onnx2tf 1.25.11__tar.gz → 1.25.12__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {onnx2tf-1.25.11/onnx2tf.egg-info → onnx2tf-1.25.12}/PKG-INFO +4 -4
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/README.md +3 -3
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/__init__.py +1 -1
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Flatten.py +11 -8
- {onnx2tf-1.25.11 → onnx2tf-1.25.12/onnx2tf.egg-info}/PKG-INFO +4 -4
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/LICENSE +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/LICENSE_onnx-tensorflow +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/__main__.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/onnx2tf.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Abs.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Acos.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Acosh.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Add.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/And.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ArgMax.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ArgMin.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Asin.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Asinh.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Atan.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Atanh.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/AveragePool.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/BatchNormalization.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Bernoulli.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/BitShift.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Cast.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Ceil.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Celu.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Clip.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Col2Im.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Compress.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Concat.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ConcatFromSequence.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Constant.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ConstantOfShape.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Conv.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ConvInteger.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ConvTranspose.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Cos.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Cosh.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/CumSum.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/DepthToSpace.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/DequantizeLinear.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Det.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Div.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Dropout.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Einsum.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Elu.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Equal.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Erf.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Exp.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Expand.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/EyeLike.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Floor.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/FusedConv.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/GRU.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Gather.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/GatherElements.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/GatherND.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Gelu.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Gemm.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/GlobalAveragePool.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/GlobalLpPool.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/GlobalMaxPool.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Greater.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/GreaterOrEqual.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/GridSample.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/GroupNorm.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/HammingWindow.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/HannWindow.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/HardSigmoid.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/HardSwish.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Hardmax.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Identity.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/If.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Input.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/InstanceNormalization.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Inverse.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/IsInf.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/IsNaN.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/LRN.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/LSTM.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/LayerNormalization.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/LeakyRelu.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Less.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/LessOrEqual.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Log.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/LogSoftmax.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/LpNormalization.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/MatMul.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/MatMulInteger.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Max.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/MaxPool.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/MaxUnpool.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Mean.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/MelWeightMatrix.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Min.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Mish.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Mod.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Mul.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Multinomial.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Neg.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/NonMaxSuppression.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/NonZero.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Not.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/OneHot.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/OptionalGetElement.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/OptionalHasElement.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Or.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/PRelu.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Pad.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Pow.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/QLinearAdd.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/QLinearConcat.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/QLinearConv.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/QLinearMatMul.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/QLinearMul.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/QLinearSigmoid.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/QLinearSoftmax.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/QuantizeLinear.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/RNN.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/RandomNormal.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/RandomNormalLike.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/RandomUniform.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/RandomUniformLike.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Range.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Reciprocal.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ReduceL1.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ReduceL2.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ReduceLogSum.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ReduceMax.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ReduceMean.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ReduceMin.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ReduceProd.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ReduceSum.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ReduceSumSquare.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Relu.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Reshape.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Resize.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ReverseSequence.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/RoiAlign.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Round.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/STFT.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Scatter.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ScatterElements.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ScatterND.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Selu.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/SequenceAt.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/SequenceConstruct.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/SequenceEmpty.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/SequenceErase.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/SequenceInsert.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/SequenceLength.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Shape.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Shrink.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Sigmoid.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Sign.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Sin.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Sinh.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Size.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Slice.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Softmax.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Softplus.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Softsign.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/SpaceToDepth.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Split.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/SplitToSequence.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Sqrt.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Squeeze.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/StringNormalizer.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Sub.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Sum.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Tan.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Tanh.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/ThresholdedRelu.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Tile.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/TopK.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Transpose.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Trilu.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Unique.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Unsqueeze.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Upsample.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Where.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/Xor.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/_Loop.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/__Loop.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/ops/__init__.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/utils/__init__.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/utils/common_functions.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/utils/enums.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf/utils/logging.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf.egg-info/SOURCES.txt +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf.egg-info/dependency_links.txt +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf.egg-info/entry_points.txt +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/onnx2tf.egg-info/top_level.txt +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/setup.cfg +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/setup.py +0 -0
- {onnx2tf-1.25.11 → onnx2tf-1.25.12}/tests/test_model_convert.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.25.
|
|
3
|
+
Version: 1.25.12
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
314
314
|
docker run --rm -it \
|
|
315
315
|
-v `pwd`:/workdir \
|
|
316
316
|
-w /workdir \
|
|
317
|
-
ghcr.io/pinto0309/onnx2tf:1.25.
|
|
317
|
+
ghcr.io/pinto0309/onnx2tf:1.25.12
|
|
318
318
|
|
|
319
319
|
or
|
|
320
320
|
|
|
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
322
322
|
docker run --rm -it \
|
|
323
323
|
-v `pwd`:/workdir \
|
|
324
324
|
-w /workdir \
|
|
325
|
-
docker.io/pinto0309/onnx2tf:1.25.
|
|
325
|
+
docker.io/pinto0309/onnx2tf:1.25.12
|
|
326
326
|
|
|
327
327
|
or
|
|
328
328
|
|
|
@@ -419,7 +419,7 @@ The given SavedModel SignatureDef contains the following input(s):
|
|
|
419
419
|
The given SavedModel SignatureDef contains the following output(s):
|
|
420
420
|
outputs['output_0'] tensor_info:
|
|
421
421
|
dtype: DT_FLOAT
|
|
422
|
-
shape: (1, 1000)
|
|
422
|
+
shape: (-1, 1000)
|
|
423
423
|
name: PartitionedCall:0
|
|
424
424
|
Method name is: tensorflow/serving/predict
|
|
425
425
|
|
|
@@ -299,7 +299,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
299
299
|
docker run --rm -it \
|
|
300
300
|
-v `pwd`:/workdir \
|
|
301
301
|
-w /workdir \
|
|
302
|
-
ghcr.io/pinto0309/onnx2tf:1.25.
|
|
302
|
+
ghcr.io/pinto0309/onnx2tf:1.25.12
|
|
303
303
|
|
|
304
304
|
or
|
|
305
305
|
|
|
@@ -307,7 +307,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
307
307
|
docker run --rm -it \
|
|
308
308
|
-v `pwd`:/workdir \
|
|
309
309
|
-w /workdir \
|
|
310
|
-
docker.io/pinto0309/onnx2tf:1.25.
|
|
310
|
+
docker.io/pinto0309/onnx2tf:1.25.12
|
|
311
311
|
|
|
312
312
|
or
|
|
313
313
|
|
|
@@ -404,7 +404,7 @@ The given SavedModel SignatureDef contains the following input(s):
|
|
|
404
404
|
The given SavedModel SignatureDef contains the following output(s):
|
|
405
405
|
outputs['output_0'] tensor_info:
|
|
406
406
|
dtype: DT_FLOAT
|
|
407
|
-
shape: (1, 1000)
|
|
407
|
+
shape: (-1, 1000)
|
|
408
408
|
name: PartitionedCall:0
|
|
409
409
|
Method name is: tensorflow/serving/predict
|
|
410
410
|
|
|
@@ -57,14 +57,17 @@ def make_node(
|
|
|
57
57
|
output_shape = graph_node_output.shape
|
|
58
58
|
dtype = graph_node_output.dtype
|
|
59
59
|
|
|
60
|
-
axis = graph_node.attrs.get("axis",
|
|
61
|
-
if
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
axis=
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
60
|
+
axis = graph_node.attrs.get("axis", None)
|
|
61
|
+
if axis is not None:
|
|
62
|
+
if graph_node_input.shape is not None \
|
|
63
|
+
and axis < input_tensor_rank:
|
|
64
|
+
axis = convert_axis(
|
|
65
|
+
axis=axis,
|
|
66
|
+
tensor_rank=len(graph_node_input.shape),
|
|
67
|
+
before_op_output_shape_trans=before_op_output_shape_trans,
|
|
68
|
+
)
|
|
69
|
+
else:
|
|
70
|
+
axis = input_tensor_rank - 1
|
|
68
71
|
|
|
69
72
|
# Preserving Graph Structure (Dict)
|
|
70
73
|
tf_layers_dict[graph_node_output.name] = {
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.25.
|
|
3
|
+
Version: 1.25.12
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -314,7 +314,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
314
314
|
docker run --rm -it \
|
|
315
315
|
-v `pwd`:/workdir \
|
|
316
316
|
-w /workdir \
|
|
317
|
-
ghcr.io/pinto0309/onnx2tf:1.25.
|
|
317
|
+
ghcr.io/pinto0309/onnx2tf:1.25.12
|
|
318
318
|
|
|
319
319
|
or
|
|
320
320
|
|
|
@@ -322,7 +322,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
322
322
|
docker run --rm -it \
|
|
323
323
|
-v `pwd`:/workdir \
|
|
324
324
|
-w /workdir \
|
|
325
|
-
docker.io/pinto0309/onnx2tf:1.25.
|
|
325
|
+
docker.io/pinto0309/onnx2tf:1.25.12
|
|
326
326
|
|
|
327
327
|
or
|
|
328
328
|
|
|
@@ -419,7 +419,7 @@ The given SavedModel SignatureDef contains the following input(s):
|
|
|
419
419
|
The given SavedModel SignatureDef contains the following output(s):
|
|
420
420
|
outputs['output_0'] tensor_info:
|
|
421
421
|
dtype: DT_FLOAT
|
|
422
|
-
shape: (1, 1000)
|
|
422
|
+
shape: (-1, 1000)
|
|
423
423
|
name: PartitionedCall:0
|
|
424
424
|
Method name is: tensorflow/serving/predict
|
|
425
425
|
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|