omnigenome 0.3.25a0__tar.gz → 0.3.27a0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of omnigenome might be problematic. Click here for more details.

Files changed (22) hide show
  1. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/PKG-INFO +3 -3
  2. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome.egg-info/PKG-INFO +3 -3
  3. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_attention_extraction.py +1 -1
  4. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_autobench_autotrain.py +13 -13
  5. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/LICENSE +0 -0
  6. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome/__init__.py +0 -0
  7. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome.egg-info/SOURCES.txt +0 -0
  8. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome.egg-info/dependency_links.txt +0 -0
  9. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome.egg-info/entry_points.txt +0 -0
  10. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome.egg-info/requires.txt +0 -0
  11. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome.egg-info/top_level.txt +0 -0
  12. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/setup.cfg +0 -0
  13. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/setup.py +0 -0
  14. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/setup_omnigenome.py +0 -0
  15. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_autoinfer_cli.py +0 -0
  16. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_cli_commands.py +0 -0
  17. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_genomic_embeddings.py +0 -0
  18. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_hf_download.py +0 -0
  19. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_rna_design.py +0 -0
  20. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_structure_prediction.py +0 -0
  21. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_token_classification.py +0 -0
  22. {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_training_workflows.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: omnigenome
3
- Version: 0.3.25a0
3
+ Version: 0.3.27a0
4
4
  Summary: OmniGenome: A comprehensive toolkit for genome analysis.
5
5
  Home-page: https://github.com/yangheng95/OmniGenBench
6
6
  Author: Yang, Heng
@@ -182,7 +182,7 @@ ogb autobench \
182
182
  --trainer accelerate
183
183
 
184
184
  # Legacy command (still supported for backward compatibility)
185
- # autobench --model_name_or_path "yangheng/OmniGenome-186M" --benchmark "RGB"
185
+ # autobench --config_or_model "yangheng/OmniGenome-186M" --benchmark "RGB"
186
186
  ```
187
187
  **Output**: Results include mean ± standard deviation for each metric (e.g., MCC: 0.742 ± 0.015, F1: 0.863 ± 0.009)
188
188
 
@@ -202,7 +202,7 @@ seeds = [0, 1, 2, 3, 4] # Multi-seed for statistical rigor
202
202
  # Run automated evaluation
203
203
  bench = AutoBench(
204
204
  benchmark=benchmark,
205
- model_name_or_path=gfm,
205
+ config_or_model=gfm,
206
206
  overwrite=False # Skip completed tasks
207
207
  )
208
208
  bench.run(autocast=False, batch_size=bench_size, seeds=seeds)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: omnigenome
3
- Version: 0.3.25a0
3
+ Version: 0.3.27a0
4
4
  Summary: OmniGenome: A comprehensive toolkit for genome analysis.
5
5
  Home-page: https://github.com/yangheng95/OmniGenBench
6
6
  Author: Yang, Heng
@@ -182,7 +182,7 @@ ogb autobench \
182
182
  --trainer accelerate
183
183
 
184
184
  # Legacy command (still supported for backward compatibility)
185
- # autobench --model_name_or_path "yangheng/OmniGenome-186M" --benchmark "RGB"
185
+ # autobench --config_or_model "yangheng/OmniGenome-186M" --benchmark "RGB"
186
186
  ```
187
187
  **Output**: Results include mean ± standard deviation for each metric (e.g., MCC: 0.742 ± 0.015, F1: 0.863 ± 0.009)
188
188
 
@@ -202,7 +202,7 @@ seeds = [0, 1, 2, 3, 4] # Multi-seed for statistical rigor
202
202
  # Run automated evaluation
203
203
  bench = AutoBench(
204
204
  benchmark=benchmark,
205
- model_name_or_path=gfm,
205
+ config_or_model=gfm,
206
206
  overwrite=False # Skip completed tasks
207
207
  )
208
208
  bench.run(autocast=False, batch_size=bench_size, seeds=seeds)
@@ -46,7 +46,7 @@ class TestAttentionExtractionEmbeddingModel:
46
46
  @pytest.fixture(scope="class")
47
47
  def embedding_model(self, model_name):
48
48
  """Load embedding model for attention extraction"""
49
- # OmniModelForEmbedding takes model_name_or_path as first positional argument
49
+ # OmniModelForEmbedding takes config_or_model as first positional argument
50
50
  model = OmniModelForEmbedding(model_name, trust_remote_code=True)
51
51
  return model
52
52
 
@@ -60,7 +60,7 @@ class TestAutoBenchAPI:
60
60
  # Basic initialization
61
61
  bench = AutoBench(
62
62
  benchmark="RGB",
63
- model_name_or_path="yangheng/OmniGenome-186M",
63
+ config_or_model="yangheng/OmniGenome-186M",
64
64
  overwrite=False
65
65
  )
66
66
 
@@ -72,7 +72,7 @@ class TestAutoBenchAPI:
72
72
  for benchmark in benchmark_names:
73
73
  bench = AutoBench(
74
74
  benchmark=benchmark,
75
- model_name_or_path="yangheng/OmniGenome-186M",
75
+ config_or_model="yangheng/OmniGenome-186M",
76
76
  )
77
77
  assert bench is not None
78
78
 
@@ -80,7 +80,7 @@ class TestAutoBenchAPI:
80
80
  """Test AutoBench accepts various configuration options"""
81
81
  bench = AutoBench(
82
82
  benchmark="RGB",
83
- model_name_or_path="yangheng/OmniGenome-186M",
83
+ config_or_model="yangheng/OmniGenome-186M",
84
84
  tokenizer_name_or_path="yangheng/OmniGenome-186M",
85
85
  trainer="accelerate",
86
86
  overwrite=True,
@@ -98,7 +98,7 @@ class TestAutoBenchAPI:
98
98
  # Use smallest model and single seed for speed
99
99
  bench = AutoBench(
100
100
  benchmark="RGB",
101
- model_name_or_path="yangheng/OmniGenome-52M",
101
+ config_or_model="yangheng/OmniGenome-52M",
102
102
  overwrite=True,
103
103
  )
104
104
 
@@ -121,7 +121,7 @@ class TestAutoBenchAPI:
121
121
  """Test AutoBench supports multi-seed evaluation"""
122
122
  bench = AutoBench(
123
123
  benchmark="RGB",
124
- model_name_or_path="yangheng/OmniGenome-186M",
124
+ config_or_model="yangheng/OmniGenome-186M",
125
125
  )
126
126
 
127
127
  # Configuration with multiple seeds (as in examples)
@@ -147,7 +147,7 @@ class TestAutoTrainAPI:
147
147
  """Test AutoTrain can be initialized"""
148
148
  trainer = AutoTrain(
149
149
  dataset_name_or_path="translation_efficiency_prediction",
150
- model_name_or_path="yangheng/PlantRNA-FM",
150
+ config_or_model="yangheng/PlantRNA-FM",
151
151
  )
152
152
 
153
153
  assert trainer is not None
@@ -159,7 +159,7 @@ class TestAutoTrainAPI:
159
159
 
160
160
  trainer = AutoTrain(
161
161
  dataset_name_or_path="translation_efficiency_prediction",
162
- model_name_or_path="yangheng/PlantRNA-FM",
162
+ config_or_model="yangheng/PlantRNA-FM",
163
163
  output_dir=str(output_dir),
164
164
  num_labels=2,
165
165
  max_length=512,
@@ -188,7 +188,7 @@ class TestAutoTrainAPI:
188
188
  for config in task_configs:
189
189
  trainer = AutoTrain(
190
190
  dataset_name_or_path=config["dataset"],
191
- model_name_or_path="yangheng/OmniGenome-52M",
191
+ config_or_model="yangheng/OmniGenome-52M",
192
192
  num_labels=config["num_labels"],
193
193
  )
194
194
  assert trainer is not None
@@ -204,7 +204,7 @@ class TestAutoTrainAPI:
204
204
 
205
205
  trainer = AutoTrain(
206
206
  dataset_name_or_path="translation_efficiency_prediction",
207
- model_name_or_path="yangheng/PlantRNA-FM",
207
+ config_or_model="yangheng/PlantRNA-FM",
208
208
  output_dir=str(output_dir),
209
209
  epochs=1,
210
210
  batch_size=4,
@@ -387,7 +387,7 @@ class TestAutoWorkflowIntegration:
387
387
  # Step 1: Train a custom model
388
388
  trainer = AutoTrain(
389
389
  dataset_name_or_path="translation_efficiency_prediction",
390
- model_name_or_path="yangheng/PlantRNA-FM",
390
+ config_or_model="yangheng/PlantRNA-FM",
391
391
  output_dir=str(output_dir),
392
392
  epochs=1,
393
393
  batch_size=4,
@@ -396,7 +396,7 @@ class TestAutoWorkflowIntegration:
396
396
  # Step 2: Benchmark the trained model
397
397
  bench = AutoBench(
398
398
  benchmark="RGB",
399
- model_name_or_path=str(output_dir),
399
+ config_or_model=str(output_dir),
400
400
  overwrite=True,
401
401
  )
402
402
 
@@ -420,7 +420,7 @@ class TestAutoWorkflowIntegration:
420
420
  for model in models:
421
421
  bench = AutoBench(
422
422
  benchmark=benchmark,
423
- model_name_or_path=model,
423
+ config_or_model=model,
424
424
  )
425
425
  benches.append(bench)
426
426
 
@@ -448,7 +448,7 @@ class TestRealWorldBenchmarks:
448
448
 
449
449
  bench = AutoBench(
450
450
  benchmark="RGB",
451
- model_name_or_path="yangheng/OmniGenome-52M",
451
+ config_or_model="yangheng/OmniGenome-52M",
452
452
  overwrite=True,
453
453
  )
454
454
 
File without changes
File without changes
File without changes