onnx2tf 1.23.2__tar.gz → 1.24.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. {onnx2tf-1.23.2/onnx2tf.egg-info → onnx2tf-1.24.0}/PKG-INFO +3 -3
  2. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/README.md +2 -2
  3. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/onnx2tf.py +8 -6
  5. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/utils/common_functions.py +1 -1
  6. {onnx2tf-1.23.2 → onnx2tf-1.24.0/onnx2tf.egg-info}/PKG-INFO +3 -3
  7. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/LICENSE +0 -0
  8. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/LICENSE_onnx-tensorflow +0 -0
  9. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/__main__.py +0 -0
  10. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Abs.py +0 -0
  11. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Acos.py +0 -0
  12. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Acosh.py +0 -0
  13. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Add.py +0 -0
  14. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/And.py +0 -0
  15. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ArgMax.py +0 -0
  16. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ArgMin.py +0 -0
  17. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Asin.py +0 -0
  18. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Asinh.py +0 -0
  19. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Atan.py +0 -0
  20. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Atanh.py +0 -0
  21. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/AveragePool.py +0 -0
  22. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/BatchNormalization.py +0 -0
  23. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Bernoulli.py +0 -0
  24. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/BitShift.py +0 -0
  25. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Cast.py +0 -0
  26. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Ceil.py +0 -0
  27. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Celu.py +0 -0
  28. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Clip.py +0 -0
  29. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Col2Im.py +0 -0
  30. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Compress.py +0 -0
  31. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Concat.py +0 -0
  32. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  33. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Constant.py +0 -0
  34. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ConstantOfShape.py +0 -0
  35. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Conv.py +0 -0
  36. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ConvInteger.py +0 -0
  37. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ConvTranspose.py +0 -0
  38. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Cos.py +0 -0
  39. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Cosh.py +0 -0
  40. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/CumSum.py +0 -0
  41. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/DepthToSpace.py +0 -0
  42. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/DequantizeLinear.py +0 -0
  43. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Det.py +0 -0
  44. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Div.py +0 -0
  45. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Dropout.py +0 -0
  46. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  47. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Einsum.py +0 -0
  48. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Elu.py +0 -0
  49. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Equal.py +0 -0
  50. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Erf.py +0 -0
  51. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Exp.py +0 -0
  52. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Expand.py +0 -0
  53. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/EyeLike.py +0 -0
  54. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Flatten.py +0 -0
  55. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Floor.py +0 -0
  56. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/FusedConv.py +0 -0
  57. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/GRU.py +0 -0
  58. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Gather.py +0 -0
  59. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/GatherElements.py +0 -0
  60. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/GatherND.py +0 -0
  61. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Gelu.py +0 -0
  62. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Gemm.py +0 -0
  63. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  64. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/GlobalLpPool.py +0 -0
  65. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  66. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Greater.py +0 -0
  67. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  68. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/GridSample.py +0 -0
  69. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/GroupNorm.py +0 -0
  70. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/HammingWindow.py +0 -0
  71. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/HannWindow.py +0 -0
  72. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/HardSigmoid.py +0 -0
  73. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/HardSwish.py +0 -0
  74. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Hardmax.py +0 -0
  75. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Identity.py +0 -0
  76. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/If.py +0 -0
  77. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Input.py +0 -0
  78. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/InstanceNormalization.py +0 -0
  79. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Inverse.py +0 -0
  80. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/IsInf.py +0 -0
  81. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/IsNaN.py +0 -0
  82. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/LRN.py +0 -0
  83. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/LSTM.py +0 -0
  84. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/LayerNormalization.py +0 -0
  85. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/LeakyRelu.py +0 -0
  86. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Less.py +0 -0
  87. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/LessOrEqual.py +0 -0
  88. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Log.py +0 -0
  89. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/LogSoftmax.py +0 -0
  90. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/LpNormalization.py +0 -0
  91. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/MatMul.py +0 -0
  92. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/MatMulInteger.py +0 -0
  93. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Max.py +0 -0
  94. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/MaxPool.py +0 -0
  95. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/MaxUnpool.py +0 -0
  96. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Mean.py +0 -0
  97. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  98. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  99. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Min.py +0 -0
  100. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Mish.py +0 -0
  101. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Mod.py +0 -0
  102. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Mul.py +0 -0
  103. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Multinomial.py +0 -0
  104. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Neg.py +0 -0
  105. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  106. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/NonZero.py +0 -0
  107. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Not.py +0 -0
  108. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/OneHot.py +0 -0
  109. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/OptionalGetElement.py +0 -0
  110. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/OptionalHasElement.py +0 -0
  111. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Or.py +0 -0
  112. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/PRelu.py +0 -0
  113. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Pad.py +0 -0
  114. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Pow.py +0 -0
  115. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/QLinearAdd.py +0 -0
  116. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/QLinearConcat.py +0 -0
  117. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/QLinearConv.py +0 -0
  118. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  119. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/QLinearMatMul.py +0 -0
  120. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/QLinearMul.py +0 -0
  121. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  122. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  123. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/QuantizeLinear.py +0 -0
  124. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/RNN.py +0 -0
  125. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/RandomNormal.py +0 -0
  126. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/RandomNormalLike.py +0 -0
  127. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/RandomUniform.py +0 -0
  128. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/RandomUniformLike.py +0 -0
  129. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Range.py +0 -0
  130. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Reciprocal.py +0 -0
  131. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ReduceL1.py +0 -0
  132. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ReduceL2.py +0 -0
  133. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ReduceLogSum.py +0 -0
  134. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  135. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ReduceMax.py +0 -0
  136. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ReduceMean.py +0 -0
  137. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ReduceMin.py +0 -0
  138. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ReduceProd.py +0 -0
  139. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ReduceSum.py +0 -0
  140. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  141. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Relu.py +0 -0
  142. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Reshape.py +0 -0
  143. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Resize.py +0 -0
  144. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ReverseSequence.py +0 -0
  145. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/RoiAlign.py +0 -0
  146. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Round.py +0 -0
  147. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/STFT.py +0 -0
  148. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  149. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Scatter.py +0 -0
  150. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ScatterElements.py +0 -0
  151. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ScatterND.py +0 -0
  152. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Selu.py +0 -0
  153. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/SequenceAt.py +0 -0
  154. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/SequenceConstruct.py +0 -0
  155. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/SequenceEmpty.py +0 -0
  156. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/SequenceErase.py +0 -0
  157. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/SequenceInsert.py +0 -0
  158. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/SequenceLength.py +0 -0
  159. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Shape.py +0 -0
  160. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Shrink.py +0 -0
  161. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Sigmoid.py +0 -0
  162. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Sign.py +0 -0
  163. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Sin.py +0 -0
  164. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Sinh.py +0 -0
  165. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Size.py +0 -0
  166. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Slice.py +0 -0
  167. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Softmax.py +0 -0
  168. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Softplus.py +0 -0
  169. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Softsign.py +0 -0
  170. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/SpaceToDepth.py +0 -0
  171. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Split.py +0 -0
  172. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/SplitToSequence.py +0 -0
  173. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Sqrt.py +0 -0
  174. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Squeeze.py +0 -0
  175. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/StringNormalizer.py +0 -0
  176. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Sub.py +0 -0
  177. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Sum.py +0 -0
  178. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Tan.py +0 -0
  179. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Tanh.py +0 -0
  180. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  181. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Tile.py +0 -0
  182. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/TopK.py +0 -0
  183. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Transpose.py +0 -0
  184. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Trilu.py +0 -0
  185. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Unique.py +0 -0
  186. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Unsqueeze.py +0 -0
  187. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Upsample.py +0 -0
  188. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Where.py +0 -0
  189. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/Xor.py +0 -0
  190. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/_Loop.py +0 -0
  191. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/__Loop.py +0 -0
  192. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/ops/__init__.py +0 -0
  193. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/utils/__init__.py +0 -0
  194. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf/utils/logging.py +0 -0
  196. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf.egg-info/SOURCES.txt +0 -0
  197. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf.egg-info/dependency_links.txt +0 -0
  198. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf.egg-info/entry_points.txt +0 -0
  199. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/onnx2tf.egg-info/top_level.txt +0 -0
  200. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/setup.cfg +0 -0
  201. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/setup.py +0 -0
  202. {onnx2tf-1.23.2 → onnx2tf-1.24.0}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.23.2
3
+ Version: 1.24.0
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -308,7 +308,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
308
308
  docker run --rm -it \
309
309
  -v `pwd`:/workdir \
310
310
  -w /workdir \
311
- ghcr.io/pinto0309/onnx2tf:1.23.2
311
+ ghcr.io/pinto0309/onnx2tf:1.24.0
312
312
 
313
313
  or
314
314
 
@@ -316,7 +316,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
316
316
  docker run --rm -it \
317
317
  -v `pwd`:/workdir \
318
318
  -w /workdir \
319
- docker.io/pinto0309/onnx2tf:1.23.2
319
+ docker.io/pinto0309/onnx2tf:1.24.0
320
320
 
321
321
  or
322
322
 
@@ -293,7 +293,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
293
293
  docker run --rm -it \
294
294
  -v `pwd`:/workdir \
295
295
  -w /workdir \
296
- ghcr.io/pinto0309/onnx2tf:1.23.2
296
+ ghcr.io/pinto0309/onnx2tf:1.24.0
297
297
 
298
298
  or
299
299
 
@@ -301,7 +301,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
301
301
  docker run --rm -it \
302
302
  -v `pwd`:/workdir \
303
303
  -w /workdir \
304
- docker.io/pinto0309/onnx2tf:1.23.2
304
+ docker.io/pinto0309/onnx2tf:1.24.0
305
305
 
306
306
  or
307
307
 
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.23.2'
3
+ __version__ = '1.24.0'
@@ -1220,6 +1220,8 @@ def convert(
1220
1220
  # concrete_func
1221
1221
  info(Color.REVERSE(f'saved_model output started'), '=' * 58)
1222
1222
  if not output_signaturedefs and not output_integer_quantized_tflite:
1223
+ tf.saved_model.save(model, output_folder_path)
1224
+ else:
1223
1225
  export_archive = tf_keras.export.ExportArchive()
1224
1226
  export_archive.add_endpoint(
1225
1227
  name=SIGNATURE_KEY,
@@ -1227,8 +1229,6 @@ def convert(
1227
1229
  input_signature=[tf.TensorSpec(tensor.shape, tensor.dtype, tensor.name) for tensor in model.inputs],
1228
1230
  )
1229
1231
  export_archive.write_out(output_folder_path)
1230
- else:
1231
- tf.saved_model.save(model, output_folder_path)
1232
1232
  info(Color.GREEN(f'saved_model output complete!'))
1233
1233
  except TypeError as e:
1234
1234
  # Switch to .pb
@@ -1239,11 +1239,13 @@ def convert(
1239
1239
  for s in msg_list:
1240
1240
  if 'Failed to add concrete function' in s \
1241
1241
  or "Tried to export a function which references an 'untracked' resource" in s:
1242
- warn(
1243
- f'This model contains GroupConvolution and is automatically optimized for TFLite, ' +
1244
- f'but is not output because saved_model does not support GroupConvolution. ' +
1245
- f'If saved_model is needed, specify --disable_group_convolution to retransform the model.'
1242
+ export_archive = tf_keras.export.ExportArchive()
1243
+ export_archive.add_endpoint(
1244
+ name=SIGNATURE_KEY,
1245
+ fn=lambda *inputs : model(inputs),
1246
+ input_signature=[tf.TensorSpec(tensor.shape, tensor.dtype, tensor.name) for tensor in model.inputs],
1246
1247
  )
1248
+ export_archive.write_out(output_folder_path)
1247
1249
  break
1248
1250
  else:
1249
1251
  error(e)
@@ -4584,7 +4584,7 @@ def rewrite_tflite_inout_opname(
4584
4584
  result = subprocess.check_output(
4585
4585
  [
4586
4586
  'curl',
4587
- 'https://raw.githubusercontent.com/tensorflow/tensorflow/v2.11.0/tensorflow/lite/schema/schema.fbs',
4587
+ 'https://raw.githubusercontent.com/tensorflow/tensorflow/v2.17.0-rc1/tensorflow/compiler/mlir/lite/schema/schema.fbs',
4588
4588
  '-o',
4589
4589
  f'{output_folder_path}/schema.fbs'
4590
4590
  ],
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.23.2
3
+ Version: 1.24.0
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -308,7 +308,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
308
308
  docker run --rm -it \
309
309
  -v `pwd`:/workdir \
310
310
  -w /workdir \
311
- ghcr.io/pinto0309/onnx2tf:1.23.2
311
+ ghcr.io/pinto0309/onnx2tf:1.24.0
312
312
 
313
313
  or
314
314
 
@@ -316,7 +316,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
316
316
  docker run --rm -it \
317
317
  -v `pwd`:/workdir \
318
318
  -w /workdir \
319
- docker.io/pinto0309/onnx2tf:1.23.2
319
+ docker.io/pinto0309/onnx2tf:1.24.0
320
320
 
321
321
  or
322
322
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes