onnx2tf 1.23.0__tar.gz → 1.23.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (202) hide show
  1. {onnx2tf-1.23.0/onnx2tf.egg-info → onnx2tf-1.23.2}/PKG-INFO +10 -6
  2. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/README.md +9 -5
  3. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/__init__.py +1 -1
  4. {onnx2tf-1.23.0 → onnx2tf-1.23.2/onnx2tf.egg-info}/PKG-INFO +10 -6
  5. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/LICENSE +0 -0
  6. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/LICENSE_onnx-tensorflow +0 -0
  7. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/__main__.py +0 -0
  8. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/onnx2tf.py +0 -0
  9. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Abs.py +0 -0
  10. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Acos.py +0 -0
  11. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Acosh.py +0 -0
  12. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Add.py +0 -0
  13. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/And.py +0 -0
  14. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ArgMax.py +0 -0
  15. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ArgMin.py +0 -0
  16. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Asin.py +0 -0
  17. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Asinh.py +0 -0
  18. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Atan.py +0 -0
  19. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Atanh.py +0 -0
  20. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/AveragePool.py +0 -0
  21. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/BatchNormalization.py +0 -0
  22. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Bernoulli.py +0 -0
  23. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/BitShift.py +0 -0
  24. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Cast.py +0 -0
  25. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Ceil.py +0 -0
  26. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Celu.py +0 -0
  27. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Clip.py +0 -0
  28. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Col2Im.py +0 -0
  29. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Compress.py +0 -0
  30. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Concat.py +0 -0
  31. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ConcatFromSequence.py +0 -0
  32. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Constant.py +0 -0
  33. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ConstantOfShape.py +0 -0
  34. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Conv.py +0 -0
  35. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ConvInteger.py +0 -0
  36. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ConvTranspose.py +0 -0
  37. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Cos.py +0 -0
  38. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Cosh.py +0 -0
  39. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/CumSum.py +0 -0
  40. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/DepthToSpace.py +0 -0
  41. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/DequantizeLinear.py +0 -0
  42. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Det.py +0 -0
  43. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Div.py +0 -0
  44. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Dropout.py +0 -0
  45. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
  46. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Einsum.py +0 -0
  47. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Elu.py +0 -0
  48. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Equal.py +0 -0
  49. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Erf.py +0 -0
  50. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Exp.py +0 -0
  51. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Expand.py +0 -0
  52. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/EyeLike.py +0 -0
  53. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Flatten.py +0 -0
  54. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Floor.py +0 -0
  55. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/FusedConv.py +0 -0
  56. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GRU.py +0 -0
  57. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Gather.py +0 -0
  58. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GatherElements.py +0 -0
  59. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GatherND.py +0 -0
  60. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Gelu.py +0 -0
  61. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Gemm.py +0 -0
  62. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GlobalAveragePool.py +0 -0
  63. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GlobalLpPool.py +0 -0
  64. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GlobalMaxPool.py +0 -0
  65. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Greater.py +0 -0
  66. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GreaterOrEqual.py +0 -0
  67. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GridSample.py +0 -0
  68. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GroupNorm.py +0 -0
  69. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/HammingWindow.py +0 -0
  70. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/HannWindow.py +0 -0
  71. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/HardSigmoid.py +0 -0
  72. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/HardSwish.py +0 -0
  73. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Hardmax.py +0 -0
  74. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Identity.py +0 -0
  75. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/If.py +0 -0
  76. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Input.py +0 -0
  77. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/InstanceNormalization.py +0 -0
  78. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Inverse.py +0 -0
  79. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/IsInf.py +0 -0
  80. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/IsNaN.py +0 -0
  81. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LRN.py +0 -0
  82. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LSTM.py +0 -0
  83. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LayerNormalization.py +0 -0
  84. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LeakyRelu.py +0 -0
  85. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Less.py +0 -0
  86. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LessOrEqual.py +0 -0
  87. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Log.py +0 -0
  88. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LogSoftmax.py +0 -0
  89. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LpNormalization.py +0 -0
  90. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/MatMul.py +0 -0
  91. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/MatMulInteger.py +0 -0
  92. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Max.py +0 -0
  93. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/MaxPool.py +0 -0
  94. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/MaxUnpool.py +0 -0
  95. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Mean.py +0 -0
  96. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
  97. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/MelWeightMatrix.py +0 -0
  98. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Min.py +0 -0
  99. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Mish.py +0 -0
  100. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Mod.py +0 -0
  101. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Mul.py +0 -0
  102. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Multinomial.py +0 -0
  103. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Neg.py +0 -0
  104. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/NonMaxSuppression.py +0 -0
  105. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/NonZero.py +0 -0
  106. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Not.py +0 -0
  107. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/OneHot.py +0 -0
  108. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/OptionalGetElement.py +0 -0
  109. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/OptionalHasElement.py +0 -0
  110. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Or.py +0 -0
  111. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/PRelu.py +0 -0
  112. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Pad.py +0 -0
  113. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Pow.py +0 -0
  114. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearAdd.py +0 -0
  115. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearConcat.py +0 -0
  116. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearConv.py +0 -0
  117. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
  118. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearMatMul.py +0 -0
  119. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearMul.py +0 -0
  120. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearSigmoid.py +0 -0
  121. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearSoftmax.py +0 -0
  122. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QuantizeLinear.py +0 -0
  123. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/RNN.py +0 -0
  124. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/RandomNormal.py +0 -0
  125. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/RandomNormalLike.py +0 -0
  126. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/RandomUniform.py +0 -0
  127. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/RandomUniformLike.py +0 -0
  128. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Range.py +0 -0
  129. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Reciprocal.py +0 -0
  130. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceL1.py +0 -0
  131. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceL2.py +0 -0
  132. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceLogSum.py +0 -0
  133. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
  134. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceMax.py +0 -0
  135. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceMean.py +0 -0
  136. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceMin.py +0 -0
  137. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceProd.py +0 -0
  138. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceSum.py +0 -0
  139. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceSumSquare.py +0 -0
  140. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Relu.py +0 -0
  141. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Reshape.py +0 -0
  142. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Resize.py +0 -0
  143. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReverseSequence.py +0 -0
  144. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/RoiAlign.py +0 -0
  145. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Round.py +0 -0
  146. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/STFT.py +0 -0
  147. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
  148. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Scatter.py +0 -0
  149. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ScatterElements.py +0 -0
  150. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ScatterND.py +0 -0
  151. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Selu.py +0 -0
  152. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SequenceAt.py +0 -0
  153. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SequenceConstruct.py +0 -0
  154. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SequenceEmpty.py +0 -0
  155. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SequenceErase.py +0 -0
  156. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SequenceInsert.py +0 -0
  157. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SequenceLength.py +0 -0
  158. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Shape.py +0 -0
  159. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Shrink.py +0 -0
  160. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sigmoid.py +0 -0
  161. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sign.py +0 -0
  162. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sin.py +0 -0
  163. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sinh.py +0 -0
  164. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Size.py +0 -0
  165. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Slice.py +0 -0
  166. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Softmax.py +0 -0
  167. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Softplus.py +0 -0
  168. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Softsign.py +0 -0
  169. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SpaceToDepth.py +0 -0
  170. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Split.py +0 -0
  171. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SplitToSequence.py +0 -0
  172. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sqrt.py +0 -0
  173. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Squeeze.py +0 -0
  174. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/StringNormalizer.py +0 -0
  175. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sub.py +0 -0
  176. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sum.py +0 -0
  177. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Tan.py +0 -0
  178. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Tanh.py +0 -0
  179. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ThresholdedRelu.py +0 -0
  180. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Tile.py +0 -0
  181. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/TopK.py +0 -0
  182. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Transpose.py +0 -0
  183. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Trilu.py +0 -0
  184. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Unique.py +0 -0
  185. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Unsqueeze.py +0 -0
  186. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Upsample.py +0 -0
  187. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Where.py +0 -0
  188. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Xor.py +0 -0
  189. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/_Loop.py +0 -0
  190. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/__Loop.py +0 -0
  191. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/__init__.py +0 -0
  192. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/utils/__init__.py +0 -0
  193. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/utils/common_functions.py +0 -0
  194. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/utils/enums.py +0 -0
  195. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/utils/logging.py +0 -0
  196. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf.egg-info/SOURCES.txt +0 -0
  197. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf.egg-info/dependency_links.txt +0 -0
  198. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf.egg-info/entry_points.txt +0 -0
  199. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf.egg-info/top_level.txt +0 -0
  200. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/setup.cfg +0 -0
  201. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/setup.py +0 -0
  202. {onnx2tf-1.23.0 → onnx2tf-1.23.2}/tests/test_model_convert.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.23.0
3
+ Version: 1.23.2
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -274,7 +274,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
274
274
  - onnx-simplifier==0.4.33 or 0.4.30 `(onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] (op_type:Slice, node name: /xxxx/Slice): [ShapeInferenceError] Inferred shape and existing shape differ in rank: (x) vs (y))`
275
275
  - onnx_graphsurgeon
276
276
  - simple_onnx_processing_tools
277
- - tensorflow==2.16.1, Note: [#515](https://github.com/PINTO0309/onnx2tf/issues/515), Special bugs: [#436](https://github.com/PINTO0309/onnx2tf/issues/436)
277
+ - tensorflow==2.16.1, Special bugs: [#436](https://github.com/PINTO0309/onnx2tf/issues/436)
278
278
  - psutil==5.9.5
279
279
  - ml_dtypes==0.3.2
280
280
  - flatbuffers-compiler (Optional, Only when using the `-coion` option. Executable file named `flatc`.)
@@ -291,7 +291,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
291
291
  ## Sample Usage
292
292
  ### 1. Install
293
293
 
294
- **Note: If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.** See: [#515](https://github.com/PINTO0309/onnx2tf/issues/515)
294
+ **Note: If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.**
295
295
 
296
296
  - HostPC
297
297
  - When using GHCR, see `Authenticating to the Container registry`
@@ -308,7 +308,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
308
308
  docker run --rm -it \
309
309
  -v `pwd`:/workdir \
310
310
  -w /workdir \
311
- ghcr.io/pinto0309/onnx2tf:1.23.0
311
+ ghcr.io/pinto0309/onnx2tf:1.23.2
312
312
 
313
313
  or
314
314
 
@@ -316,7 +316,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
316
316
  docker run --rm -it \
317
317
  -v `pwd`:/workdir \
318
318
  -w /workdir \
319
- docker.io/pinto0309/onnx2tf:1.23.0
319
+ docker.io/pinto0309/onnx2tf:1.23.2
320
320
 
321
321
  or
322
322
 
@@ -456,7 +456,11 @@ onnx2tf -i emotion-ferplus-8.onnx -oiqt -qt per-tensor
456
456
  onnx2tf -i resnet18-v1-7.onnx -onimc resnetv15_stage2_conv1_fwd resnetv15_stage2_conv2_fwd
457
457
 
458
458
  # Suppress generation of Flex OP and replace with Pseudo-Function
459
- # [Asin, Acos, Atan, Abs, PReLU, LeakyReLU, Power, GatherND, Neg, HardSwish, Erf, GeLU, MatMulInteger]
459
+ # [
460
+ # Asin, Acos, Atan, Abs, PReLU,
461
+ # LeakyReLU, Power, GatherND,
462
+ # Neg, HardSwish, Erf, GeLU, MatMulInteger,
463
+ # ]
460
464
  # Below is a sample of replacing Erf with another set of operations.
461
465
  wget https://s3.ap-northeast-2.wasabisys.com/temp-models/onnx2tf_readme/Erf_11.onnx
462
466
  onnx2tf -i Erf_11.onnx -rtpo Erf
@@ -259,7 +259,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
259
259
  - onnx-simplifier==0.4.33 or 0.4.30 `(onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] (op_type:Slice, node name: /xxxx/Slice): [ShapeInferenceError] Inferred shape and existing shape differ in rank: (x) vs (y))`
260
260
  - onnx_graphsurgeon
261
261
  - simple_onnx_processing_tools
262
- - tensorflow==2.16.1, Note: [#515](https://github.com/PINTO0309/onnx2tf/issues/515), Special bugs: [#436](https://github.com/PINTO0309/onnx2tf/issues/436)
262
+ - tensorflow==2.16.1, Special bugs: [#436](https://github.com/PINTO0309/onnx2tf/issues/436)
263
263
  - psutil==5.9.5
264
264
  - ml_dtypes==0.3.2
265
265
  - flatbuffers-compiler (Optional, Only when using the `-coion` option. Executable file named `flatc`.)
@@ -276,7 +276,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
276
276
  ## Sample Usage
277
277
  ### 1. Install
278
278
 
279
- **Note: If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.** See: [#515](https://github.com/PINTO0309/onnx2tf/issues/515)
279
+ **Note: If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.**
280
280
 
281
281
  - HostPC
282
282
  - When using GHCR, see `Authenticating to the Container registry`
@@ -293,7 +293,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
293
293
  docker run --rm -it \
294
294
  -v `pwd`:/workdir \
295
295
  -w /workdir \
296
- ghcr.io/pinto0309/onnx2tf:1.23.0
296
+ ghcr.io/pinto0309/onnx2tf:1.23.2
297
297
 
298
298
  or
299
299
 
@@ -301,7 +301,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
301
301
  docker run --rm -it \
302
302
  -v `pwd`:/workdir \
303
303
  -w /workdir \
304
- docker.io/pinto0309/onnx2tf:1.23.0
304
+ docker.io/pinto0309/onnx2tf:1.23.2
305
305
 
306
306
  or
307
307
 
@@ -441,7 +441,11 @@ onnx2tf -i emotion-ferplus-8.onnx -oiqt -qt per-tensor
441
441
  onnx2tf -i resnet18-v1-7.onnx -onimc resnetv15_stage2_conv1_fwd resnetv15_stage2_conv2_fwd
442
442
 
443
443
  # Suppress generation of Flex OP and replace with Pseudo-Function
444
- # [Asin, Acos, Atan, Abs, PReLU, LeakyReLU, Power, GatherND, Neg, HardSwish, Erf, GeLU, MatMulInteger]
444
+ # [
445
+ # Asin, Acos, Atan, Abs, PReLU,
446
+ # LeakyReLU, Power, GatherND,
447
+ # Neg, HardSwish, Erf, GeLU, MatMulInteger,
448
+ # ]
445
449
  # Below is a sample of replacing Erf with another set of operations.
446
450
  wget https://s3.ap-northeast-2.wasabisys.com/temp-models/onnx2tf_readme/Erf_11.onnx
447
451
  onnx2tf -i Erf_11.onnx -rtpo Erf
@@ -1,3 +1,3 @@
1
1
  from onnx2tf.onnx2tf import convert, main
2
2
 
3
- __version__ = '1.23.0'
3
+ __version__ = '1.23.2'
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: onnx2tf
3
- Version: 1.23.0
3
+ Version: 1.23.2
4
4
  Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
5
5
  Home-page: https://github.com/PINTO0309/onnx2tf
6
6
  Author: Katsuya Hyodo
@@ -274,7 +274,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
274
274
  - onnx-simplifier==0.4.33 or 0.4.30 `(onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] (op_type:Slice, node name: /xxxx/Slice): [ShapeInferenceError] Inferred shape and existing shape differ in rank: (x) vs (y))`
275
275
  - onnx_graphsurgeon
276
276
  - simple_onnx_processing_tools
277
- - tensorflow==2.16.1, Note: [#515](https://github.com/PINTO0309/onnx2tf/issues/515), Special bugs: [#436](https://github.com/PINTO0309/onnx2tf/issues/436)
277
+ - tensorflow==2.16.1, Special bugs: [#436](https://github.com/PINTO0309/onnx2tf/issues/436)
278
278
  - psutil==5.9.5
279
279
  - ml_dtypes==0.3.2
280
280
  - flatbuffers-compiler (Optional, Only when using the `-coion` option. Executable file named `flatc`.)
@@ -291,7 +291,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
291
291
  ## Sample Usage
292
292
  ### 1. Install
293
293
 
294
- **Note: If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.** See: [#515](https://github.com/PINTO0309/onnx2tf/issues/515)
294
+ **Note: If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.**
295
295
 
296
296
  - HostPC
297
297
  - When using GHCR, see `Authenticating to the Container registry`
@@ -308,7 +308,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
308
308
  docker run --rm -it \
309
309
  -v `pwd`:/workdir \
310
310
  -w /workdir \
311
- ghcr.io/pinto0309/onnx2tf:1.23.0
311
+ ghcr.io/pinto0309/onnx2tf:1.23.2
312
312
 
313
313
  or
314
314
 
@@ -316,7 +316,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
316
316
  docker run --rm -it \
317
317
  -v `pwd`:/workdir \
318
318
  -w /workdir \
319
- docker.io/pinto0309/onnx2tf:1.23.0
319
+ docker.io/pinto0309/onnx2tf:1.23.2
320
320
 
321
321
  or
322
322
 
@@ -456,7 +456,11 @@ onnx2tf -i emotion-ferplus-8.onnx -oiqt -qt per-tensor
456
456
  onnx2tf -i resnet18-v1-7.onnx -onimc resnetv15_stage2_conv1_fwd resnetv15_stage2_conv2_fwd
457
457
 
458
458
  # Suppress generation of Flex OP and replace with Pseudo-Function
459
- # [Asin, Acos, Atan, Abs, PReLU, LeakyReLU, Power, GatherND, Neg, HardSwish, Erf, GeLU, MatMulInteger]
459
+ # [
460
+ # Asin, Acos, Atan, Abs, PReLU,
461
+ # LeakyReLU, Power, GatherND,
462
+ # Neg, HardSwish, Erf, GeLU, MatMulInteger,
463
+ # ]
460
464
  # Below is a sample of replacing Erf with another set of operations.
461
465
  wget https://s3.ap-northeast-2.wasabisys.com/temp-models/onnx2tf_readme/Erf_11.onnx
462
466
  onnx2tf -i Erf_11.onnx -rtpo Erf
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes