|
1465
1474
|
```bash
|
|
1466
|
-
pip install
|
|
1475
|
+
pip install -U --no-deps \
|
|
1476
|
+
tensorflowjs \
|
|
1477
|
+
tensorflow_decision_forests \
|
|
1478
|
+
ydf \
|
|
1479
|
+
tensorflow_hub
|
|
1467
1480
|
|
|
1468
|
-
onnx2tf -i mobilenetv2-12.onnx -ois input:1,3,224,224 -osd
|
|
1481
|
+
onnx2tf -i mobilenetv2-12.onnx -ois input:1,3,224,224 -osd -dgc
|
|
1469
1482
|
|
|
1470
1483
|
tensorflowjs_converter \
|
|
1471
1484
|
--input_format tf_saved_model \
|
|
@@ -299,7 +299,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
299
299
|
docker run --rm -it \
|
|
300
300
|
-v `pwd`:/workdir \
|
|
301
301
|
-w /workdir \
|
|
302
|
-
ghcr.io/pinto0309/onnx2tf:1.26.
|
|
302
|
+
ghcr.io/pinto0309/onnx2tf:1.26.4
|
|
303
303
|
|
|
304
304
|
or
|
|
305
305
|
|
|
@@ -307,7 +307,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
307
307
|
docker run --rm -it \
|
|
308
308
|
-v `pwd`:/workdir \
|
|
309
309
|
-w /workdir \
|
|
310
|
-
docker.io/pinto0309/onnx2tf:1.26.
|
|
310
|
+
docker.io/pinto0309/onnx2tf:1.26.4
|
|
311
311
|
|
|
312
312
|
or
|
|
313
313
|
|
|
@@ -1448,9 +1448,13 @@ For example, take a model with multiple inputs and multiple outputs as shown in
|
|
|
1448
1448
|
When converting to TensorFlow.js, process as follows.
|
|
1449
1449
|
|
|
1450
1450
|
```bash
|
|
1451
|
-
pip install
|
|
1451
|
+
pip install -U --no-deps \
|
|
1452
|
+
tensorflowjs \
|
|
1453
|
+
tensorflow_decision_forests \
|
|
1454
|
+
ydf \
|
|
1455
|
+
tensorflow_hub
|
|
1452
1456
|
|
|
1453
|
-
onnx2tf -i mobilenetv2-12.onnx -ois input:1,3,224,224 -osd
|
|
1457
|
+
onnx2tf -i mobilenetv2-12.onnx -ois input:1,3,224,224 -osd -dgc
|
|
1454
1458
|
|
|
1455
1459
|
tensorflowjs_converter \
|
|
1456
1460
|
--input_format tf_saved_model \
|
|
@@ -87,7 +87,7 @@ def make_node(
|
|
|
87
87
|
input_tensor_2_is_one_d = False
|
|
88
88
|
if input_tensor_1.shape is not None \
|
|
89
89
|
and len(input_tensor_1.shape) == 1:
|
|
90
|
-
input_tensor_1 = tf.expand_dims(
|
|
90
|
+
input_tensor_1 = tf.expand_dims(input_tensor_1, axis=0)
|
|
91
91
|
input_tensor_1_is_one_d = True
|
|
92
92
|
elif input_tensor_2.shape is not None \
|
|
93
93
|
and len(input_tensor_2.shape) == 1:
|
|
@@ -2386,6 +2386,15 @@ def shape_unmatched_special_avoidance_workaround(
|
|
|
2386
2386
|
input_tensor_2: Any
|
|
2387
2387
|
Input shape-corrected TensorFlow input node Y
|
|
2388
2388
|
"""
|
|
2389
|
+
try:
|
|
2390
|
+
if hasattr(input_tensor_1, "shape") \
|
|
2391
|
+
and hasattr(input_tensor_2, "shape") \
|
|
2392
|
+
and input_tensor_1.shape is not None \
|
|
2393
|
+
and input_tensor_2.shape is not None \
|
|
2394
|
+
and input_tensor_1.shape == input_tensor_2.shape:
|
|
2395
|
+
return input_tensor_1, input_tensor_2
|
|
2396
|
+
except:
|
|
2397
|
+
pass
|
|
2389
2398
|
# At least one True value for same_input_shape_as_onnx
|
|
2390
2399
|
# At least one True value in nhwc_flags
|
|
2391
2400
|
# same_input_shape_as_onnx == True and nhwc_flags == False and 3D or 4D or 5D tensor is NHWC transposed
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.2
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.26.
|
|
3
|
+
Version: 1.26.4
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -12,6 +12,15 @@ Requires-Python: >=3.10
|
|
|
12
12
|
Description-Content-Type: text/markdown
|
|
13
13
|
License-File: LICENSE
|
|
14
14
|
License-File: LICENSE_onnx-tensorflow
|
|
15
|
+
Dynamic: author
|
|
16
|
+
Dynamic: author-email
|
|
17
|
+
Dynamic: description
|
|
18
|
+
Dynamic: description-content-type
|
|
19
|
+
Dynamic: home-page
|
|
20
|
+
Dynamic: license
|
|
21
|
+
Dynamic: platform
|
|
22
|
+
Dynamic: requires-python
|
|
23
|
+
Dynamic: summary
|
|
15
24
|
|
|
16
25
|
# onnx2tf
|
|
17
26
|
Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in [onnx-tensorflow](https://github.com/onnx/onnx-tensorflow) ([onnx-tf](https://pypi.org/project/onnx-tf/)). I don't need a Star, but give me a pull request. Since I am adding challenging model optimizations and fixing bugs almost daily, I frequently embed potential bugs that would otherwise break through CI's regression testing. Therefore, if you encounter new problems, I recommend that you try a package that is a few versions older, or try the latest package that will be released in a few days.
|
|
@@ -314,7 +323,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
314
323
|
docker run --rm -it \
|
|
315
324
|
-v `pwd`:/workdir \
|
|
316
325
|
-w /workdir \
|
|
317
|
-
ghcr.io/pinto0309/onnx2tf:1.26.
|
|
326
|
+
ghcr.io/pinto0309/onnx2tf:1.26.4
|
|
318
327
|
|
|
319
328
|
or
|
|
320
329
|
|
|
@@ -322,7 +331,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
322
331
|
docker run --rm -it \
|
|
323
332
|
-v `pwd`:/workdir \
|
|
324
333
|
-w /workdir \
|
|
325
|
-
docker.io/pinto0309/onnx2tf:1.26.
|
|
334
|
+
docker.io/pinto0309/onnx2tf:1.26.4
|
|
326
335
|
|
|
327
336
|
or
|
|
328
337
|
|
|
@@ -1463,9 +1472,13 @@ For example, take a model with multiple inputs and multiple outputs as shown in
|
|
|
1463
1472
|
When converting to TensorFlow.js, process as follows.
|
|
1464
1473
|
|
|
1465
1474
|
```bash
|
|
1466
|
-
pip install
|
|
1475
|
+
pip install -U --no-deps \
|
|
1476
|
+
tensorflowjs \
|
|
1477
|
+
tensorflow_decision_forests \
|
|
1478
|
+
ydf \
|
|
1479
|
+
tensorflow_hub
|
|
1467
1480
|
|
|
1468
|
-
onnx2tf -i mobilenetv2-12.onnx -ois input:1,3,224,224 -osd
|
|
1481
|
+
onnx2tf -i mobilenetv2-12.onnx -ois input:1,3,224,224 -osd -dgc
|
|
1469
1482
|
|
|
1470
1483
|
tensorflowjs_converter \
|
|
1471
1484
|
--input_format tf_saved_model \
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|