onnx2tf 1.26.1__tar.gz → 1.26.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. {onnx2tf-1.26.1/onnx2tf.egg-info → onnx2tf-1.26.2}/PKG-INFO +3 -3
  2. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/README.md +2 -2
  3. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/onnx2tf.py +7 -3
  5. {onnx2tf-1.26.1 → onnx2tf-1.26.2/onnx2tf.egg-info}/PKG-INFO +3 -3
  6. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/LICENSE +0 -0
  7. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/LICENSE_onnx-tensorflow +0 -0
  8. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/__main__.py +0 -0
  9. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Abs.py +0 -0
  10. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Acos.py +0 -0
  11. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Acosh.py +0 -0
  12. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Add.py +0 -0
  13. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/And.py +0 -0
  14. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ArgMax.py +0 -0
  15. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ArgMin.py +0 -0
  16. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Asin.py +0 -0
  17. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Asinh.py +0 -0
  18. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Atan.py +0 -0
  19. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Atanh.py +0 -0
  20. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/AveragePool.py +0 -0
  21. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/BatchNormalization.py +0 -0
  22. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Bernoulli.py +0 -0
  23. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/BitShift.py +0 -0
  24. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Cast.py +0 -0
  25. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Ceil.py +0 -0
  26. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Celu.py +0 -0
  27. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Clip.py +0 -0
  28. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Col2Im.py +0 -0
  29. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Compress.py +0 -0
  30. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Concat.py +0 -0
  31. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  32. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Constant.py +0 -0
  33. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ConstantOfShape.py +0 -0
  34. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Conv.py +0 -0
  35. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ConvInteger.py +0 -0
  36. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ConvTranspose.py +0 -0
  37. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Cos.py +0 -0
  38. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Cosh.py +0 -0
  39. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/CumSum.py +0 -0
  40. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/DepthToSpace.py +0 -0
  41. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/DequantizeLinear.py +0 -0
  42. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Det.py +0 -0
  43. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Div.py +0 -0
  44. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Dropout.py +0 -0
  45. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  46. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Einsum.py +0 -0
  47. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Elu.py +0 -0
  48. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Equal.py +0 -0
  49. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Erf.py +0 -0
  50. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Exp.py +0 -0
  51. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Expand.py +0 -0
  52. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/EyeLike.py +0 -0
  53. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Flatten.py +0 -0
  54. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Floor.py +0 -0
  55. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/FusedConv.py +0 -0
  56. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/GRU.py +0 -0
  57. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Gather.py +0 -0
  58. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/GatherElements.py +0 -0
  59. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/GatherND.py +0 -0
  60. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Gelu.py +0 -0
  61. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Gemm.py +0 -0
  62. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  63. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/GlobalLpPool.py +0 -0
  64. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  65. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Greater.py +0 -0
  66. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  67. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/GridSample.py +0 -0
  68. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/GroupNorm.py +0 -0
  69. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/HammingWindow.py +0 -0
  70. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/HannWindow.py +0 -0
  71. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/HardSigmoid.py +0 -0
  72. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/HardSwish.py +0 -0
  73. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Hardmax.py +0 -0
  74. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Identity.py +0 -0
  75. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/If.py +0 -0
  76. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Input.py +0 -0
  77. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/InstanceNormalization.py +0 -0
  78. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Inverse.py +0 -0
  79. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/IsInf.py +0 -0
  80. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/IsNaN.py +0 -0
  81. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/LRN.py +0 -0
  82. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/LSTM.py +0 -0
  83. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/LayerNormalization.py +0 -0
  84. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/LeakyRelu.py +0 -0
  85. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Less.py +0 -0
  86. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/LessOrEqual.py +0 -0
  87. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Log.py +0 -0
  88. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/LogSoftmax.py +0 -0
  89. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/LpNormalization.py +0 -0
  90. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/MatMul.py +0 -0
  91. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/MatMulInteger.py +0 -0
  92. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Max.py +0 -0
  93. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/MaxPool.py +0 -0
  94. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/MaxUnpool.py +0 -0
  95. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Mean.py +0 -0
  96. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  97. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  98. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Min.py +0 -0
  99. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Mish.py +0 -0
  100. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Mod.py +0 -0
  101. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Mul.py +0 -0
  102. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Multinomial.py +0 -0
  103. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Neg.py +0 -0
  104. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  105. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/NonZero.py +0 -0
  106. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Not.py +0 -0
  107. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/OneHot.py +0 -0
  108. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/OptionalGetElement.py +0 -0
  109. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/OptionalHasElement.py +0 -0
  110. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Or.py +0 -0
  111. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/PRelu.py +0 -0
  112. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Pad.py +0 -0
  113. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Pow.py +0 -0
  114. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearAdd.py +0 -0
  115. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearConcat.py +0 -0
  116. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearConv.py +0 -0
  117. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  118. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearMatMul.py +0 -0
  119. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearMul.py +0 -0
  120. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  121. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  122. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/QuantizeLinear.py +0 -0
  123. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/RNN.py +0 -0
  124. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/RandomNormal.py +0 -0
  125. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/RandomNormalLike.py +0 -0
  126. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/RandomUniform.py +0 -0
  127. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/RandomUniformLike.py +0 -0
  128. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Range.py +0 -0
  129. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Reciprocal.py +0 -0
  130. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceL1.py +0 -0
  131. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceL2.py +0 -0
  132. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceLogSum.py +0 -0
  133. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  134. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceMax.py +0 -0
  135. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceMean.py +0 -0
  136. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceMin.py +0 -0
  137. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceProd.py +0 -0
  138. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceSum.py +0 -0
  139. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  140. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Relu.py +0 -0
  141. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Reshape.py +0 -0
  142. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Resize.py +0 -0
  143. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ReverseSequence.py +0 -0
  144. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/RoiAlign.py +0 -0
  145. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Round.py +0 -0
  146. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/STFT.py +0 -0
  147. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  148. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Scatter.py +0 -0
  149. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ScatterElements.py +0 -0
  150. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ScatterND.py +0 -0
  151. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Selu.py +0 -0
  152. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/SequenceAt.py +0 -0
  153. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/SequenceConstruct.py +0 -0
  154. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/SequenceEmpty.py +0 -0
  155. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/SequenceErase.py +0 -0
  156. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/SequenceInsert.py +0 -0
  157. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/SequenceLength.py +0 -0
  158. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Shape.py +0 -0
  159. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Shrink.py +0 -0
  160. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Sigmoid.py +0 -0
  161. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Sign.py +0 -0
  162. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Sin.py +0 -0
  163. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Sinh.py +0 -0
  164. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Size.py +0 -0
  165. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Slice.py +0 -0
  166. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Softmax.py +0 -0
  167. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Softplus.py +0 -0
  168. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Softsign.py +0 -0
  169. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/SpaceToDepth.py +0 -0
  170. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Split.py +0 -0
  171. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/SplitToSequence.py +0 -0
  172. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Sqrt.py +0 -0
  173. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Squeeze.py +0 -0
  174. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/StringNormalizer.py +0 -0
  175. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Sub.py +0 -0
  176. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Sum.py +0 -0
  177. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Tan.py +0 -0
  178. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Tanh.py +0 -0
  179. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  180. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Tile.py +0 -0
  181. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/TopK.py +0 -0
  182. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Transpose.py +0 -0
  183. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Trilu.py +0 -0
  184. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Unique.py +0 -0
  185. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Unsqueeze.py +0 -0
  186. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Upsample.py +0 -0
  187. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Where.py +0 -0
  188. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/Xor.py +0 -0
  189. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/_Loop.py +0 -0
  190. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/__Loop.py +0 -0
  191. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/ops/__init__.py +0 -0
  192. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/utils/__init__.py +0 -0
  193. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/utils/common_functions.py +0 -0
  194. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf/utils/logging.py +0 -0
  196. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf.egg-info/SOURCES.txt +0 -0
  197. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf.egg-info/dependency_links.txt +0 -0
  198. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf.egg-info/entry_points.txt +0 -0
  199. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/onnx2tf.egg-info/top_level.txt +0 -0
  200. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/setup.cfg +0 -0
  201. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/setup.py +0 -0
  202. {onnx2tf-1.26.1 → onnx2tf-1.26.2}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.26.1
3
+ Version: 1.26.2
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
314
314
  docker run --rm -it \
315
315
  -v `pwd`:/workdir \
316
316
  -w /workdir \
317
- ghcr.io/pinto0309/onnx2tf:1.26.1
317
+ ghcr.io/pinto0309/onnx2tf:1.26.2
318
318
 
319
319
  or
320
320
 
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
322
322
  docker run --rm -it \
323
323
  -v `pwd`:/workdir \
324
324
  -w /workdir \
325
- docker.io/pinto0309/onnx2tf:1.26.1
325
+ docker.io/pinto0309/onnx2tf:1.26.2
326
326
 
327
327
  or
328
328
 
@@ -299,7 +299,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
299
299
  docker run --rm -it \
300
300
  -v `pwd`:/workdir \
301
301
  -w /workdir \
302
- ghcr.io/pinto0309/onnx2tf:1.26.1
302
+ ghcr.io/pinto0309/onnx2tf:1.26.2
303
303
 
304
304
  or
305
305
 
@@ -307,7 +307,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
307
307
  docker run --rm -it \
308
308
  -v `pwd`:/workdir \
309
309
  -w /workdir \
310
- docker.io/pinto0309/onnx2tf:1.26.1
310
+ docker.io/pinto0309/onnx2tf:1.26.2
311
311
 
312
312
  or
313
313
 
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.26.1'
3
+ __version__ = '1.26.2'
@@ -1626,6 +1626,7 @@ def convert(
1626
1626
  mean,
1627
1627
  std,
1628
1628
  ]
1629
+
1629
1630
  elif custom_input_op_name_np_data_path is not None:
1630
1631
  for param in custom_input_op_name_np_data_path:
1631
1632
  if len(param) != 4:
@@ -1652,11 +1653,14 @@ def convert(
1652
1653
 
1653
1654
  # representative_dataset_gen
1654
1655
  def representative_dataset_gen():
1655
- for idx in range(data_count):
1656
+ batch_size = model.inputs[0].shape[0]
1657
+ if not isinstance(batch_size, int):
1658
+ batch_size = 1
1659
+ for idx in range(0, data_count, batch_size):
1656
1660
  yield_data_dict = {}
1657
1661
  for model_input_name in model_input_name_list:
1658
1662
  calib_data, mean, std = calib_data_dict[model_input_name]
1659
- normalized_calib_data: np.ndarray = (calib_data[idx] - mean) / std
1663
+ normalized_calib_data: np.ndarray = (calib_data[idx:idx+batch_size] - mean) / std
1660
1664
  yield_data_dict[model_input_name] = tf.cast(tf.convert_to_tensor(normalized_calib_data), tf.float32)
1661
1665
  yield yield_data_dict
1662
1666
 
@@ -1708,7 +1712,7 @@ def convert(
1708
1712
  inf_type_input = tf.float32
1709
1713
  else:
1710
1714
  inf_type_input = tf.int8
1711
-
1715
+
1712
1716
  if output_quant_dtype == 'int8':
1713
1717
  inf_type_output = tf.int8
1714
1718
  elif output_quant_dtype == 'uint8':
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.26.1
3
+ Version: 1.26.2
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
314
314
  docker run --rm -it \
315
315
  -v `pwd`:/workdir \
316
316
  -w /workdir \
317
- ghcr.io/pinto0309/onnx2tf:1.26.1
317
+ ghcr.io/pinto0309/onnx2tf:1.26.2
318
318
 
319
319
  or
320
320
 
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
322
322
  docker run --rm -it \
323
323
  -v `pwd`:/workdir \
324
324
  -w /workdir \
325
- docker.io/pinto0309/onnx2tf:1.26.1
325
+ docker.io/pinto0309/onnx2tf:1.26.2
326
326
 
327
327
  or
328
328
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes