omnigenome 0.3.21a0__tar.gz → 0.3.23a0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of omnigenome might be problematic. Click here for more details.
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/PKG-INFO +37 -39
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/omnigenome.egg-info/PKG-INFO +37 -39
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/setup.py +3 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/LICENSE +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/omnigenome/__init__.py +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/omnigenome.egg-info/SOURCES.txt +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/omnigenome.egg-info/dependency_links.txt +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/omnigenome.egg-info/entry_points.txt +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/omnigenome.egg-info/requires.txt +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/omnigenome.egg-info/top_level.txt +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/setup.cfg +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/setup_omnigenome.py +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/tests/test_dataset_patterns.py +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/tests/test_examples_syntax.py +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/tests/test_inference_with_dataset.py +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/tests/test_model_loading.py +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/tests/test_rna_functions.py +0 -0
- {omnigenome-0.3.21a0 → omnigenome-0.3.23a0}/tests/test_training_patterns.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
2
|
Name: omnigenome
|
|
3
|
-
Version: 0.3.
|
|
3
|
+
Version: 0.3.23a0
|
|
4
4
|
Summary: OmniGenome: A comprehensive toolkit for genome analysis.
|
|
5
5
|
Home-page: https://github.com/yangheng95/OmniGenBench
|
|
6
6
|
Author: Yang, Heng
|
|
@@ -19,42 +19,12 @@ Classifier: Operating System :: OS Independent
|
|
|
19
19
|
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
|
|
20
20
|
Requires-Python: >=3.10
|
|
21
21
|
Description-Content-Type: text/markdown
|
|
22
|
-
License-File: LICENSE
|
|
23
|
-
Requires-Dist: omnigenbench>=0.3.3
|
|
24
|
-
Requires-Dist: findfile>=2.0.0
|
|
25
|
-
Requires-Dist: autocuda>=0.16
|
|
26
|
-
Requires-Dist: metric-visualizer>=0.9.6
|
|
27
|
-
Requires-Dist: termcolor
|
|
28
|
-
Requires-Dist: gitpython
|
|
29
|
-
Requires-Dist: torch>=2.6.0
|
|
30
|
-
Requires-Dist: pandas
|
|
31
|
-
Requires-Dist: viennarna
|
|
32
|
-
Requires-Dist: scikit-learn
|
|
33
|
-
Requires-Dist: accelerate
|
|
34
|
-
Requires-Dist: transformers>=4.46.0
|
|
35
|
-
Requires-Dist: packaging
|
|
36
|
-
Requires-Dist: peft
|
|
37
|
-
Requires-Dist: dill
|
|
38
22
|
Provides-Extra: dev
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
Dynamic: description
|
|
45
|
-
Dynamic: description-content-type
|
|
46
|
-
Dynamic: home-page
|
|
47
|
-
Dynamic: license
|
|
48
|
-
Dynamic: license-file
|
|
49
|
-
Dynamic: platform
|
|
50
|
-
Dynamic: provides-extra
|
|
51
|
-
Dynamic: requires-dist
|
|
52
|
-
Dynamic: requires-python
|
|
53
|
-
Dynamic: summary
|
|
54
|
-
|
|
55
|
-

|
|
56
|
-
|
|
57
|
-
<h3 align="center">OmniGenBench provides an all-in-one solution for genomic foundation model finetuning, inference, deployment and automated benchmarking, designed for research and applications in genomics.</h3>
|
|
23
|
+
License-File: LICENSE
|
|
24
|
+
|
|
25
|
+
[//]: # ()
|
|
26
|
+
|
|
27
|
+
[//]: # (<h3 align="center">OmniGenBench provides an all-in-one solution for genomic foundation model finetuning, inference, deployment and automated benchmarking, designed for research and applications in genomics.</h3>)
|
|
58
28
|
|
|
59
29
|
<div align="center">
|
|
60
30
|
|
|
@@ -124,15 +94,43 @@ pip install -e .
|
|
|
124
94
|
```
|
|
125
95
|
|
|
126
96
|
## Quick Start
|
|
127
|
-
`OmniGenBench is available for diverse models and benchmark suites, please refer to the
|
|
97
|
+
`OmniGenBench is available for diverse models and benchmark suites, please refer to the following sections for more details.`
|
|
98
|
+
|
|
99
|
+
### Auto-inference via CLI
|
|
100
|
+
Run inference with fine-tuned models on genomic sequences:
|
|
101
|
+
```bash
|
|
102
|
+
# Single sequence inference
|
|
103
|
+
ogb autoinfer --model yangheng/ogb_tfb_finetuned --sequence "ATCGATCGATCGATCG" --output-file predictions.json
|
|
104
|
+
|
|
105
|
+
# Batch inference from file
|
|
106
|
+
ogb autoinfer --model yangheng/ogb_te_finetuned --input-file sequences.json --batch-size 64 --output-file results.json
|
|
107
|
+
|
|
108
|
+
# Legacy command (still supported)
|
|
109
|
+
autoinfer --model yangheng/ogb_tfb_finetuned --sequence "ATCGATCGATCG"
|
|
110
|
+
```
|
|
111
|
+
|
|
112
|
+
### Auto-inference via Python API
|
|
113
|
+
Or use the Python API for programmatic inference:
|
|
114
|
+
```python
|
|
115
|
+
from omnigenbench import ModelHub
|
|
116
|
+
|
|
117
|
+
model = ModelHub.load("yangheng/ogb_tfb_finetuned")
|
|
118
|
+
outputs = model.inference("ATCGATCGATCGATCGATCGATCGATCGATCG")
|
|
119
|
+
print(outputs) # {'predictions': array([1, 0, 1, ...]), 'probabilities': array([0.92, 0.15, ...])}
|
|
120
|
+
```
|
|
121
|
+
You can find more examples in the [Getting Started Guide](docs/GETTING_STARTED.md) and [AutoInfer Examples](examples/autoinfer_examples/).
|
|
122
|
+
|
|
128
123
|
### Auto-benchmark via CLI
|
|
129
124
|
The following command will download the model from the Hugging Face model hub and run the benchmark on the RGB benchmark:
|
|
130
125
|
```bash
|
|
126
|
+
# New unified command
|
|
127
|
+
ogb autobench --model yangheng/OmniGenome-186M --benchmark RGB --trainer accelerate
|
|
128
|
+
|
|
129
|
+
# Legacy command (still supported)
|
|
131
130
|
autobench --model_name_or_path "yangheng/OmniGenome-186M" --benchmark "RGB" --trainer accelerate
|
|
132
131
|
```
|
|
133
132
|
You can find a visualization of AutoBench [here](asset/AutoBench.gif).
|
|
134
133
|
|
|
135
|
-
|
|
136
134
|
### Auto-benchmark via Python API
|
|
137
135
|
Or you can use the following python code to run the auto-benchmark:
|
|
138
136
|
```python
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
2
|
Name: omnigenome
|
|
3
|
-
Version: 0.3.
|
|
3
|
+
Version: 0.3.23a0
|
|
4
4
|
Summary: OmniGenome: A comprehensive toolkit for genome analysis.
|
|
5
5
|
Home-page: https://github.com/yangheng95/OmniGenBench
|
|
6
6
|
Author: Yang, Heng
|
|
@@ -19,42 +19,12 @@ Classifier: Operating System :: OS Independent
|
|
|
19
19
|
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
|
|
20
20
|
Requires-Python: >=3.10
|
|
21
21
|
Description-Content-Type: text/markdown
|
|
22
|
-
License-File: LICENSE
|
|
23
|
-
Requires-Dist: omnigenbench>=0.3.3
|
|
24
|
-
Requires-Dist: findfile>=2.0.0
|
|
25
|
-
Requires-Dist: autocuda>=0.16
|
|
26
|
-
Requires-Dist: metric-visualizer>=0.9.6
|
|
27
|
-
Requires-Dist: termcolor
|
|
28
|
-
Requires-Dist: gitpython
|
|
29
|
-
Requires-Dist: torch>=2.6.0
|
|
30
|
-
Requires-Dist: pandas
|
|
31
|
-
Requires-Dist: viennarna
|
|
32
|
-
Requires-Dist: scikit-learn
|
|
33
|
-
Requires-Dist: accelerate
|
|
34
|
-
Requires-Dist: transformers>=4.46.0
|
|
35
|
-
Requires-Dist: packaging
|
|
36
|
-
Requires-Dist: peft
|
|
37
|
-
Requires-Dist: dill
|
|
38
22
|
Provides-Extra: dev
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
Dynamic: description
|
|
45
|
-
Dynamic: description-content-type
|
|
46
|
-
Dynamic: home-page
|
|
47
|
-
Dynamic: license
|
|
48
|
-
Dynamic: license-file
|
|
49
|
-
Dynamic: platform
|
|
50
|
-
Dynamic: provides-extra
|
|
51
|
-
Dynamic: requires-dist
|
|
52
|
-
Dynamic: requires-python
|
|
53
|
-
Dynamic: summary
|
|
54
|
-
|
|
55
|
-

|
|
56
|
-
|
|
57
|
-
<h3 align="center">OmniGenBench provides an all-in-one solution for genomic foundation model finetuning, inference, deployment and automated benchmarking, designed for research and applications in genomics.</h3>
|
|
23
|
+
License-File: LICENSE
|
|
24
|
+
|
|
25
|
+
[//]: # ()
|
|
26
|
+
|
|
27
|
+
[//]: # (<h3 align="center">OmniGenBench provides an all-in-one solution for genomic foundation model finetuning, inference, deployment and automated benchmarking, designed for research and applications in genomics.</h3>)
|
|
58
28
|
|
|
59
29
|
<div align="center">
|
|
60
30
|
|
|
@@ -124,15 +94,43 @@ pip install -e .
|
|
|
124
94
|
```
|
|
125
95
|
|
|
126
96
|
## Quick Start
|
|
127
|
-
`OmniGenBench is available for diverse models and benchmark suites, please refer to the
|
|
97
|
+
`OmniGenBench is available for diverse models and benchmark suites, please refer to the following sections for more details.`
|
|
98
|
+
|
|
99
|
+
### Auto-inference via CLI
|
|
100
|
+
Run inference with fine-tuned models on genomic sequences:
|
|
101
|
+
```bash
|
|
102
|
+
# Single sequence inference
|
|
103
|
+
ogb autoinfer --model yangheng/ogb_tfb_finetuned --sequence "ATCGATCGATCGATCG" --output-file predictions.json
|
|
104
|
+
|
|
105
|
+
# Batch inference from file
|
|
106
|
+
ogb autoinfer --model yangheng/ogb_te_finetuned --input-file sequences.json --batch-size 64 --output-file results.json
|
|
107
|
+
|
|
108
|
+
# Legacy command (still supported)
|
|
109
|
+
autoinfer --model yangheng/ogb_tfb_finetuned --sequence "ATCGATCGATCG"
|
|
110
|
+
```
|
|
111
|
+
|
|
112
|
+
### Auto-inference via Python API
|
|
113
|
+
Or use the Python API for programmatic inference:
|
|
114
|
+
```python
|
|
115
|
+
from omnigenbench import ModelHub
|
|
116
|
+
|
|
117
|
+
model = ModelHub.load("yangheng/ogb_tfb_finetuned")
|
|
118
|
+
outputs = model.inference("ATCGATCGATCGATCGATCGATCGATCGATCG")
|
|
119
|
+
print(outputs) # {'predictions': array([1, 0, 1, ...]), 'probabilities': array([0.92, 0.15, ...])}
|
|
120
|
+
```
|
|
121
|
+
You can find more examples in the [Getting Started Guide](docs/GETTING_STARTED.md) and [AutoInfer Examples](examples/autoinfer_examples/).
|
|
122
|
+
|
|
128
123
|
### Auto-benchmark via CLI
|
|
129
124
|
The following command will download the model from the Hugging Face model hub and run the benchmark on the RGB benchmark:
|
|
130
125
|
```bash
|
|
126
|
+
# New unified command
|
|
127
|
+
ogb autobench --model yangheng/OmniGenome-186M --benchmark RGB --trainer accelerate
|
|
128
|
+
|
|
129
|
+
# Legacy command (still supported)
|
|
131
130
|
autobench --model_name_or_path "yangheng/OmniGenome-186M" --benchmark "RGB" --trainer accelerate
|
|
132
131
|
```
|
|
133
132
|
You can find a visualization of AutoBench [here](asset/AutoBench.gif).
|
|
134
133
|
|
|
135
|
-
|
|
136
134
|
### Auto-benchmark via Python API
|
|
137
135
|
Or you can use the following python code to run the auto-benchmark:
|
|
138
136
|
```python
|
|
@@ -54,8 +54,11 @@ setup(
|
|
|
54
54
|
packages=find_packages(include=["omnigenbench", "omnigenbench.*", "omnigenome", "omnigenome.*"]),
|
|
55
55
|
entry_points={
|
|
56
56
|
"console_scripts": [
|
|
57
|
+
"ogb=omnigenbench.cli.ogb_cli:main",
|
|
58
|
+
# Legacy commands for backward compatibility
|
|
57
59
|
"autobench=omnigenbench.auto.auto_bench.auto_bench_cli:run_bench",
|
|
58
60
|
"autotrain=omnigenbench.auto.auto_train.auto_train_cli:run_train",
|
|
61
|
+
"autoinfer=omnigenbench.cli.autoinfer_cli:main",
|
|
59
62
|
],
|
|
60
63
|
},
|
|
61
64
|
install_requires=[
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|