onnx2tf 1.26.0__tar.gz → 1.26.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. {onnx2tf-1.26.0/onnx2tf.egg-info → onnx2tf-1.26.2}/PKG-INFO +12 -12
  2. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/README.md +11 -11
  3. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/onnx2tf.py +22 -10
  5. {onnx2tf-1.26.0 → onnx2tf-1.26.2/onnx2tf.egg-info}/PKG-INFO +12 -12
  6. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/LICENSE +0 -0
  7. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/LICENSE_onnx-tensorflow +0 -0
  8. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/__main__.py +0 -0
  9. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Abs.py +0 -0
  10. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Acos.py +0 -0
  11. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Acosh.py +0 -0
  12. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Add.py +0 -0
  13. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/And.py +0 -0
  14. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ArgMax.py +0 -0
  15. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ArgMin.py +0 -0
  16. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Asin.py +0 -0
  17. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Asinh.py +0 -0
  18. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Atan.py +0 -0
  19. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Atanh.py +0 -0
  20. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/AveragePool.py +0 -0
  21. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/BatchNormalization.py +0 -0
  22. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Bernoulli.py +0 -0
  23. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/BitShift.py +0 -0
  24. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Cast.py +0 -0
  25. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Ceil.py +0 -0
  26. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Celu.py +0 -0
  27. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Clip.py +0 -0
  28. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Col2Im.py +0 -0
  29. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Compress.py +0 -0
  30. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Concat.py +0 -0
  31. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  32. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Constant.py +0 -0
  33. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ConstantOfShape.py +0 -0
  34. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Conv.py +0 -0
  35. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ConvInteger.py +0 -0
  36. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ConvTranspose.py +0 -0
  37. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Cos.py +0 -0
  38. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Cosh.py +0 -0
  39. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/CumSum.py +0 -0
  40. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/DepthToSpace.py +0 -0
  41. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/DequantizeLinear.py +0 -0
  42. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Det.py +0 -0
  43. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Div.py +0 -0
  44. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Dropout.py +0 -0
  45. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  46. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Einsum.py +0 -0
  47. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Elu.py +0 -0
  48. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Equal.py +0 -0
  49. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Erf.py +0 -0
  50. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Exp.py +0 -0
  51. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Expand.py +0 -0
  52. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/EyeLike.py +0 -0
  53. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Flatten.py +0 -0
  54. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Floor.py +0 -0
  55. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/FusedConv.py +0 -0
  56. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/GRU.py +0 -0
  57. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Gather.py +0 -0
  58. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/GatherElements.py +0 -0
  59. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/GatherND.py +0 -0
  60. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Gelu.py +0 -0
  61. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Gemm.py +0 -0
  62. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  63. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/GlobalLpPool.py +0 -0
  64. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  65. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Greater.py +0 -0
  66. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  67. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/GridSample.py +0 -0
  68. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/GroupNorm.py +0 -0
  69. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/HammingWindow.py +0 -0
  70. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/HannWindow.py +0 -0
  71. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/HardSigmoid.py +0 -0
  72. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/HardSwish.py +0 -0
  73. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Hardmax.py +0 -0
  74. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Identity.py +0 -0
  75. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/If.py +0 -0
  76. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Input.py +0 -0
  77. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/InstanceNormalization.py +0 -0
  78. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Inverse.py +0 -0
  79. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/IsInf.py +0 -0
  80. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/IsNaN.py +0 -0
  81. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/LRN.py +0 -0
  82. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/LSTM.py +0 -0
  83. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/LayerNormalization.py +0 -0
  84. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/LeakyRelu.py +0 -0
  85. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Less.py +0 -0
  86. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/LessOrEqual.py +0 -0
  87. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Log.py +0 -0
  88. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/LogSoftmax.py +0 -0
  89. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/LpNormalization.py +0 -0
  90. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/MatMul.py +0 -0
  91. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/MatMulInteger.py +0 -0
  92. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Max.py +0 -0
  93. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/MaxPool.py +0 -0
  94. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/MaxUnpool.py +0 -0
  95. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Mean.py +0 -0
  96. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  97. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  98. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Min.py +0 -0
  99. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Mish.py +0 -0
  100. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Mod.py +0 -0
  101. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Mul.py +0 -0
  102. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Multinomial.py +0 -0
  103. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Neg.py +0 -0
  104. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  105. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/NonZero.py +0 -0
  106. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Not.py +0 -0
  107. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/OneHot.py +0 -0
  108. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/OptionalGetElement.py +0 -0
  109. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/OptionalHasElement.py +0 -0
  110. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Or.py +0 -0
  111. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/PRelu.py +0 -0
  112. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Pad.py +0 -0
  113. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Pow.py +0 -0
  114. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearAdd.py +0 -0
  115. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearConcat.py +0 -0
  116. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearConv.py +0 -0
  117. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  118. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearMatMul.py +0 -0
  119. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearMul.py +0 -0
  120. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  121. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  122. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/QuantizeLinear.py +0 -0
  123. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/RNN.py +0 -0
  124. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/RandomNormal.py +0 -0
  125. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/RandomNormalLike.py +0 -0
  126. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/RandomUniform.py +0 -0
  127. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/RandomUniformLike.py +0 -0
  128. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Range.py +0 -0
  129. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Reciprocal.py +0 -0
  130. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceL1.py +0 -0
  131. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceL2.py +0 -0
  132. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceLogSum.py +0 -0
  133. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  134. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceMax.py +0 -0
  135. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceMean.py +0 -0
  136. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceMin.py +0 -0
  137. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceProd.py +0 -0
  138. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceSum.py +0 -0
  139. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  140. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Relu.py +0 -0
  141. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Reshape.py +0 -0
  142. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Resize.py +0 -0
  143. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ReverseSequence.py +0 -0
  144. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/RoiAlign.py +0 -0
  145. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Round.py +0 -0
  146. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/STFT.py +0 -0
  147. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  148. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Scatter.py +0 -0
  149. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ScatterElements.py +0 -0
  150. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ScatterND.py +0 -0
  151. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Selu.py +0 -0
  152. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/SequenceAt.py +0 -0
  153. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/SequenceConstruct.py +0 -0
  154. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/SequenceEmpty.py +0 -0
  155. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/SequenceErase.py +0 -0
  156. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/SequenceInsert.py +0 -0
  157. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/SequenceLength.py +0 -0
  158. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Shape.py +0 -0
  159. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Shrink.py +0 -0
  160. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Sigmoid.py +0 -0
  161. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Sign.py +0 -0
  162. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Sin.py +0 -0
  163. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Sinh.py +0 -0
  164. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Size.py +0 -0
  165. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Slice.py +0 -0
  166. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Softmax.py +0 -0
  167. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Softplus.py +0 -0
  168. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Softsign.py +0 -0
  169. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/SpaceToDepth.py +0 -0
  170. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Split.py +0 -0
  171. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/SplitToSequence.py +0 -0
  172. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Sqrt.py +0 -0
  173. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Squeeze.py +0 -0
  174. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/StringNormalizer.py +0 -0
  175. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Sub.py +0 -0
  176. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Sum.py +0 -0
  177. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Tan.py +0 -0
  178. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Tanh.py +0 -0
  179. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  180. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Tile.py +0 -0
  181. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/TopK.py +0 -0
  182. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Transpose.py +0 -0
  183. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Trilu.py +0 -0
  184. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Unique.py +0 -0
  185. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Unsqueeze.py +0 -0
  186. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Upsample.py +0 -0
  187. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Where.py +0 -0
  188. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/Xor.py +0 -0
  189. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/_Loop.py +0 -0
  190. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/__Loop.py +0 -0
  191. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/ops/__init__.py +0 -0
  192. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/utils/__init__.py +0 -0
  193. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/utils/common_functions.py +0 -0
  194. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf/utils/logging.py +0 -0
  196. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf.egg-info/SOURCES.txt +0 -0
  197. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf.egg-info/dependency_links.txt +0 -0
  198. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf.egg-info/entry_points.txt +0 -0
  199. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/onnx2tf.egg-info/top_level.txt +0 -0
  200. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/setup.cfg +0 -0
  201. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/setup.py +0 -0
  202. {onnx2tf-1.26.0 → onnx2tf-1.26.2}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.26.0
3
+ Version: 1.26.2
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
314
314
  docker run --rm -it \
315
315
  -v `pwd`:/workdir \
316
316
  -w /workdir \
317
- ghcr.io/pinto0309/onnx2tf:1.26.0
317
+ ghcr.io/pinto0309/onnx2tf:1.26.2
318
318
 
319
319
  or
320
320
 
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
322
322
  docker run --rm -it \
323
323
  -v `pwd`:/workdir \
324
324
  -w /workdir \
325
- docker.io/pinto0309/onnx2tf:1.26.0
325
+ docker.io/pinto0309/onnx2tf:1.26.2
326
326
 
327
327
  or
328
328
 
@@ -1529,8 +1529,8 @@ usage: onnx2tf
1529
1529
  [-oiqt]
1530
1530
  [-qt {per-channel,per-tensor}]
1531
1531
  [-cind INPUT_NAME NUMPY_FILE_PATH MEAN STD]
1532
- [-iqd {int8,uint8}]
1533
- [-oqd {int8,uint8}]
1532
+ [-iqd {int8,uint8,float32}]
1533
+ [-oqd {int8,uint8,float32}]
1534
1534
  [-nuo]
1535
1535
  [-nuonag]
1536
1536
  [-b BATCH_SIZE]
@@ -1687,13 +1687,13 @@ optional arguments:
1687
1687
  and {input_op_name}, {numpy_file_path}, {mean}, and {std} must all be entered.
1688
1688
  Otherwise, an error will occur during the -oiqt stage.
1689
1689
 
1690
- -iqd {int8,uint8}, --input_quant_dtype {int8,uint8}
1690
+ -iqd {int8,uint8,float32}, --input_quant_dtype {int8,uint8,float32}
1691
1691
  Input dtypes when doing Full INT8 Quantization.
1692
- "int8"(default) or "uint8"
1692
+ "int8"(default) or "uint8" or "float32"
1693
1693
 
1694
- -oqd {int8,uint8}, --output_quant_dtype {int8,uint8}
1694
+ -oqd {int8,uint8,float32}, --output_quant_dtype {int8,uint8,float32}
1695
1695
  Output dtypes when doing Full INT8 Quantization.
1696
- "int8"(default) or "uint8"
1696
+ "int8"(default) or "uint8" or "float32"
1697
1697
 
1698
1698
  -nuo, --not_use_onnxsim
1699
1699
  No optimization by onnx-simplifier is performed.
@@ -2180,11 +2180,11 @@ convert(
2180
2180
 
2181
2181
  input_quant_dtype: Optional[str]
2182
2182
  Input dtypes when doing Full INT8 Quantization.
2183
- "int8"(default) or "uint8"
2183
+ "int8"(default) or "uint8" or "float32"
2184
2184
 
2185
2185
  output_quant_dtype: Optional[str]
2186
2186
  Output dtypes when doing Full INT8 Quantization.
2187
- "int8"(default) or "uint8"
2187
+ "int8"(default) or "uint8" or "float32"
2188
2188
 
2189
2189
  not_use_onnxsim: Optional[bool]
2190
2190
  No optimization by onnx-simplifier is performed.
@@ -2610,7 +2610,7 @@ Do not submit an issue that only contains an amount of information that cannot b
2610
2610
  |14|Unsqueeze|1. "param_target": "inputs"<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Unsqueeze operation with the perm specified as pre-processing.<br>2. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Unsqueeze operation with the perm specified as post-processing.<br>3. "param_target": "op"<br>`new_shape`: Specifies directly the shape after Unsqueeze processing.<br>{<br>&nbsp;&nbsp;"op_name": "/backbone/backbone.1/Unsqueeze_1",<br>&nbsp;&nbsp;"param_target": "op",<br>&nbsp;&nbsp;"new_shape": [1,15,15,1]<br>}|
2611
2611
  |15|Reshape|1. "param_target": "inputs"<br>`values`: Value of `shape`<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Reshape operation with the perm specified as pre-processing.<br>2. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Reshape operation with the perm specified as post-processing.|
2612
2612
  |16|Resize|1. "param_target": "attributes"<br>`coordinate_transformation_mode`: Value of `coordinate_transformation_mode`<br>`extrapolation_value`: Value of `extrapolation_value`<br>`mode`: Value of `mode`<br>2. "param_target": "inputs"<br>`values`: Value of `roi` or `scales` or `sizes`. `scales`=`[scale_h,scale_w]`,`sizes`=`[h,w]`<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Resize operation with the perm specified as pre-processing.<br>3. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Resize operation with the perm specified as post-processing.|
2613
- |17|Slice|`Slice` implements special replacements separately ignore all automatic conversions and generate `tf.strided_slice` directly by specifying all parameters of `tf.strided_slice` directly.<br>https://www.tensorflow.org/api_docs/python/tf/strided_slice<br>See [replace_slice.json](https://github.com/PINTO0309/onnx2tf/blob/main/replace_slice.json) for a sample description.<br>![20221221222956](https://user-images.githubusercontent.com/33194443/208916732-9987a69a-83a7-4a29-8b77-d97b1812d59c.png)<br>1. "param_target": "op"<br>`begin`: Value of `begin`<br>`end`: Value of `end`<br>`strides`: Value of `strides`<br>`begin_mask`: Value of `begin_mask`<br>`end_mask`: Value of `end_mask`<br>`ellipsis_mask`: Value of `ellipsis_mask`<br>`new_axis_mask`: Value of `new_axis_mask`<br>`shrink_axis_mask`: Value of `shrink_axis_mask`<br>{<br>&nbsp;&nbsp;"op_name": "/Slice",<br>&nbsp;&nbsp;"param_target": "op",<br>&nbsp;&nbsp;"begin": [0,0,1,0],<br>&nbsp;&nbsp;"end": [0,0,0,0],<br>&nbsp;&nbsp;"end_mask": 15<br>}|
2613
+ |17|Slice|`Slice` implements special replacements separately ignore all automatic conversions and generate `tf.strided_slice` directly by specifying all parameters of `tf.strided_slice` directly.<br>https://www.tensorflow.org/api_docs/python/tf/strided_slice<br>See [json_samples/replace_slice.json](https://github.com/PINTO0309/onnx2tf/blob/main/json_samples/replace_slice.json) for a sample description.<br>![20221221222956](https://user-images.githubusercontent.com/33194443/208916732-9987a69a-83a7-4a29-8b77-d97b1812d59c.png)<br>1. "param_target": "op"<br>`begin`: Value of `begin`<br>`end`: Value of `end`<br>`strides`: Value of `strides`<br>`begin_mask`: Value of `begin_mask`<br>`end_mask`: Value of `end_mask`<br>`ellipsis_mask`: Value of `ellipsis_mask`<br>`new_axis_mask`: Value of `new_axis_mask`<br>`shrink_axis_mask`: Value of `shrink_axis_mask`<br>{<br>&nbsp;&nbsp;"op_name": "/Slice",<br>&nbsp;&nbsp;"param_target": "op",<br>&nbsp;&nbsp;"begin": [0,0,1,0],<br>&nbsp;&nbsp;"end": [0,0,0,0],<br>&nbsp;&nbsp;"end_mask": 15<br>}|
2614
2614
  |18|Softmax|1. "param_target": "attributes"<br>`axis`: Value of `axis`. The transpositions corresponding to the specified axis are extrapolated before and after `Softmax`.<br>2. "param_target": "inputs"<br>`values`: Value of `tensor`|
2615
2615
  |19|Split|1. "param_target": "inputs"<br>`values`: Value of `split`<br>2. "param_target": "attributes"<br>`axis`: Value of `axis`.<br>`num_outputs`: Value of `num_outputs`.|
2616
2616
  |20|Sub|1. "param_target": "inputs"<br>`values`: Value of `input`<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Sub operation with the perm specified as pre-processing.<br>2. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Sub operation with the perm specified as post-processing.|
@@ -299,7 +299,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
299
299
  docker run --rm -it \
300
300
  -v `pwd`:/workdir \
301
301
  -w /workdir \
302
- ghcr.io/pinto0309/onnx2tf:1.26.0
302
+ ghcr.io/pinto0309/onnx2tf:1.26.2
303
303
 
304
304
  or
305
305
 
@@ -307,7 +307,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
307
307
  docker run --rm -it \
308
308
  -v `pwd`:/workdir \
309
309
  -w /workdir \
310
- docker.io/pinto0309/onnx2tf:1.26.0
310
+ docker.io/pinto0309/onnx2tf:1.26.2
311
311
 
312
312
  or
313
313
 
@@ -1514,8 +1514,8 @@ usage: onnx2tf
1514
1514
  [-oiqt]
1515
1515
  [-qt {per-channel,per-tensor}]
1516
1516
  [-cind INPUT_NAME NUMPY_FILE_PATH MEAN STD]
1517
- [-iqd {int8,uint8}]
1518
- [-oqd {int8,uint8}]
1517
+ [-iqd {int8,uint8,float32}]
1518
+ [-oqd {int8,uint8,float32}]
1519
1519
  [-nuo]
1520
1520
  [-nuonag]
1521
1521
  [-b BATCH_SIZE]
@@ -1672,13 +1672,13 @@ optional arguments:
1672
1672
  and {input_op_name}, {numpy_file_path}, {mean}, and {std} must all be entered.
1673
1673
  Otherwise, an error will occur during the -oiqt stage.
1674
1674
 
1675
- -iqd {int8,uint8}, --input_quant_dtype {int8,uint8}
1675
+ -iqd {int8,uint8,float32}, --input_quant_dtype {int8,uint8,float32}
1676
1676
  Input dtypes when doing Full INT8 Quantization.
1677
- "int8"(default) or "uint8"
1677
+ "int8"(default) or "uint8" or "float32"
1678
1678
 
1679
- -oqd {int8,uint8}, --output_quant_dtype {int8,uint8}
1679
+ -oqd {int8,uint8,float32}, --output_quant_dtype {int8,uint8,float32}
1680
1680
  Output dtypes when doing Full INT8 Quantization.
1681
- "int8"(default) or "uint8"
1681
+ "int8"(default) or "uint8" or "float32"
1682
1682
 
1683
1683
  -nuo, --not_use_onnxsim
1684
1684
  No optimization by onnx-simplifier is performed.
@@ -2165,11 +2165,11 @@ convert(
2165
2165
 
2166
2166
  input_quant_dtype: Optional[str]
2167
2167
  Input dtypes when doing Full INT8 Quantization.
2168
- "int8"(default) or "uint8"
2168
+ "int8"(default) or "uint8" or "float32"
2169
2169
 
2170
2170
  output_quant_dtype: Optional[str]
2171
2171
  Output dtypes when doing Full INT8 Quantization.
2172
- "int8"(default) or "uint8"
2172
+ "int8"(default) or "uint8" or "float32"
2173
2173
 
2174
2174
  not_use_onnxsim: Optional[bool]
2175
2175
  No optimization by onnx-simplifier is performed.
@@ -2595,7 +2595,7 @@ Do not submit an issue that only contains an amount of information that cannot b
2595
2595
  |14|Unsqueeze|1. "param_target": "inputs"<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Unsqueeze operation with the perm specified as pre-processing.<br>2. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Unsqueeze operation with the perm specified as post-processing.<br>3. "param_target": "op"<br>`new_shape`: Specifies directly the shape after Unsqueeze processing.<br>{<br>&nbsp;&nbsp;"op_name": "/backbone/backbone.1/Unsqueeze_1",<br>&nbsp;&nbsp;"param_target": "op",<br>&nbsp;&nbsp;"new_shape": [1,15,15,1]<br>}|
2596
2596
  |15|Reshape|1. "param_target": "inputs"<br>`values`: Value of `shape`<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Reshape operation with the perm specified as pre-processing.<br>2. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Reshape operation with the perm specified as post-processing.|
2597
2597
  |16|Resize|1. "param_target": "attributes"<br>`coordinate_transformation_mode`: Value of `coordinate_transformation_mode`<br>`extrapolation_value`: Value of `extrapolation_value`<br>`mode`: Value of `mode`<br>2. "param_target": "inputs"<br>`values`: Value of `roi` or `scales` or `sizes`. `scales`=`[scale_h,scale_w]`,`sizes`=`[h,w]`<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Resize operation with the perm specified as pre-processing.<br>3. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Resize operation with the perm specified as post-processing.|
2598
- |17|Slice|`Slice` implements special replacements separately ignore all automatic conversions and generate `tf.strided_slice` directly by specifying all parameters of `tf.strided_slice` directly.<br>https://www.tensorflow.org/api_docs/python/tf/strided_slice<br>See [replace_slice.json](https://github.com/PINTO0309/onnx2tf/blob/main/replace_slice.json) for a sample description.<br>![20221221222956](https://user-images.githubusercontent.com/33194443/208916732-9987a69a-83a7-4a29-8b77-d97b1812d59c.png)<br>1. "param_target": "op"<br>`begin`: Value of `begin`<br>`end`: Value of `end`<br>`strides`: Value of `strides`<br>`begin_mask`: Value of `begin_mask`<br>`end_mask`: Value of `end_mask`<br>`ellipsis_mask`: Value of `ellipsis_mask`<br>`new_axis_mask`: Value of `new_axis_mask`<br>`shrink_axis_mask`: Value of `shrink_axis_mask`<br>{<br>&nbsp;&nbsp;"op_name": "/Slice",<br>&nbsp;&nbsp;"param_target": "op",<br>&nbsp;&nbsp;"begin": [0,0,1,0],<br>&nbsp;&nbsp;"end": [0,0,0,0],<br>&nbsp;&nbsp;"end_mask": 15<br>}|
2598
+ |17|Slice|`Slice` implements special replacements separately ignore all automatic conversions and generate `tf.strided_slice` directly by specifying all parameters of `tf.strided_slice` directly.<br>https://www.tensorflow.org/api_docs/python/tf/strided_slice<br>See [json_samples/replace_slice.json](https://github.com/PINTO0309/onnx2tf/blob/main/json_samples/replace_slice.json) for a sample description.<br>![20221221222956](https://user-images.githubusercontent.com/33194443/208916732-9987a69a-83a7-4a29-8b77-d97b1812d59c.png)<br>1. "param_target": "op"<br>`begin`: Value of `begin`<br>`end`: Value of `end`<br>`strides`: Value of `strides`<br>`begin_mask`: Value of `begin_mask`<br>`end_mask`: Value of `end_mask`<br>`ellipsis_mask`: Value of `ellipsis_mask`<br>`new_axis_mask`: Value of `new_axis_mask`<br>`shrink_axis_mask`: Value of `shrink_axis_mask`<br>{<br>&nbsp;&nbsp;"op_name": "/Slice",<br>&nbsp;&nbsp;"param_target": "op",<br>&nbsp;&nbsp;"begin": [0,0,1,0],<br>&nbsp;&nbsp;"end": [0,0,0,0],<br>&nbsp;&nbsp;"end_mask": 15<br>}|
2599
2599
  |18|Softmax|1. "param_target": "attributes"<br>`axis`: Value of `axis`. The transpositions corresponding to the specified axis are extrapolated before and after `Softmax`.<br>2. "param_target": "inputs"<br>`values`: Value of `tensor`|
2600
2600
  |19|Split|1. "param_target": "inputs"<br>`values`: Value of `split`<br>2. "param_target": "attributes"<br>`axis`: Value of `axis`.<br>`num_outputs`: Value of `num_outputs`.|
2601
2601
  |20|Sub|1. "param_target": "inputs"<br>`values`: Value of `input`<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Sub operation with the perm specified as pre-processing.<br>2. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Sub operation with the perm specified as post-processing.|
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.26.0'
3
+ __version__ = '1.26.2'
@@ -222,9 +222,13 @@ def convert(
222
222
  ["input2","input2.npy",[0.3],[0.07]],\n
223
223
  ]
224
224
 
225
- input_output_quant_dtype: Optional[str]
226
- Input and Output dtypes when doing Full INT8 Quantization.\n
227
- "int8"(default) or "uint8"
225
+ input_quant_dtype: Optional[str]
226
+ Input dtypes when doing Full INT8 Quantization.\n
227
+ "int8"(default) or "uint8" or "float32"
228
+
229
+ output_quant_dtype: Optional[str]
230
+ Output dtypes when doing Full INT8 Quantization.\n
231
+ "int8"(default) or "uint8" or "float32"
228
232
 
229
233
  not_use_onnxsim: Optional[bool]
230
234
  No optimization by onnx-simplifier is performed.\n
@@ -1622,6 +1626,7 @@ def convert(
1622
1626
  mean,
1623
1627
  std,
1624
1628
  ]
1629
+
1625
1630
  elif custom_input_op_name_np_data_path is not None:
1626
1631
  for param in custom_input_op_name_np_data_path:
1627
1632
  if len(param) != 4:
@@ -1648,11 +1653,14 @@ def convert(
1648
1653
 
1649
1654
  # representative_dataset_gen
1650
1655
  def representative_dataset_gen():
1651
- for idx in range(data_count):
1656
+ batch_size = model.inputs[0].shape[0]
1657
+ if not isinstance(batch_size, int):
1658
+ batch_size = 1
1659
+ for idx in range(0, data_count, batch_size):
1652
1660
  yield_data_dict = {}
1653
1661
  for model_input_name in model_input_name_list:
1654
1662
  calib_data, mean, std = calib_data_dict[model_input_name]
1655
- normalized_calib_data: np.ndarray = (calib_data[idx] - mean) / std
1663
+ normalized_calib_data: np.ndarray = (calib_data[idx:idx+batch_size] - mean) / std
1656
1664
  yield_data_dict[model_input_name] = tf.cast(tf.convert_to_tensor(normalized_calib_data), tf.float32)
1657
1665
  yield yield_data_dict
1658
1666
 
@@ -1700,13 +1708,17 @@ def convert(
1700
1708
  inf_type_input = tf.int8
1701
1709
  elif input_quant_dtype == 'uint8':
1702
1710
  inf_type_input = tf.uint8
1711
+ elif input_quant_dtype == 'float32':
1712
+ inf_type_input = tf.float32
1703
1713
  else:
1704
1714
  inf_type_input = tf.int8
1705
-
1715
+
1706
1716
  if output_quant_dtype == 'int8':
1707
1717
  inf_type_output = tf.int8
1708
1718
  elif output_quant_dtype == 'uint8':
1709
1719
  inf_type_output = tf.uint8
1720
+ elif output_quant_dtype == 'float32':
1721
+ inf_type_output = tf.float32
1710
1722
  else:
1711
1723
  inf_type_output = tf.int8
1712
1724
  converter.inference_input_type = inf_type_input
@@ -2140,21 +2152,21 @@ def main():
2140
2152
  '-iqd',
2141
2153
  '--input_quant_dtype',
2142
2154
  type=str,
2143
- choices=['int8', 'uint8'],
2155
+ choices=['int8', 'uint8', 'float32'],
2144
2156
  default='int8',
2145
2157
  help=\
2146
2158
  'Input dtypes when doing Full INT8 Quantization. \n' +
2147
- '"int8"(default) or "uint8"'
2159
+ '"int8"(default) or "uint8" or "float32"'
2148
2160
  )
2149
2161
  parser.add_argument(
2150
2162
  '-oqd',
2151
2163
  '--output_quant_dtype',
2152
2164
  type=str,
2153
- choices=['int8', 'uint8'],
2165
+ choices=['int8', 'uint8', 'float32'],
2154
2166
  default='int8',
2155
2167
  help=\
2156
2168
  'Output dtypes when doing Full INT8 Quantization. \n' +
2157
- '"int8"(default) or "uint8"'
2169
+ '"int8"(default) or "uint8" or "float32"'
2158
2170
  )
2159
2171
  parser.add_argument(
2160
2172
  '-nuo',
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.26.0
3
+ Version: 1.26.2
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
314
314
  docker run --rm -it \
315
315
  -v `pwd`:/workdir \
316
316
  -w /workdir \
317
- ghcr.io/pinto0309/onnx2tf:1.26.0
317
+ ghcr.io/pinto0309/onnx2tf:1.26.2
318
318
 
319
319
  or
320
320
 
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
322
322
  docker run --rm -it \
323
323
  -v `pwd`:/workdir \
324
324
  -w /workdir \
325
- docker.io/pinto0309/onnx2tf:1.26.0
325
+ docker.io/pinto0309/onnx2tf:1.26.2
326
326
 
327
327
  or
328
328
 
@@ -1529,8 +1529,8 @@ usage: onnx2tf
1529
1529
  [-oiqt]
1530
1530
  [-qt {per-channel,per-tensor}]
1531
1531
  [-cind INPUT_NAME NUMPY_FILE_PATH MEAN STD]
1532
- [-iqd {int8,uint8}]
1533
- [-oqd {int8,uint8}]
1532
+ [-iqd {int8,uint8,float32}]
1533
+ [-oqd {int8,uint8,float32}]
1534
1534
  [-nuo]
1535
1535
  [-nuonag]
1536
1536
  [-b BATCH_SIZE]
@@ -1687,13 +1687,13 @@ optional arguments:
1687
1687
  and {input_op_name}, {numpy_file_path}, {mean}, and {std} must all be entered.
1688
1688
  Otherwise, an error will occur during the -oiqt stage.
1689
1689
 
1690
- -iqd {int8,uint8}, --input_quant_dtype {int8,uint8}
1690
+ -iqd {int8,uint8,float32}, --input_quant_dtype {int8,uint8,float32}
1691
1691
  Input dtypes when doing Full INT8 Quantization.
1692
- "int8"(default) or "uint8"
1692
+ "int8"(default) or "uint8" or "float32"
1693
1693
 
1694
- -oqd {int8,uint8}, --output_quant_dtype {int8,uint8}
1694
+ -oqd {int8,uint8,float32}, --output_quant_dtype {int8,uint8,float32}
1695
1695
  Output dtypes when doing Full INT8 Quantization.
1696
- "int8"(default) or "uint8"
1696
+ "int8"(default) or "uint8" or "float32"
1697
1697
 
1698
1698
  -nuo, --not_use_onnxsim
1699
1699
  No optimization by onnx-simplifier is performed.
@@ -2180,11 +2180,11 @@ convert(
2180
2180
 
2181
2181
  input_quant_dtype: Optional[str]
2182
2182
  Input dtypes when doing Full INT8 Quantization.
2183
- "int8"(default) or "uint8"
2183
+ "int8"(default) or "uint8" or "float32"
2184
2184
 
2185
2185
  output_quant_dtype: Optional[str]
2186
2186
  Output dtypes when doing Full INT8 Quantization.
2187
- "int8"(default) or "uint8"
2187
+ "int8"(default) or "uint8" or "float32"
2188
2188
 
2189
2189
  not_use_onnxsim: Optional[bool]
2190
2190
  No optimization by onnx-simplifier is performed.
@@ -2610,7 +2610,7 @@ Do not submit an issue that only contains an amount of information that cannot b
2610
2610
  |14|Unsqueeze|1. "param_target": "inputs"<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Unsqueeze operation with the perm specified as pre-processing.<br>2. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Unsqueeze operation with the perm specified as post-processing.<br>3. "param_target": "op"<br>`new_shape`: Specifies directly the shape after Unsqueeze processing.<br>{<br>&nbsp;&nbsp;"op_name": "/backbone/backbone.1/Unsqueeze_1",<br>&nbsp;&nbsp;"param_target": "op",<br>&nbsp;&nbsp;"new_shape": [1,15,15,1]<br>}|
2611
2611
  |15|Reshape|1. "param_target": "inputs"<br>`values`: Value of `shape`<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Reshape operation with the perm specified as pre-processing.<br>2. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Reshape operation with the perm specified as post-processing.|
2612
2612
  |16|Resize|1. "param_target": "attributes"<br>`coordinate_transformation_mode`: Value of `coordinate_transformation_mode`<br>`extrapolation_value`: Value of `extrapolation_value`<br>`mode`: Value of `mode`<br>2. "param_target": "inputs"<br>`values`: Value of `roi` or `scales` or `sizes`. `scales`=`[scale_h,scale_w]`,`sizes`=`[h,w]`<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Resize operation with the perm specified as pre-processing.<br>3. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Resize operation with the perm specified as post-processing.|
2613
- |17|Slice|`Slice` implements special replacements separately ignore all automatic conversions and generate `tf.strided_slice` directly by specifying all parameters of `tf.strided_slice` directly.<br>https://www.tensorflow.org/api_docs/python/tf/strided_slice<br>See [replace_slice.json](https://github.com/PINTO0309/onnx2tf/blob/main/replace_slice.json) for a sample description.<br>![20221221222956](https://user-images.githubusercontent.com/33194443/208916732-9987a69a-83a7-4a29-8b77-d97b1812d59c.png)<br>1. "param_target": "op"<br>`begin`: Value of `begin`<br>`end`: Value of `end`<br>`strides`: Value of `strides`<br>`begin_mask`: Value of `begin_mask`<br>`end_mask`: Value of `end_mask`<br>`ellipsis_mask`: Value of `ellipsis_mask`<br>`new_axis_mask`: Value of `new_axis_mask`<br>`shrink_axis_mask`: Value of `shrink_axis_mask`<br>{<br>&nbsp;&nbsp;"op_name": "/Slice",<br>&nbsp;&nbsp;"param_target": "op",<br>&nbsp;&nbsp;"begin": [0,0,1,0],<br>&nbsp;&nbsp;"end": [0,0,0,0],<br>&nbsp;&nbsp;"end_mask": 15<br>}|
2613
+ |17|Slice|`Slice` implements special replacements separately ignore all automatic conversions and generate `tf.strided_slice` directly by specifying all parameters of `tf.strided_slice` directly.<br>https://www.tensorflow.org/api_docs/python/tf/strided_slice<br>See [json_samples/replace_slice.json](https://github.com/PINTO0309/onnx2tf/blob/main/json_samples/replace_slice.json) for a sample description.<br>![20221221222956](https://user-images.githubusercontent.com/33194443/208916732-9987a69a-83a7-4a29-8b77-d97b1812d59c.png)<br>1. "param_target": "op"<br>`begin`: Value of `begin`<br>`end`: Value of `end`<br>`strides`: Value of `strides`<br>`begin_mask`: Value of `begin_mask`<br>`end_mask`: Value of `end_mask`<br>`ellipsis_mask`: Value of `ellipsis_mask`<br>`new_axis_mask`: Value of `new_axis_mask`<br>`shrink_axis_mask`: Value of `shrink_axis_mask`<br>{<br>&nbsp;&nbsp;"op_name": "/Slice",<br>&nbsp;&nbsp;"param_target": "op",<br>&nbsp;&nbsp;"begin": [0,0,1,0],<br>&nbsp;&nbsp;"end": [0,0,0,0],<br>&nbsp;&nbsp;"end_mask": 15<br>}|
2614
2614
  |18|Softmax|1. "param_target": "attributes"<br>`axis`: Value of `axis`. The transpositions corresponding to the specified axis are extrapolated before and after `Softmax`.<br>2. "param_target": "inputs"<br>`values`: Value of `tensor`|
2615
2615
  |19|Split|1. "param_target": "inputs"<br>`values`: Value of `split`<br>2. "param_target": "attributes"<br>`axis`: Value of `axis`.<br>`num_outputs`: Value of `num_outputs`.|
2616
2616
  |20|Sub|1. "param_target": "inputs"<br>`values`: Value of `input`<br>`pre_process_transpose_perm`: Transpose is applied to the tensor before the Sub operation with the perm specified as pre-processing.<br>2. "param_target": "outputs"<br>`post_process_transpose_perm`: Transpose is applied to the tensor after the Sub operation with the perm specified as post-processing.|
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes