omnigenome 0.3.25a0__tar.gz → 0.3.27a0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of omnigenome might be problematic. Click here for more details.
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/PKG-INFO +3 -3
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome.egg-info/PKG-INFO +3 -3
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_attention_extraction.py +1 -1
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_autobench_autotrain.py +13 -13
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/LICENSE +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome/__init__.py +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome.egg-info/SOURCES.txt +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome.egg-info/dependency_links.txt +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome.egg-info/entry_points.txt +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome.egg-info/requires.txt +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/omnigenome.egg-info/top_level.txt +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/setup.cfg +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/setup.py +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/setup_omnigenome.py +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_autoinfer_cli.py +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_cli_commands.py +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_genomic_embeddings.py +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_hf_download.py +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_rna_design.py +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_structure_prediction.py +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_token_classification.py +0 -0
- {omnigenome-0.3.25a0 → omnigenome-0.3.27a0}/tests/test_training_workflows.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: omnigenome
|
|
3
|
-
Version: 0.3.
|
|
3
|
+
Version: 0.3.27a0
|
|
4
4
|
Summary: OmniGenome: A comprehensive toolkit for genome analysis.
|
|
5
5
|
Home-page: https://github.com/yangheng95/OmniGenBench
|
|
6
6
|
Author: Yang, Heng
|
|
@@ -182,7 +182,7 @@ ogb autobench \
|
|
|
182
182
|
--trainer accelerate
|
|
183
183
|
|
|
184
184
|
# Legacy command (still supported for backward compatibility)
|
|
185
|
-
# autobench --
|
|
185
|
+
# autobench --config_or_model "yangheng/OmniGenome-186M" --benchmark "RGB"
|
|
186
186
|
```
|
|
187
187
|
**Output**: Results include mean ± standard deviation for each metric (e.g., MCC: 0.742 ± 0.015, F1: 0.863 ± 0.009)
|
|
188
188
|
|
|
@@ -202,7 +202,7 @@ seeds = [0, 1, 2, 3, 4] # Multi-seed for statistical rigor
|
|
|
202
202
|
# Run automated evaluation
|
|
203
203
|
bench = AutoBench(
|
|
204
204
|
benchmark=benchmark,
|
|
205
|
-
|
|
205
|
+
config_or_model=gfm,
|
|
206
206
|
overwrite=False # Skip completed tasks
|
|
207
207
|
)
|
|
208
208
|
bench.run(autocast=False, batch_size=bench_size, seeds=seeds)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: omnigenome
|
|
3
|
-
Version: 0.3.
|
|
3
|
+
Version: 0.3.27a0
|
|
4
4
|
Summary: OmniGenome: A comprehensive toolkit for genome analysis.
|
|
5
5
|
Home-page: https://github.com/yangheng95/OmniGenBench
|
|
6
6
|
Author: Yang, Heng
|
|
@@ -182,7 +182,7 @@ ogb autobench \
|
|
|
182
182
|
--trainer accelerate
|
|
183
183
|
|
|
184
184
|
# Legacy command (still supported for backward compatibility)
|
|
185
|
-
# autobench --
|
|
185
|
+
# autobench --config_or_model "yangheng/OmniGenome-186M" --benchmark "RGB"
|
|
186
186
|
```
|
|
187
187
|
**Output**: Results include mean ± standard deviation for each metric (e.g., MCC: 0.742 ± 0.015, F1: 0.863 ± 0.009)
|
|
188
188
|
|
|
@@ -202,7 +202,7 @@ seeds = [0, 1, 2, 3, 4] # Multi-seed for statistical rigor
|
|
|
202
202
|
# Run automated evaluation
|
|
203
203
|
bench = AutoBench(
|
|
204
204
|
benchmark=benchmark,
|
|
205
|
-
|
|
205
|
+
config_or_model=gfm,
|
|
206
206
|
overwrite=False # Skip completed tasks
|
|
207
207
|
)
|
|
208
208
|
bench.run(autocast=False, batch_size=bench_size, seeds=seeds)
|
|
@@ -46,7 +46,7 @@ class TestAttentionExtractionEmbeddingModel:
|
|
|
46
46
|
@pytest.fixture(scope="class")
|
|
47
47
|
def embedding_model(self, model_name):
|
|
48
48
|
"""Load embedding model for attention extraction"""
|
|
49
|
-
# OmniModelForEmbedding takes
|
|
49
|
+
# OmniModelForEmbedding takes config_or_model as first positional argument
|
|
50
50
|
model = OmniModelForEmbedding(model_name, trust_remote_code=True)
|
|
51
51
|
return model
|
|
52
52
|
|
|
@@ -60,7 +60,7 @@ class TestAutoBenchAPI:
|
|
|
60
60
|
# Basic initialization
|
|
61
61
|
bench = AutoBench(
|
|
62
62
|
benchmark="RGB",
|
|
63
|
-
|
|
63
|
+
config_or_model="yangheng/OmniGenome-186M",
|
|
64
64
|
overwrite=False
|
|
65
65
|
)
|
|
66
66
|
|
|
@@ -72,7 +72,7 @@ class TestAutoBenchAPI:
|
|
|
72
72
|
for benchmark in benchmark_names:
|
|
73
73
|
bench = AutoBench(
|
|
74
74
|
benchmark=benchmark,
|
|
75
|
-
|
|
75
|
+
config_or_model="yangheng/OmniGenome-186M",
|
|
76
76
|
)
|
|
77
77
|
assert bench is not None
|
|
78
78
|
|
|
@@ -80,7 +80,7 @@ class TestAutoBenchAPI:
|
|
|
80
80
|
"""Test AutoBench accepts various configuration options"""
|
|
81
81
|
bench = AutoBench(
|
|
82
82
|
benchmark="RGB",
|
|
83
|
-
|
|
83
|
+
config_or_model="yangheng/OmniGenome-186M",
|
|
84
84
|
tokenizer_name_or_path="yangheng/OmniGenome-186M",
|
|
85
85
|
trainer="accelerate",
|
|
86
86
|
overwrite=True,
|
|
@@ -98,7 +98,7 @@ class TestAutoBenchAPI:
|
|
|
98
98
|
# Use smallest model and single seed for speed
|
|
99
99
|
bench = AutoBench(
|
|
100
100
|
benchmark="RGB",
|
|
101
|
-
|
|
101
|
+
config_or_model="yangheng/OmniGenome-52M",
|
|
102
102
|
overwrite=True,
|
|
103
103
|
)
|
|
104
104
|
|
|
@@ -121,7 +121,7 @@ class TestAutoBenchAPI:
|
|
|
121
121
|
"""Test AutoBench supports multi-seed evaluation"""
|
|
122
122
|
bench = AutoBench(
|
|
123
123
|
benchmark="RGB",
|
|
124
|
-
|
|
124
|
+
config_or_model="yangheng/OmniGenome-186M",
|
|
125
125
|
)
|
|
126
126
|
|
|
127
127
|
# Configuration with multiple seeds (as in examples)
|
|
@@ -147,7 +147,7 @@ class TestAutoTrainAPI:
|
|
|
147
147
|
"""Test AutoTrain can be initialized"""
|
|
148
148
|
trainer = AutoTrain(
|
|
149
149
|
dataset_name_or_path="translation_efficiency_prediction",
|
|
150
|
-
|
|
150
|
+
config_or_model="yangheng/PlantRNA-FM",
|
|
151
151
|
)
|
|
152
152
|
|
|
153
153
|
assert trainer is not None
|
|
@@ -159,7 +159,7 @@ class TestAutoTrainAPI:
|
|
|
159
159
|
|
|
160
160
|
trainer = AutoTrain(
|
|
161
161
|
dataset_name_or_path="translation_efficiency_prediction",
|
|
162
|
-
|
|
162
|
+
config_or_model="yangheng/PlantRNA-FM",
|
|
163
163
|
output_dir=str(output_dir),
|
|
164
164
|
num_labels=2,
|
|
165
165
|
max_length=512,
|
|
@@ -188,7 +188,7 @@ class TestAutoTrainAPI:
|
|
|
188
188
|
for config in task_configs:
|
|
189
189
|
trainer = AutoTrain(
|
|
190
190
|
dataset_name_or_path=config["dataset"],
|
|
191
|
-
|
|
191
|
+
config_or_model="yangheng/OmniGenome-52M",
|
|
192
192
|
num_labels=config["num_labels"],
|
|
193
193
|
)
|
|
194
194
|
assert trainer is not None
|
|
@@ -204,7 +204,7 @@ class TestAutoTrainAPI:
|
|
|
204
204
|
|
|
205
205
|
trainer = AutoTrain(
|
|
206
206
|
dataset_name_or_path="translation_efficiency_prediction",
|
|
207
|
-
|
|
207
|
+
config_or_model="yangheng/PlantRNA-FM",
|
|
208
208
|
output_dir=str(output_dir),
|
|
209
209
|
epochs=1,
|
|
210
210
|
batch_size=4,
|
|
@@ -387,7 +387,7 @@ class TestAutoWorkflowIntegration:
|
|
|
387
387
|
# Step 1: Train a custom model
|
|
388
388
|
trainer = AutoTrain(
|
|
389
389
|
dataset_name_or_path="translation_efficiency_prediction",
|
|
390
|
-
|
|
390
|
+
config_or_model="yangheng/PlantRNA-FM",
|
|
391
391
|
output_dir=str(output_dir),
|
|
392
392
|
epochs=1,
|
|
393
393
|
batch_size=4,
|
|
@@ -396,7 +396,7 @@ class TestAutoWorkflowIntegration:
|
|
|
396
396
|
# Step 2: Benchmark the trained model
|
|
397
397
|
bench = AutoBench(
|
|
398
398
|
benchmark="RGB",
|
|
399
|
-
|
|
399
|
+
config_or_model=str(output_dir),
|
|
400
400
|
overwrite=True,
|
|
401
401
|
)
|
|
402
402
|
|
|
@@ -420,7 +420,7 @@ class TestAutoWorkflowIntegration:
|
|
|
420
420
|
for model in models:
|
|
421
421
|
bench = AutoBench(
|
|
422
422
|
benchmark=benchmark,
|
|
423
|
-
|
|
423
|
+
config_or_model=model,
|
|
424
424
|
)
|
|
425
425
|
benches.append(bench)
|
|
426
426
|
|
|
@@ -448,7 +448,7 @@ class TestRealWorldBenchmarks:
|
|
|
448
448
|
|
|
449
449
|
bench = AutoBench(
|
|
450
450
|
benchmark="RGB",
|
|
451
|
-
|
|
451
|
+
config_or_model="yangheng/OmniGenome-52M",
|
|
452
452
|
overwrite=True,
|
|
453
453
|
)
|
|
454
454
|
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|