onnx2tf 1.25.9__tar.gz → 1.25.10__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. {onnx2tf-1.25.9/onnx2tf.egg-info → onnx2tf-1.25.10}/PKG-INFO +3 -3
  2. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/README.md +2 -2
  3. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Flatten.py +14 -2
  5. {onnx2tf-1.25.9 → onnx2tf-1.25.10/onnx2tf.egg-info}/PKG-INFO +3 -3
  6. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/LICENSE +0 -0
  7. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/LICENSE_onnx-tensorflow +0 -0
  8. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/__main__.py +0 -0
  9. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/onnx2tf.py +0 -0
  10. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Abs.py +0 -0
  11. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Acos.py +0 -0
  12. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Acosh.py +0 -0
  13. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Add.py +0 -0
  14. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/And.py +0 -0
  15. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ArgMax.py +0 -0
  16. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ArgMin.py +0 -0
  17. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Asin.py +0 -0
  18. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Asinh.py +0 -0
  19. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Atan.py +0 -0
  20. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Atanh.py +0 -0
  21. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/AveragePool.py +0 -0
  22. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/BatchNormalization.py +0 -0
  23. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Bernoulli.py +0 -0
  24. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/BitShift.py +0 -0
  25. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Cast.py +0 -0
  26. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Ceil.py +0 -0
  27. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Celu.py +0 -0
  28. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Clip.py +0 -0
  29. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Col2Im.py +0 -0
  30. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Compress.py +0 -0
  31. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Concat.py +0 -0
  32. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  33. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Constant.py +0 -0
  34. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ConstantOfShape.py +0 -0
  35. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Conv.py +0 -0
  36. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ConvInteger.py +0 -0
  37. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ConvTranspose.py +0 -0
  38. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Cos.py +0 -0
  39. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Cosh.py +0 -0
  40. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/CumSum.py +0 -0
  41. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/DepthToSpace.py +0 -0
  42. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/DequantizeLinear.py +0 -0
  43. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Det.py +0 -0
  44. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Div.py +0 -0
  45. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Dropout.py +0 -0
  46. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  47. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Einsum.py +0 -0
  48. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Elu.py +0 -0
  49. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Equal.py +0 -0
  50. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Erf.py +0 -0
  51. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Exp.py +0 -0
  52. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Expand.py +0 -0
  53. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/EyeLike.py +0 -0
  54. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Floor.py +0 -0
  55. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/FusedConv.py +0 -0
  56. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/GRU.py +0 -0
  57. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Gather.py +0 -0
  58. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/GatherElements.py +0 -0
  59. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/GatherND.py +0 -0
  60. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Gelu.py +0 -0
  61. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Gemm.py +0 -0
  62. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  63. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/GlobalLpPool.py +0 -0
  64. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  65. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Greater.py +0 -0
  66. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  67. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/GridSample.py +0 -0
  68. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/GroupNorm.py +0 -0
  69. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/HammingWindow.py +0 -0
  70. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/HannWindow.py +0 -0
  71. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/HardSigmoid.py +0 -0
  72. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/HardSwish.py +0 -0
  73. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Hardmax.py +0 -0
  74. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Identity.py +0 -0
  75. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/If.py +0 -0
  76. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Input.py +0 -0
  77. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/InstanceNormalization.py +0 -0
  78. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Inverse.py +0 -0
  79. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/IsInf.py +0 -0
  80. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/IsNaN.py +0 -0
  81. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/LRN.py +0 -0
  82. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/LSTM.py +0 -0
  83. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/LayerNormalization.py +0 -0
  84. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/LeakyRelu.py +0 -0
  85. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Less.py +0 -0
  86. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/LessOrEqual.py +0 -0
  87. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Log.py +0 -0
  88. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/LogSoftmax.py +0 -0
  89. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/LpNormalization.py +0 -0
  90. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/MatMul.py +0 -0
  91. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/MatMulInteger.py +0 -0
  92. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Max.py +0 -0
  93. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/MaxPool.py +0 -0
  94. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/MaxUnpool.py +0 -0
  95. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Mean.py +0 -0
  96. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  97. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  98. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Min.py +0 -0
  99. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Mish.py +0 -0
  100. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Mod.py +0 -0
  101. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Mul.py +0 -0
  102. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Multinomial.py +0 -0
  103. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Neg.py +0 -0
  104. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  105. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/NonZero.py +0 -0
  106. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Not.py +0 -0
  107. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/OneHot.py +0 -0
  108. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/OptionalGetElement.py +0 -0
  109. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/OptionalHasElement.py +0 -0
  110. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Or.py +0 -0
  111. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/PRelu.py +0 -0
  112. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Pad.py +0 -0
  113. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Pow.py +0 -0
  114. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/QLinearAdd.py +0 -0
  115. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/QLinearConcat.py +0 -0
  116. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/QLinearConv.py +0 -0
  117. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  118. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/QLinearMatMul.py +0 -0
  119. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/QLinearMul.py +0 -0
  120. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  121. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  122. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/QuantizeLinear.py +0 -0
  123. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/RNN.py +0 -0
  124. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/RandomNormal.py +0 -0
  125. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/RandomNormalLike.py +0 -0
  126. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/RandomUniform.py +0 -0
  127. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/RandomUniformLike.py +0 -0
  128. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Range.py +0 -0
  129. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Reciprocal.py +0 -0
  130. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ReduceL1.py +0 -0
  131. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ReduceL2.py +0 -0
  132. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ReduceLogSum.py +0 -0
  133. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  134. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ReduceMax.py +0 -0
  135. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ReduceMean.py +0 -0
  136. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ReduceMin.py +0 -0
  137. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ReduceProd.py +0 -0
  138. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ReduceSum.py +0 -0
  139. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  140. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Relu.py +0 -0
  141. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Reshape.py +0 -0
  142. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Resize.py +0 -0
  143. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ReverseSequence.py +0 -0
  144. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/RoiAlign.py +0 -0
  145. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Round.py +0 -0
  146. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/STFT.py +0 -0
  147. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  148. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Scatter.py +0 -0
  149. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ScatterElements.py +0 -0
  150. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ScatterND.py +0 -0
  151. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Selu.py +0 -0
  152. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/SequenceAt.py +0 -0
  153. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/SequenceConstruct.py +0 -0
  154. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/SequenceEmpty.py +0 -0
  155. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/SequenceErase.py +0 -0
  156. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/SequenceInsert.py +0 -0
  157. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/SequenceLength.py +0 -0
  158. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Shape.py +0 -0
  159. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Shrink.py +0 -0
  160. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Sigmoid.py +0 -0
  161. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Sign.py +0 -0
  162. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Sin.py +0 -0
  163. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Sinh.py +0 -0
  164. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Size.py +0 -0
  165. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Slice.py +0 -0
  166. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Softmax.py +0 -0
  167. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Softplus.py +0 -0
  168. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Softsign.py +0 -0
  169. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/SpaceToDepth.py +0 -0
  170. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Split.py +0 -0
  171. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/SplitToSequence.py +0 -0
  172. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Sqrt.py +0 -0
  173. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Squeeze.py +0 -0
  174. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/StringNormalizer.py +0 -0
  175. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Sub.py +0 -0
  176. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Sum.py +0 -0
  177. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Tan.py +0 -0
  178. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Tanh.py +0 -0
  179. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  180. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Tile.py +0 -0
  181. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/TopK.py +0 -0
  182. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Transpose.py +0 -0
  183. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Trilu.py +0 -0
  184. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Unique.py +0 -0
  185. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Unsqueeze.py +0 -0
  186. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Upsample.py +0 -0
  187. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Where.py +0 -0
  188. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/Xor.py +0 -0
  189. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/_Loop.py +0 -0
  190. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/__Loop.py +0 -0
  191. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/ops/__init__.py +0 -0
  192. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/utils/__init__.py +0 -0
  193. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/utils/common_functions.py +0 -0
  194. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf/utils/logging.py +0 -0
  196. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf.egg-info/SOURCES.txt +0 -0
  197. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf.egg-info/dependency_links.txt +0 -0
  198. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf.egg-info/entry_points.txt +0 -0
  199. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/onnx2tf.egg-info/top_level.txt +0 -0
  200. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/setup.cfg +0 -0
  201. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/setup.py +0 -0
  202. {onnx2tf-1.25.9 → onnx2tf-1.25.10}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.25.9
3
+ Version: 1.25.10
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
314
314
  docker run --rm -it \
315
315
  -v `pwd`:/workdir \
316
316
  -w /workdir \
317
- ghcr.io/pinto0309/onnx2tf:1.25.9
317
+ ghcr.io/pinto0309/onnx2tf:1.25.10
318
318
 
319
319
  or
320
320
 
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
322
322
  docker run --rm -it \
323
323
  -v `pwd`:/workdir \
324
324
  -w /workdir \
325
- docker.io/pinto0309/onnx2tf:1.25.9
325
+ docker.io/pinto0309/onnx2tf:1.25.10
326
326
 
327
327
  or
328
328
 
@@ -299,7 +299,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
299
299
  docker run --rm -it \
300
300
  -v `pwd`:/workdir \
301
301
  -w /workdir \
302
- ghcr.io/pinto0309/onnx2tf:1.25.9
302
+ ghcr.io/pinto0309/onnx2tf:1.25.10
303
303
 
304
304
  or
305
305
 
@@ -307,7 +307,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
307
307
  docker run --rm -it \
308
308
  -v `pwd`:/workdir \
309
309
  -w /workdir \
310
- docker.io/pinto0309/onnx2tf:1.25.9
310
+ docker.io/pinto0309/onnx2tf:1.25.10
311
311
 
312
312
  or
313
313
 
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.25.9'
3
+ __version__ = '1.25.10'
@@ -87,8 +87,20 @@ def make_node(
87
87
  cal_shape = (1, -1)
88
88
  elif axis >= input_tensor_rank:
89
89
  cal_shape = (-1, 1)
90
- elif graph_node_output.shape is not None and len(graph_node_output.shape) == 2 and axis == input_tensor_rank - 1:
91
- cal_shape = (1, -1)
90
+ elif graph_node_output.shape is not None \
91
+ and len(graph_node_output.shape) == 2 \
92
+ and axis == input_tensor_rank - 1 \
93
+ and not isinstance(graph_node_output.shape[0], str):
94
+ cal_shape = (graph_node_output.shape[0], -1)
95
+ elif graph_node_output.shape is not None \
96
+ and len(graph_node_output.shape) == 2 \
97
+ and axis == input_tensor_rank - 1 \
98
+ and isinstance(graph_node_output.shape[0], str):
99
+ try:
100
+ dim_prod = int(np.prod(graph_node_output.shape[1:]))
101
+ cal_shape = (-1, dim_prod)
102
+ except:
103
+ cal_shape = (1, -1)
92
104
  elif input_tensor_rank >= 2 \
93
105
  and input_tensor_shape[0] is None \
94
106
  and len([idx for idx in input_tensor_shape[1:] if idx is not None]) == input_tensor_rank - 1 \
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.25.9
3
+ Version: 1.25.10
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
314
314
  docker run --rm -it \
315
315
  -v `pwd`:/workdir \
316
316
  -w /workdir \
317
- ghcr.io/pinto0309/onnx2tf:1.25.9
317
+ ghcr.io/pinto0309/onnx2tf:1.25.10
318
318
 
319
319
  or
320
320
 
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
322
322
  docker run --rm -it \
323
323
  -v `pwd`:/workdir \
324
324
  -w /workdir \
325
- docker.io/pinto0309/onnx2tf:1.25.9
325
+ docker.io/pinto0309/onnx2tf:1.25.10
326
326
 
327
327
  or
328
328
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes