onnx2tf 1.23.0__tar.gz → 1.23.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {onnx2tf-1.23.0/onnx2tf.egg-info → onnx2tf-1.23.2}/PKG-INFO +10 -6
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/README.md +9 -5
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/__init__.py +1 -1
- {onnx2tf-1.23.0 → onnx2tf-1.23.2/onnx2tf.egg-info}/PKG-INFO +10 -6
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/LICENSE +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/LICENSE_onnx-tensorflow +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/__main__.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/onnx2tf.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Abs.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Acos.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Acosh.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Add.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/And.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ArgMax.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ArgMin.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Asin.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Asinh.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Atan.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Atanh.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/AveragePool.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/BatchNormalization.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Bernoulli.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/BitShift.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Cast.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Ceil.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Celu.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Clip.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Col2Im.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Compress.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Concat.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ConcatFromSequence.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Constant.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ConstantOfShape.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Conv.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ConvInteger.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ConvTranspose.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Cos.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Cosh.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/CumSum.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/DepthToSpace.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/DequantizeLinear.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Det.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Div.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Dropout.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/DynamicQuantizeLinear.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Einsum.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Elu.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Equal.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Erf.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Exp.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Expand.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/EyeLike.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Flatten.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Floor.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/FusedConv.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GRU.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Gather.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GatherElements.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GatherND.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Gelu.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Gemm.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GlobalAveragePool.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GlobalLpPool.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GlobalMaxPool.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Greater.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GreaterOrEqual.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GridSample.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/GroupNorm.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/HammingWindow.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/HannWindow.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/HardSigmoid.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/HardSwish.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Hardmax.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Identity.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/If.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Input.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/InstanceNormalization.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Inverse.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/IsInf.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/IsNaN.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LRN.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LSTM.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LayerNormalization.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LeakyRelu.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Less.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LessOrEqual.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Log.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LogSoftmax.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/LpNormalization.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/MatMul.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/MatMulInteger.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Max.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/MaxPool.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/MaxUnpool.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Mean.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/MeanVarianceNormalization.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/MelWeightMatrix.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Min.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Mish.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Mod.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Mul.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Multinomial.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Neg.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/NonMaxSuppression.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/NonZero.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Not.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/OneHot.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/OptionalGetElement.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/OptionalHasElement.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Or.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/PRelu.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Pad.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Pow.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearAdd.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearConcat.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearConv.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearLeakyRelu.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearMatMul.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearMul.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearSigmoid.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QLinearSoftmax.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/QuantizeLinear.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/RNN.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/RandomNormal.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/RandomNormalLike.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/RandomUniform.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/RandomUniformLike.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Range.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Reciprocal.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceL1.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceL2.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceLogSum.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceLogSumExp.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceMax.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceMean.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceMin.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceProd.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceSum.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReduceSumSquare.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Relu.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Reshape.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Resize.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ReverseSequence.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/RoiAlign.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Round.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/STFT.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ScaleAndTranslate.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Scatter.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ScatterElements.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ScatterND.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Selu.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SequenceAt.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SequenceConstruct.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SequenceEmpty.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SequenceErase.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SequenceInsert.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SequenceLength.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Shape.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Shrink.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sigmoid.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sign.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sin.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sinh.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Size.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Slice.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Softmax.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Softplus.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Softsign.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SpaceToDepth.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Split.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/SplitToSequence.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sqrt.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Squeeze.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/StringNormalizer.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sub.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Sum.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Tan.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Tanh.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/ThresholdedRelu.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Tile.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/TopK.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Transpose.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Trilu.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Unique.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Unsqueeze.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Upsample.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Where.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/Xor.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/_Loop.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/__Loop.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/ops/__init__.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/utils/__init__.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/utils/common_functions.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/utils/enums.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf/utils/logging.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf.egg-info/SOURCES.txt +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf.egg-info/dependency_links.txt +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf.egg-info/entry_points.txt +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/onnx2tf.egg-info/top_level.txt +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/setup.cfg +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/setup.py +0 -0
- {onnx2tf-1.23.0 → onnx2tf-1.23.2}/tests/test_model_convert.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.23.
|
|
3
|
+
Version: 1.23.2
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -274,7 +274,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
274
274
|
- onnx-simplifier==0.4.33 or 0.4.30 `(onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] (op_type:Slice, node name: /xxxx/Slice): [ShapeInferenceError] Inferred shape and existing shape differ in rank: (x) vs (y))`
|
|
275
275
|
- onnx_graphsurgeon
|
|
276
276
|
- simple_onnx_processing_tools
|
|
277
|
-
- tensorflow==2.16.1,
|
|
277
|
+
- tensorflow==2.16.1, Special bugs: [#436](https://github.com/PINTO0309/onnx2tf/issues/436)
|
|
278
278
|
- psutil==5.9.5
|
|
279
279
|
- ml_dtypes==0.3.2
|
|
280
280
|
- flatbuffers-compiler (Optional, Only when using the `-coion` option. Executable file named `flatc`.)
|
|
@@ -291,7 +291,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
291
291
|
## Sample Usage
|
|
292
292
|
### 1. Install
|
|
293
293
|
|
|
294
|
-
**Note: If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.**
|
|
294
|
+
**Note: If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.**
|
|
295
295
|
|
|
296
296
|
- HostPC
|
|
297
297
|
- When using GHCR, see `Authenticating to the Container registry`
|
|
@@ -308,7 +308,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
308
308
|
docker run --rm -it \
|
|
309
309
|
-v `pwd`:/workdir \
|
|
310
310
|
-w /workdir \
|
|
311
|
-
ghcr.io/pinto0309/onnx2tf:1.23.
|
|
311
|
+
ghcr.io/pinto0309/onnx2tf:1.23.2
|
|
312
312
|
|
|
313
313
|
or
|
|
314
314
|
|
|
@@ -316,7 +316,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
316
316
|
docker run --rm -it \
|
|
317
317
|
-v `pwd`:/workdir \
|
|
318
318
|
-w /workdir \
|
|
319
|
-
docker.io/pinto0309/onnx2tf:1.23.
|
|
319
|
+
docker.io/pinto0309/onnx2tf:1.23.2
|
|
320
320
|
|
|
321
321
|
or
|
|
322
322
|
|
|
@@ -456,7 +456,11 @@ onnx2tf -i emotion-ferplus-8.onnx -oiqt -qt per-tensor
|
|
|
456
456
|
onnx2tf -i resnet18-v1-7.onnx -onimc resnetv15_stage2_conv1_fwd resnetv15_stage2_conv2_fwd
|
|
457
457
|
|
|
458
458
|
# Suppress generation of Flex OP and replace with Pseudo-Function
|
|
459
|
-
# [
|
|
459
|
+
# [
|
|
460
|
+
# Asin, Acos, Atan, Abs, PReLU,
|
|
461
|
+
# LeakyReLU, Power, GatherND,
|
|
462
|
+
# Neg, HardSwish, Erf, GeLU, MatMulInteger,
|
|
463
|
+
# ]
|
|
460
464
|
# Below is a sample of replacing Erf with another set of operations.
|
|
461
465
|
wget https://s3.ap-northeast-2.wasabisys.com/temp-models/onnx2tf_readme/Erf_11.onnx
|
|
462
466
|
onnx2tf -i Erf_11.onnx -rtpo Erf
|
|
@@ -259,7 +259,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
259
259
|
- onnx-simplifier==0.4.33 or 0.4.30 `(onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] (op_type:Slice, node name: /xxxx/Slice): [ShapeInferenceError] Inferred shape and existing shape differ in rank: (x) vs (y))`
|
|
260
260
|
- onnx_graphsurgeon
|
|
261
261
|
- simple_onnx_processing_tools
|
|
262
|
-
- tensorflow==2.16.1,
|
|
262
|
+
- tensorflow==2.16.1, Special bugs: [#436](https://github.com/PINTO0309/onnx2tf/issues/436)
|
|
263
263
|
- psutil==5.9.5
|
|
264
264
|
- ml_dtypes==0.3.2
|
|
265
265
|
- flatbuffers-compiler (Optional, Only when using the `-coion` option. Executable file named `flatc`.)
|
|
@@ -276,7 +276,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
276
276
|
## Sample Usage
|
|
277
277
|
### 1. Install
|
|
278
278
|
|
|
279
|
-
**Note: If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.**
|
|
279
|
+
**Note: If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.**
|
|
280
280
|
|
|
281
281
|
- HostPC
|
|
282
282
|
- When using GHCR, see `Authenticating to the Container registry`
|
|
@@ -293,7 +293,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
293
293
|
docker run --rm -it \
|
|
294
294
|
-v `pwd`:/workdir \
|
|
295
295
|
-w /workdir \
|
|
296
|
-
ghcr.io/pinto0309/onnx2tf:1.23.
|
|
296
|
+
ghcr.io/pinto0309/onnx2tf:1.23.2
|
|
297
297
|
|
|
298
298
|
or
|
|
299
299
|
|
|
@@ -301,7 +301,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
301
301
|
docker run --rm -it \
|
|
302
302
|
-v `pwd`:/workdir \
|
|
303
303
|
-w /workdir \
|
|
304
|
-
docker.io/pinto0309/onnx2tf:1.23.
|
|
304
|
+
docker.io/pinto0309/onnx2tf:1.23.2
|
|
305
305
|
|
|
306
306
|
or
|
|
307
307
|
|
|
@@ -441,7 +441,11 @@ onnx2tf -i emotion-ferplus-8.onnx -oiqt -qt per-tensor
|
|
|
441
441
|
onnx2tf -i resnet18-v1-7.onnx -onimc resnetv15_stage2_conv1_fwd resnetv15_stage2_conv2_fwd
|
|
442
442
|
|
|
443
443
|
# Suppress generation of Flex OP and replace with Pseudo-Function
|
|
444
|
-
# [
|
|
444
|
+
# [
|
|
445
|
+
# Asin, Acos, Atan, Abs, PReLU,
|
|
446
|
+
# LeakyReLU, Power, GatherND,
|
|
447
|
+
# Neg, HardSwish, Erf, GeLU, MatMulInteger,
|
|
448
|
+
# ]
|
|
445
449
|
# Below is a sample of replacing Erf with another set of operations.
|
|
446
450
|
wget https://s3.ap-northeast-2.wasabisys.com/temp-models/onnx2tf_readme/Erf_11.onnx
|
|
447
451
|
onnx2tf -i Erf_11.onnx -rtpo Erf
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: onnx2tf
|
|
3
|
-
Version: 1.23.
|
|
3
|
+
Version: 1.23.2
|
|
4
4
|
Summary: Self-Created Tools to convert ONNX files (NCHW) to TensorFlow/TFLite/Keras format (NHWC). The purpose of this tool is to solve the massive Transpose extrapolation problem in onnx-tensorflow (onnx-tf).
|
|
5
5
|
Home-page: https://github.com/PINTO0309/onnx2tf
|
|
6
6
|
Author: Katsuya Hyodo
|
|
@@ -274,7 +274,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
274
274
|
- onnx-simplifier==0.4.33 or 0.4.30 `(onnx.onnx_cpp2py_export.shape_inference.InferenceError: [ShapeInferenceError] (op_type:Slice, node name: /xxxx/Slice): [ShapeInferenceError] Inferred shape and existing shape differ in rank: (x) vs (y))`
|
|
275
275
|
- onnx_graphsurgeon
|
|
276
276
|
- simple_onnx_processing_tools
|
|
277
|
-
- tensorflow==2.16.1,
|
|
277
|
+
- tensorflow==2.16.1, Special bugs: [#436](https://github.com/PINTO0309/onnx2tf/issues/436)
|
|
278
278
|
- psutil==5.9.5
|
|
279
279
|
- ml_dtypes==0.3.2
|
|
280
280
|
- flatbuffers-compiler (Optional, Only when using the `-coion` option. Executable file named `flatc`.)
|
|
@@ -291,7 +291,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
291
291
|
## Sample Usage
|
|
292
292
|
### 1. Install
|
|
293
293
|
|
|
294
|
-
**Note: If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.**
|
|
294
|
+
**Note: If you are using TensorFlow v2.13.0 or earlier, use a version older than onnx2tf v1.17.5. onnx2tf v1.17.6 or later will not work properly due to changes in TensorFlow's API.**
|
|
295
295
|
|
|
296
296
|
- HostPC
|
|
297
297
|
- When using GHCR, see `Authenticating to the Container registry`
|
|
@@ -308,7 +308,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
308
308
|
docker run --rm -it \
|
|
309
309
|
-v `pwd`:/workdir \
|
|
310
310
|
-w /workdir \
|
|
311
|
-
ghcr.io/pinto0309/onnx2tf:1.23.
|
|
311
|
+
ghcr.io/pinto0309/onnx2tf:1.23.2
|
|
312
312
|
|
|
313
313
|
or
|
|
314
314
|
|
|
@@ -316,7 +316,7 @@ Video speed is adjusted approximately 50 times slower than actual speed.
|
|
|
316
316
|
docker run --rm -it \
|
|
317
317
|
-v `pwd`:/workdir \
|
|
318
318
|
-w /workdir \
|
|
319
|
-
docker.io/pinto0309/onnx2tf:1.23.
|
|
319
|
+
docker.io/pinto0309/onnx2tf:1.23.2
|
|
320
320
|
|
|
321
321
|
or
|
|
322
322
|
|
|
@@ -456,7 +456,11 @@ onnx2tf -i emotion-ferplus-8.onnx -oiqt -qt per-tensor
|
|
|
456
456
|
onnx2tf -i resnet18-v1-7.onnx -onimc resnetv15_stage2_conv1_fwd resnetv15_stage2_conv2_fwd
|
|
457
457
|
|
|
458
458
|
# Suppress generation of Flex OP and replace with Pseudo-Function
|
|
459
|
-
# [
|
|
459
|
+
# [
|
|
460
|
+
# Asin, Acos, Atan, Abs, PReLU,
|
|
461
|
+
# LeakyReLU, Power, GatherND,
|
|
462
|
+
# Neg, HardSwish, Erf, GeLU, MatMulInteger,
|
|
463
|
+
# ]
|
|
460
464
|
# Below is a sample of replacing Erf with another set of operations.
|
|
461
465
|
wget https://s3.ap-northeast-2.wasabisys.com/temp-models/onnx2tf_readme/Erf_11.onnx
|
|
462
466
|
onnx2tf -i Erf_11.onnx -rtpo Erf
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|