onnx2tf 1.25.9__tar.gz → 1.25.11__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. {onnx2tf-1.25.9/onnx2tf.egg-info → onnx2tf-1.25.11}/PKG-INFO +3 -3
  2. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/README.md +2 -2
  3. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/BatchNormalization.py +74 -67
  5. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Flatten.py +14 -2
  6. {onnx2tf-1.25.9 → onnx2tf-1.25.11/onnx2tf.egg-info}/PKG-INFO +3 -3
  7. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/LICENSE +0 -0
  8. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/LICENSE_onnx-tensorflow +0 -0
  9. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/__main__.py +0 -0
  10. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/onnx2tf.py +0 -0
  11. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Abs.py +0 -0
  12. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Acos.py +0 -0
  13. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Acosh.py +0 -0
  14. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Add.py +0 -0
  15. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/And.py +0 -0
  16. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ArgMax.py +0 -0
  17. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ArgMin.py +0 -0
  18. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Asin.py +0 -0
  19. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Asinh.py +0 -0
  20. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Atan.py +0 -0
  21. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Atanh.py +0 -0
  22. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/AveragePool.py +0 -0
  23. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Bernoulli.py +0 -0
  24. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/BitShift.py +0 -0
  25. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Cast.py +0 -0
  26. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Ceil.py +0 -0
  27. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Celu.py +0 -0
  28. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Clip.py +0 -0
  29. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Col2Im.py +0 -0
  30. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Compress.py +0 -0
  31. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Concat.py +0 -0
  32. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  33. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Constant.py +0 -0
  34. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ConstantOfShape.py +0 -0
  35. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Conv.py +0 -0
  36. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ConvInteger.py +0 -0
  37. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ConvTranspose.py +0 -0
  38. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Cos.py +0 -0
  39. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Cosh.py +0 -0
  40. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/CumSum.py +0 -0
  41. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/DepthToSpace.py +0 -0
  42. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/DequantizeLinear.py +0 -0
  43. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Det.py +0 -0
  44. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Div.py +0 -0
  45. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Dropout.py +0 -0
  46. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  47. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Einsum.py +0 -0
  48. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Elu.py +0 -0
  49. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Equal.py +0 -0
  50. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Erf.py +0 -0
  51. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Exp.py +0 -0
  52. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Expand.py +0 -0
  53. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/EyeLike.py +0 -0
  54. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Floor.py +0 -0
  55. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/FusedConv.py +0 -0
  56. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/GRU.py +0 -0
  57. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Gather.py +0 -0
  58. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/GatherElements.py +0 -0
  59. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/GatherND.py +0 -0
  60. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Gelu.py +0 -0
  61. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Gemm.py +0 -0
  62. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  63. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/GlobalLpPool.py +0 -0
  64. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  65. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Greater.py +0 -0
  66. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  67. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/GridSample.py +0 -0
  68. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/GroupNorm.py +0 -0
  69. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/HammingWindow.py +0 -0
  70. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/HannWindow.py +0 -0
  71. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/HardSigmoid.py +0 -0
  72. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/HardSwish.py +0 -0
  73. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Hardmax.py +0 -0
  74. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Identity.py +0 -0
  75. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/If.py +0 -0
  76. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Input.py +0 -0
  77. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/InstanceNormalization.py +0 -0
  78. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Inverse.py +0 -0
  79. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/IsInf.py +0 -0
  80. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/IsNaN.py +0 -0
  81. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/LRN.py +0 -0
  82. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/LSTM.py +0 -0
  83. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/LayerNormalization.py +0 -0
  84. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/LeakyRelu.py +0 -0
  85. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Less.py +0 -0
  86. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/LessOrEqual.py +0 -0
  87. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Log.py +0 -0
  88. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/LogSoftmax.py +0 -0
  89. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/LpNormalization.py +0 -0
  90. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/MatMul.py +0 -0
  91. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/MatMulInteger.py +0 -0
  92. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Max.py +0 -0
  93. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/MaxPool.py +0 -0
  94. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/MaxUnpool.py +0 -0
  95. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Mean.py +0 -0
  96. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  97. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  98. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Min.py +0 -0
  99. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Mish.py +0 -0
  100. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Mod.py +0 -0
  101. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Mul.py +0 -0
  102. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Multinomial.py +0 -0
  103. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Neg.py +0 -0
  104. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  105. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/NonZero.py +0 -0
  106. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Not.py +0 -0
  107. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/OneHot.py +0 -0
  108. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/OptionalGetElement.py +0 -0
  109. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/OptionalHasElement.py +0 -0
  110. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Or.py +0 -0
  111. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/PRelu.py +0 -0
  112. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Pad.py +0 -0
  113. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Pow.py +0 -0
  114. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/QLinearAdd.py +0 -0
  115. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/QLinearConcat.py +0 -0
  116. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/QLinearConv.py +0 -0
  117. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  118. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/QLinearMatMul.py +0 -0
  119. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/QLinearMul.py +0 -0
  120. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  121. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  122. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/QuantizeLinear.py +0 -0
  123. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/RNN.py +0 -0
  124. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/RandomNormal.py +0 -0
  125. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/RandomNormalLike.py +0 -0
  126. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/RandomUniform.py +0 -0
  127. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/RandomUniformLike.py +0 -0
  128. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Range.py +0 -0
  129. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Reciprocal.py +0 -0
  130. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ReduceL1.py +0 -0
  131. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ReduceL2.py +0 -0
  132. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ReduceLogSum.py +0 -0
  133. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  134. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ReduceMax.py +0 -0
  135. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ReduceMean.py +0 -0
  136. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ReduceMin.py +0 -0
  137. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ReduceProd.py +0 -0
  138. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ReduceSum.py +0 -0
  139. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  140. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Relu.py +0 -0
  141. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Reshape.py +0 -0
  142. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Resize.py +0 -0
  143. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ReverseSequence.py +0 -0
  144. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/RoiAlign.py +0 -0
  145. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Round.py +0 -0
  146. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/STFT.py +0 -0
  147. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  148. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Scatter.py +0 -0
  149. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ScatterElements.py +0 -0
  150. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ScatterND.py +0 -0
  151. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Selu.py +0 -0
  152. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/SequenceAt.py +0 -0
  153. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/SequenceConstruct.py +0 -0
  154. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/SequenceEmpty.py +0 -0
  155. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/SequenceErase.py +0 -0
  156. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/SequenceInsert.py +0 -0
  157. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/SequenceLength.py +0 -0
  158. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Shape.py +0 -0
  159. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Shrink.py +0 -0
  160. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Sigmoid.py +0 -0
  161. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Sign.py +0 -0
  162. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Sin.py +0 -0
  163. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Sinh.py +0 -0
  164. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Size.py +0 -0
  165. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Slice.py +0 -0
  166. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Softmax.py +0 -0
  167. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Softplus.py +0 -0
  168. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Softsign.py +0 -0
  169. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/SpaceToDepth.py +0 -0
  170. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Split.py +0 -0
  171. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/SplitToSequence.py +0 -0
  172. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Sqrt.py +0 -0
  173. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Squeeze.py +0 -0
  174. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/StringNormalizer.py +0 -0
  175. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Sub.py +0 -0
  176. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Sum.py +0 -0
  177. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Tan.py +0 -0
  178. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Tanh.py +0 -0
  179. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  180. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Tile.py +0 -0
  181. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/TopK.py +0 -0
  182. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Transpose.py +0 -0
  183. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Trilu.py +0 -0
  184. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Unique.py +0 -0
  185. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Unsqueeze.py +0 -0
  186. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Upsample.py +0 -0
  187. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Where.py +0 -0
  188. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/Xor.py +0 -0
  189. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/_Loop.py +0 -0
  190. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/__Loop.py +0 -0
  191. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/ops/__init__.py +0 -0
  192. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/utils/__init__.py +0 -0
  193. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/utils/common_functions.py +0 -0
  194. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf/utils/logging.py +0 -0
  196. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf.egg-info/SOURCES.txt +0 -0
  197. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf.egg-info/dependency_links.txt +0 -0
  198. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf.egg-info/entry_points.txt +0 -0
  199. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/onnx2tf.egg-info/top_level.txt +0 -0
  200. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/setup.cfg +0 -0
  201. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/setup.py +0 -0
  202. {onnx2tf-1.25.9 → onnx2tf-1.25.11}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.25.9
3
+ Version: 1.25.11
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
314
314
  docker run --rm -it \
315
315
  -v `pwd`:/workdir \
316
316
  -w /workdir \
317
- ghcr.io/pinto0309/onnx2tf:1.25.9
317
+ ghcr.io/pinto0309/onnx2tf:1.25.11
318
318
 
319
319
  or
320
320
 
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
322
322
  docker run --rm -it \
323
323
  -v `pwd`:/workdir \
324
324
  -w /workdir \
325
- docker.io/pinto0309/onnx2tf:1.25.9
325
+ docker.io/pinto0309/onnx2tf:1.25.11
326
326
 
327
327
  or
328
328
 
@@ -299,7 +299,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
299
299
  docker run --rm -it \
300
300
  -v `pwd`:/workdir \
301
301
  -w /workdir \
302
- ghcr.io/pinto0309/onnx2tf:1.25.9
302
+ ghcr.io/pinto0309/onnx2tf:1.25.11
303
303
 
304
304
  or
305
305
 
@@ -307,7 +307,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
307
307
  docker run --rm -it \
308
308
  -v `pwd`:/workdir \
309
309
  -w /workdir \
310
- docker.io/pinto0309/onnx2tf:1.25.9
310
+ docker.io/pinto0309/onnx2tf:1.25.11
311
311
 
312
312
  or
313
313
 
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.25.9'
3
+ __version__ = '1.25.11'
@@ -338,11 +338,17 @@ def make_node(
338
338
 
339
339
  # Automatic correction of accuracy degradation
340
340
  min_abs_err = sys.maxsize
341
- min_abs_err_perm_1: List[int] = [idx for idx in range(len(mean.shape))]
341
+ min_abs_err_perm_1: List[int] = []
342
+ check_length = 0
343
+ if input_tensor.shape is not None and mean.shape is not None and len(input_tensor.shape) >= len(mean.shape):
344
+ check_length = len(input_tensor.shape)
345
+ else:
346
+ check_length = len(mean.shape)
347
+ min_abs_err_perm_1: List[int] = [idx for idx in range(check_length)]
342
348
 
343
349
  if not disable_strict_mode:
344
350
  if onnx_tensor_infos is not None and validation_data is not None:
345
- tensor_1_candidate_for_transpositions = list(itertools.permutations(range(len(mean.shape))))
351
+ tensor_1_candidate_for_transpositions = list(itertools.permutations(range(check_length)))
346
352
  # Search for the axis with the smallest error
347
353
  for tensor_1_candidate_for_transposition in tensor_1_candidate_for_transpositions:
348
354
  try:
@@ -470,71 +476,72 @@ def make_node(
470
476
  except Exception as ex:
471
477
  pass
472
478
 
473
- tf_layers_dict[Y.name]['tf_node'] = \
474
- tf.nn.batch_normalization(
475
- x=input_tensor,
476
- mean=\
477
- transpose_with_flexing_deterrence(
478
- input_tensor=mean,
479
- perm=min_abs_err_perm_1,
480
- output_shape=Y.shape \
481
- if None not in Y.shape and Y.shape != [] else None,
482
- **kwargs,
483
- ) if not isinstance(mean, np.ndarray) else \
484
- transpose_with_flexing_deterrence(
485
- input_tensor=tf.convert_to_tensor(mean),
486
- perm=min_abs_err_perm_1,
487
- output_shape=Y.shape \
488
- if None not in Y.shape and Y.shape != [] else None,
489
- **kwargs,
490
- ),
491
- variance=\
492
- transpose_with_flexing_deterrence(
493
- input_tensor=var,
494
- perm=min_abs_err_perm_1,
495
- output_shape=Y.shape \
496
- if None not in Y.shape and Y.shape != [] else None,
497
- **kwargs,
498
- ) if not isinstance(var, np.ndarray) else \
499
- transpose_with_flexing_deterrence(
500
- input_tensor=tf.convert_to_tensor(var),
501
- perm=min_abs_err_perm_1,
502
- output_shape=Y.shape \
503
- if None not in Y.shape and Y.shape != [] else None,
504
- **kwargs,
505
- ),
506
- offset=\
507
- transpose_with_flexing_deterrence(
508
- input_tensor=offset,
509
- perm=min_abs_err_perm_1,
510
- output_shape=Y.shape \
511
- if None not in Y.shape and Y.shape != [] else None,
512
- **kwargs,
513
- ) if not isinstance(offset, np.ndarray) else \
514
- transpose_with_flexing_deterrence(
515
- input_tensor=tf.convert_to_tensor(offset),
516
- perm=min_abs_err_perm_1,
517
- output_shape=Y.shape \
518
- if None not in Y.shape and Y.shape != [] else None,
519
- **kwargs,
520
- ),
521
- scale=\
522
- transpose_with_flexing_deterrence(
523
- input_tensor=scale,
524
- perm=min_abs_err_perm_1,
525
- output_shape=Y.shape \
526
- if None not in Y.shape and Y.shape != [] else None,
527
- **kwargs,
528
- ) if not isinstance(scale, np.ndarray) else \
529
- transpose_with_flexing_deterrence(
530
- input_tensor=tf.convert_to_tensor(scale),
531
- perm=min_abs_err_perm_1,
532
- output_shape=Y.shape \
533
- if None not in Y.shape and Y.shape != [] else None,
534
- **kwargs,
535
- ),
536
- variance_epsilon=epsilon,
537
- )
479
+ if min_abs_err_perm_1 != [idx for idx in range(check_length)]:
480
+ tf_layers_dict[Y.name]['tf_node'] = \
481
+ tf.nn.batch_normalization(
482
+ x=input_tensor,
483
+ mean=\
484
+ transpose_with_flexing_deterrence(
485
+ input_tensor=mean,
486
+ perm=min_abs_err_perm_1,
487
+ output_shape=Y.shape \
488
+ if None not in Y.shape and Y.shape != [] else None,
489
+ **kwargs,
490
+ ) if not isinstance(mean, np.ndarray) else \
491
+ transpose_with_flexing_deterrence(
492
+ input_tensor=tf.convert_to_tensor(mean),
493
+ perm=min_abs_err_perm_1,
494
+ output_shape=Y.shape \
495
+ if None not in Y.shape and Y.shape != [] else None,
496
+ **kwargs,
497
+ ),
498
+ variance=\
499
+ transpose_with_flexing_deterrence(
500
+ input_tensor=var,
501
+ perm=min_abs_err_perm_1,
502
+ output_shape=Y.shape \
503
+ if None not in Y.shape and Y.shape != [] else None,
504
+ **kwargs,
505
+ ) if not isinstance(var, np.ndarray) else \
506
+ transpose_with_flexing_deterrence(
507
+ input_tensor=tf.convert_to_tensor(var),
508
+ perm=min_abs_err_perm_1,
509
+ output_shape=Y.shape \
510
+ if None not in Y.shape and Y.shape != [] else None,
511
+ **kwargs,
512
+ ),
513
+ offset=\
514
+ transpose_with_flexing_deterrence(
515
+ input_tensor=offset,
516
+ perm=min_abs_err_perm_1,
517
+ output_shape=Y.shape \
518
+ if None not in Y.shape and Y.shape != [] else None,
519
+ **kwargs,
520
+ ) if not isinstance(offset, np.ndarray) else \
521
+ transpose_with_flexing_deterrence(
522
+ input_tensor=tf.convert_to_tensor(offset),
523
+ perm=min_abs_err_perm_1,
524
+ output_shape=Y.shape \
525
+ if None not in Y.shape and Y.shape != [] else None,
526
+ **kwargs,
527
+ ),
528
+ scale=\
529
+ transpose_with_flexing_deterrence(
530
+ input_tensor=scale,
531
+ perm=min_abs_err_perm_1,
532
+ output_shape=Y.shape \
533
+ if None not in Y.shape and Y.shape != [] else None,
534
+ **kwargs,
535
+ ) if not isinstance(scale, np.ndarray) else \
536
+ transpose_with_flexing_deterrence(
537
+ input_tensor=tf.convert_to_tensor(scale),
538
+ perm=min_abs_err_perm_1,
539
+ output_shape=Y.shape \
540
+ if None not in Y.shape and Y.shape != [] else None,
541
+ **kwargs,
542
+ ),
543
+ variance_epsilon=epsilon,
544
+ )
538
545
  tf_type = tf.nn.batch_normalization
539
546
 
540
547
  # Post-process transpose
@@ -87,8 +87,20 @@ def make_node(
87
87
  cal_shape = (1, -1)
88
88
  elif axis >= input_tensor_rank:
89
89
  cal_shape = (-1, 1)
90
- elif graph_node_output.shape is not None and len(graph_node_output.shape) == 2 and axis == input_tensor_rank - 1:
91
- cal_shape = (1, -1)
90
+ elif graph_node_output.shape is not None \
91
+ and len(graph_node_output.shape) == 2 \
92
+ and axis == input_tensor_rank - 1 \
93
+ and not isinstance(graph_node_output.shape[0], str):
94
+ cal_shape = (graph_node_output.shape[0], -1)
95
+ elif graph_node_output.shape is not None \
96
+ and len(graph_node_output.shape) == 2 \
97
+ and axis == input_tensor_rank - 1 \
98
+ and isinstance(graph_node_output.shape[0], str):
99
+ try:
100
+ dim_prod = int(np.prod(graph_node_output.shape[1:]))
101
+ cal_shape = (-1, dim_prod)
102
+ except:
103
+ cal_shape = (1, -1)
92
104
  elif input_tensor_rank >= 2 \
93
105
  and input_tensor_shape[0] is None \
94
106
  and len([idx for idx in input_tensor_shape[1:] if idx is not None]) == input_tensor_rank - 1 \
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.25.9
3
+ Version: 1.25.11
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
314
314
  docker run --rm -it \
315
315
  -v `pwd`:/workdir \
316
316
  -w /workdir \
317
- ghcr.io/pinto0309/onnx2tf:1.25.9
317
+ ghcr.io/pinto0309/onnx2tf:1.25.11
318
318
 
319
319
  or
320
320
 
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
322
322
  docker run --rm -it \
323
323
  -v `pwd`:/workdir \
324
324
  -w /workdir \
325
- docker.io/pinto0309/onnx2tf:1.25.9
325
+ docker.io/pinto0309/onnx2tf:1.25.11
326
326
 
327
327
  or
328
328
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes