onnx2tf 1.25.14__tar.gz → 1.25.15__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. {onnx2tf-1.25.14/onnx2tf.egg-info → onnx2tf-1.25.15}/PKG-INFO +3 -3
  2. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/README.md +2 -2
  3. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Add.py +4 -0
  5. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Mul.py +4 -0
  6. {onnx2tf-1.25.14 → onnx2tf-1.25.15/onnx2tf.egg-info}/PKG-INFO +3 -3
  7. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/LICENSE +0 -0
  8. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/LICENSE_onnx-tensorflow +0 -0
  9. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/__main__.py +0 -0
  10. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/onnx2tf.py +0 -0
  11. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Abs.py +0 -0
  12. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Acos.py +0 -0
  13. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Acosh.py +0 -0
  14. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/And.py +0 -0
  15. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ArgMax.py +0 -0
  16. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ArgMin.py +0 -0
  17. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Asin.py +0 -0
  18. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Asinh.py +0 -0
  19. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Atan.py +0 -0
  20. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Atanh.py +0 -0
  21. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/AveragePool.py +0 -0
  22. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/BatchNormalization.py +0 -0
  23. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Bernoulli.py +0 -0
  24. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/BitShift.py +0 -0
  25. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Cast.py +0 -0
  26. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Ceil.py +0 -0
  27. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Celu.py +0 -0
  28. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Clip.py +0 -0
  29. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Col2Im.py +0 -0
  30. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Compress.py +0 -0
  31. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Concat.py +0 -0
  32. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  33. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Constant.py +0 -0
  34. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ConstantOfShape.py +0 -0
  35. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Conv.py +0 -0
  36. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ConvInteger.py +0 -0
  37. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ConvTranspose.py +0 -0
  38. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Cos.py +0 -0
  39. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Cosh.py +0 -0
  40. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/CumSum.py +0 -0
  41. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/DepthToSpace.py +0 -0
  42. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/DequantizeLinear.py +0 -0
  43. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Det.py +0 -0
  44. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Div.py +0 -0
  45. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Dropout.py +0 -0
  46. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  47. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Einsum.py +0 -0
  48. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Elu.py +0 -0
  49. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Equal.py +0 -0
  50. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Erf.py +0 -0
  51. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Exp.py +0 -0
  52. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Expand.py +0 -0
  53. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/EyeLike.py +0 -0
  54. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Flatten.py +0 -0
  55. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Floor.py +0 -0
  56. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/FusedConv.py +0 -0
  57. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/GRU.py +0 -0
  58. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Gather.py +0 -0
  59. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/GatherElements.py +0 -0
  60. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/GatherND.py +0 -0
  61. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Gelu.py +0 -0
  62. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Gemm.py +0 -0
  63. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  64. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/GlobalLpPool.py +0 -0
  65. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  66. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Greater.py +0 -0
  67. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  68. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/GridSample.py +0 -0
  69. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/GroupNorm.py +0 -0
  70. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/HammingWindow.py +0 -0
  71. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/HannWindow.py +0 -0
  72. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/HardSigmoid.py +0 -0
  73. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/HardSwish.py +0 -0
  74. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Hardmax.py +0 -0
  75. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Identity.py +0 -0
  76. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/If.py +0 -0
  77. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Input.py +0 -0
  78. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/InstanceNormalization.py +0 -0
  79. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Inverse.py +0 -0
  80. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/IsInf.py +0 -0
  81. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/IsNaN.py +0 -0
  82. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/LRN.py +0 -0
  83. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/LSTM.py +0 -0
  84. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/LayerNormalization.py +0 -0
  85. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/LeakyRelu.py +0 -0
  86. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Less.py +0 -0
  87. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/LessOrEqual.py +0 -0
  88. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Log.py +0 -0
  89. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/LogSoftmax.py +0 -0
  90. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/LpNormalization.py +0 -0
  91. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/MatMul.py +0 -0
  92. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/MatMulInteger.py +0 -0
  93. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Max.py +0 -0
  94. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/MaxPool.py +0 -0
  95. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/MaxUnpool.py +0 -0
  96. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Mean.py +0 -0
  97. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  98. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  99. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Min.py +0 -0
  100. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Mish.py +0 -0
  101. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Mod.py +0 -0
  102. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Multinomial.py +0 -0
  103. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Neg.py +0 -0
  104. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  105. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/NonZero.py +0 -0
  106. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Not.py +0 -0
  107. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/OneHot.py +0 -0
  108. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/OptionalGetElement.py +0 -0
  109. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/OptionalHasElement.py +0 -0
  110. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Or.py +0 -0
  111. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/PRelu.py +0 -0
  112. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Pad.py +0 -0
  113. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Pow.py +0 -0
  114. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/QLinearAdd.py +0 -0
  115. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/QLinearConcat.py +0 -0
  116. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/QLinearConv.py +0 -0
  117. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  118. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/QLinearMatMul.py +0 -0
  119. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/QLinearMul.py +0 -0
  120. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  121. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  122. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/QuantizeLinear.py +0 -0
  123. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/RNN.py +0 -0
  124. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/RandomNormal.py +0 -0
  125. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/RandomNormalLike.py +0 -0
  126. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/RandomUniform.py +0 -0
  127. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/RandomUniformLike.py +0 -0
  128. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Range.py +0 -0
  129. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Reciprocal.py +0 -0
  130. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ReduceL1.py +0 -0
  131. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ReduceL2.py +0 -0
  132. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ReduceLogSum.py +0 -0
  133. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  134. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ReduceMax.py +0 -0
  135. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ReduceMean.py +0 -0
  136. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ReduceMin.py +0 -0
  137. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ReduceProd.py +0 -0
  138. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ReduceSum.py +0 -0
  139. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  140. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Relu.py +0 -0
  141. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Reshape.py +0 -0
  142. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Resize.py +0 -0
  143. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ReverseSequence.py +0 -0
  144. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/RoiAlign.py +0 -0
  145. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Round.py +0 -0
  146. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/STFT.py +0 -0
  147. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  148. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Scatter.py +0 -0
  149. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ScatterElements.py +0 -0
  150. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ScatterND.py +0 -0
  151. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Selu.py +0 -0
  152. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/SequenceAt.py +0 -0
  153. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/SequenceConstruct.py +0 -0
  154. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/SequenceEmpty.py +0 -0
  155. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/SequenceErase.py +0 -0
  156. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/SequenceInsert.py +0 -0
  157. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/SequenceLength.py +0 -0
  158. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Shape.py +0 -0
  159. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Shrink.py +0 -0
  160. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Sigmoid.py +0 -0
  161. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Sign.py +0 -0
  162. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Sin.py +0 -0
  163. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Sinh.py +0 -0
  164. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Size.py +0 -0
  165. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Slice.py +0 -0
  166. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Softmax.py +0 -0
  167. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Softplus.py +0 -0
  168. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Softsign.py +0 -0
  169. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/SpaceToDepth.py +0 -0
  170. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Split.py +0 -0
  171. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/SplitToSequence.py +0 -0
  172. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Sqrt.py +0 -0
  173. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Squeeze.py +0 -0
  174. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/StringNormalizer.py +0 -0
  175. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Sub.py +0 -0
  176. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Sum.py +0 -0
  177. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Tan.py +0 -0
  178. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Tanh.py +0 -0
  179. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  180. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Tile.py +0 -0
  181. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/TopK.py +0 -0
  182. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Transpose.py +0 -0
  183. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Trilu.py +0 -0
  184. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Unique.py +0 -0
  185. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Unsqueeze.py +0 -0
  186. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Upsample.py +0 -0
  187. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Where.py +0 -0
  188. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/Xor.py +0 -0
  189. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/_Loop.py +0 -0
  190. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/__Loop.py +0 -0
  191. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/ops/__init__.py +0 -0
  192. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/utils/__init__.py +0 -0
  193. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/utils/common_functions.py +0 -0
  194. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf/utils/logging.py +0 -0
  196. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf.egg-info/SOURCES.txt +0 -0
  197. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf.egg-info/dependency_links.txt +0 -0
  198. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf.egg-info/entry_points.txt +0 -0
  199. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/onnx2tf.egg-info/top_level.txt +0 -0
  200. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/setup.cfg +0 -0
  201. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/setup.py +0 -0
  202. {onnx2tf-1.25.14 → onnx2tf-1.25.15}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.25.14
3
+ Version: 1.25.15
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
314
314
  docker run --rm -it \
315
315
  -v `pwd`:/workdir \
316
316
  -w /workdir \
317
- ghcr.io/pinto0309/onnx2tf:1.25.14
317
+ ghcr.io/pinto0309/onnx2tf:1.25.15
318
318
 
319
319
  or
320
320
 
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
322
322
  docker run --rm -it \
323
323
  -v `pwd`:/workdir \
324
324
  -w /workdir \
325
- docker.io/pinto0309/onnx2tf:1.25.14
325
+ docker.io/pinto0309/onnx2tf:1.25.15
326
326
 
327
327
  or
328
328
 
@@ -299,7 +299,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
299
299
  docker run --rm -it \
300
300
  -v `pwd`:/workdir \
301
301
  -w /workdir \
302
- ghcr.io/pinto0309/onnx2tf:1.25.14
302
+ ghcr.io/pinto0309/onnx2tf:1.25.15
303
303
 
304
304
  or
305
305
 
@@ -307,7 +307,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
307
307
  docker run --rm -it \
308
308
  -v `pwd`:/workdir \
309
309
  -w /workdir \
310
- docker.io/pinto0309/onnx2tf:1.25.14
310
+ docker.io/pinto0309/onnx2tf:1.25.15
311
311
 
312
312
  or
313
313
 
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.25.14'
3
+ __version__ = '1.25.15'
@@ -92,6 +92,10 @@ def make_node(
92
92
  input_tensor_2 = tf_layers_dict[graph_node_input_2.name]['tf_node'] \
93
93
  if isinstance(graph_node_input_2, gs.Variable) else graph_node_input_2
94
94
 
95
+ # issue: https://github.com/PINTO0309/onnx2tf/issues/698
96
+ if isinstance(input_tensor_1, np.ndarray) and not isinstance(input_tensor_2, np.ndarray):
97
+ input_tensor_1, input_tensor_2 = input_tensor_2, input_tensor_1
98
+
95
99
  disable_strict_mode: bool = kwargs['disable_strict_mode']
96
100
  gelu_replace_op_names: dict = kwargs['gelu_replace_op_names']
97
101
 
@@ -84,6 +84,10 @@ def make_node(
84
84
  input_tensor_2 = tf_layers_dict[graph_node_input_2.name]['tf_node'] \
85
85
  if isinstance(graph_node_input_2, gs.Variable) else graph_node_input_2
86
86
 
87
+ # issue: https://github.com/PINTO0309/onnx2tf/issues/698
88
+ if isinstance(input_tensor_1, np.ndarray) and not isinstance(input_tensor_2, np.ndarray):
89
+ input_tensor_1, input_tensor_2 = input_tensor_2, input_tensor_1
90
+
87
91
  disable_strict_mode: bool = kwargs['disable_strict_mode']
88
92
  gelu_replace_op_names: dict = kwargs['gelu_replace_op_names']
89
93
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.25.14
3
+ Version: 1.25.15
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
314
314
  docker run --rm -it \
315
315
  -v `pwd`:/workdir \
316
316
  -w /workdir \
317
- ghcr.io/pinto0309/onnx2tf:1.25.14
317
+ ghcr.io/pinto0309/onnx2tf:1.25.15
318
318
 
319
319
  or
320
320
 
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
322
322
  docker run --rm -it \
323
323
  -v `pwd`:/workdir \
324
324
  -w /workdir \
325
- docker.io/pinto0309/onnx2tf:1.25.14
325
+ docker.io/pinto0309/onnx2tf:1.25.15
326
326
 
327
327
  or
328
328
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes