omnigenome 0.3.21a0__tar.gz → 0.3.23a0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of omnigenome might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.4
1
+ Metadata-Version: 2.1
2
2
  Name: omnigenome
3
- Version: 0.3.21a0
3
+ Version: 0.3.23a0
4
4
  Summary: OmniGenome: A comprehensive toolkit for genome analysis.
5
5
  Home-page: https://github.com/yangheng95/OmniGenBench
6
6
  Author: Yang, Heng
@@ -19,42 +19,12 @@ Classifier: Operating System :: OS Independent
19
19
  Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
20
20
  Requires-Python: >=3.10
21
21
  Description-Content-Type: text/markdown
22
- License-File: LICENSE
23
- Requires-Dist: omnigenbench>=0.3.3
24
- Requires-Dist: findfile>=2.0.0
25
- Requires-Dist: autocuda>=0.16
26
- Requires-Dist: metric-visualizer>=0.9.6
27
- Requires-Dist: termcolor
28
- Requires-Dist: gitpython
29
- Requires-Dist: torch>=2.6.0
30
- Requires-Dist: pandas
31
- Requires-Dist: viennarna
32
- Requires-Dist: scikit-learn
33
- Requires-Dist: accelerate
34
- Requires-Dist: transformers>=4.46.0
35
- Requires-Dist: packaging
36
- Requires-Dist: peft
37
- Requires-Dist: dill
38
22
  Provides-Extra: dev
39
- Requires-Dist: dill; extra == "dev"
40
- Requires-Dist: pytest; extra == "dev"
41
- Dynamic: author
42
- Dynamic: author-email
43
- Dynamic: classifier
44
- Dynamic: description
45
- Dynamic: description-content-type
46
- Dynamic: home-page
47
- Dynamic: license
48
- Dynamic: license-file
49
- Dynamic: platform
50
- Dynamic: provides-extra
51
- Dynamic: requires-dist
52
- Dynamic: requires-python
53
- Dynamic: summary
54
-
55
- ![favicon.png](asset/favicon.png)
56
-
57
- <h3 align="center">OmniGenBench provides an all-in-one solution for genomic foundation model finetuning, inference, deployment and automated benchmarking, designed for research and applications in genomics.</h3>
23
+ License-File: LICENSE
24
+
25
+ [//]: # (![favicon.png]&#40;asset/favicon.png&#41;)
26
+
27
+ [//]: # (<h3 align="center">OmniGenBench provides an all-in-one solution for genomic foundation model finetuning, inference, deployment and automated benchmarking, designed for research and applications in genomics.</h3>)
58
28
 
59
29
  <div align="center">
60
30
 
@@ -124,15 +94,43 @@ pip install -e .
124
94
  ```
125
95
 
126
96
  ## Quick Start
127
- `OmniGenBench is available for diverse models and benchmark suites, please refer to the following sections for more details.`
97
+ `OmniGenBench is available for diverse models and benchmark suites, please refer to the following sections for more details.`
98
+
99
+ ### Auto-inference via CLI
100
+ Run inference with fine-tuned models on genomic sequences:
101
+ ```bash
102
+ # Single sequence inference
103
+ ogb autoinfer --model yangheng/ogb_tfb_finetuned --sequence "ATCGATCGATCGATCG" --output-file predictions.json
104
+
105
+ # Batch inference from file
106
+ ogb autoinfer --model yangheng/ogb_te_finetuned --input-file sequences.json --batch-size 64 --output-file results.json
107
+
108
+ # Legacy command (still supported)
109
+ autoinfer --model yangheng/ogb_tfb_finetuned --sequence "ATCGATCGATCG"
110
+ ```
111
+
112
+ ### Auto-inference via Python API
113
+ Or use the Python API for programmatic inference:
114
+ ```python
115
+ from omnigenbench import ModelHub
116
+
117
+ model = ModelHub.load("yangheng/ogb_tfb_finetuned")
118
+ outputs = model.inference("ATCGATCGATCGATCGATCGATCGATCGATCG")
119
+ print(outputs) # {'predictions': array([1, 0, 1, ...]), 'probabilities': array([0.92, 0.15, ...])}
120
+ ```
121
+ You can find more examples in the [Getting Started Guide](docs/GETTING_STARTED.md) and [AutoInfer Examples](examples/autoinfer_examples/).
122
+
128
123
  ### Auto-benchmark via CLI
129
124
  The following command will download the model from the Hugging Face model hub and run the benchmark on the RGB benchmark:
130
125
  ```bash
126
+ # New unified command
127
+ ogb autobench --model yangheng/OmniGenome-186M --benchmark RGB --trainer accelerate
128
+
129
+ # Legacy command (still supported)
131
130
  autobench --model_name_or_path "yangheng/OmniGenome-186M" --benchmark "RGB" --trainer accelerate
132
131
  ```
133
132
  You can find a visualization of AutoBench [here](asset/AutoBench.gif).
134
133
 
135
-
136
134
  ### Auto-benchmark via Python API
137
135
  Or you can use the following python code to run the auto-benchmark:
138
136
  ```python
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.4
1
+ Metadata-Version: 2.1
2
2
  Name: omnigenome
3
- Version: 0.3.21a0
3
+ Version: 0.3.23a0
4
4
  Summary: OmniGenome: A comprehensive toolkit for genome analysis.
5
5
  Home-page: https://github.com/yangheng95/OmniGenBench
6
6
  Author: Yang, Heng
@@ -19,42 +19,12 @@ Classifier: Operating System :: OS Independent
19
19
  Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
20
20
  Requires-Python: >=3.10
21
21
  Description-Content-Type: text/markdown
22
- License-File: LICENSE
23
- Requires-Dist: omnigenbench>=0.3.3
24
- Requires-Dist: findfile>=2.0.0
25
- Requires-Dist: autocuda>=0.16
26
- Requires-Dist: metric-visualizer>=0.9.6
27
- Requires-Dist: termcolor
28
- Requires-Dist: gitpython
29
- Requires-Dist: torch>=2.6.0
30
- Requires-Dist: pandas
31
- Requires-Dist: viennarna
32
- Requires-Dist: scikit-learn
33
- Requires-Dist: accelerate
34
- Requires-Dist: transformers>=4.46.0
35
- Requires-Dist: packaging
36
- Requires-Dist: peft
37
- Requires-Dist: dill
38
22
  Provides-Extra: dev
39
- Requires-Dist: dill; extra == "dev"
40
- Requires-Dist: pytest; extra == "dev"
41
- Dynamic: author
42
- Dynamic: author-email
43
- Dynamic: classifier
44
- Dynamic: description
45
- Dynamic: description-content-type
46
- Dynamic: home-page
47
- Dynamic: license
48
- Dynamic: license-file
49
- Dynamic: platform
50
- Dynamic: provides-extra
51
- Dynamic: requires-dist
52
- Dynamic: requires-python
53
- Dynamic: summary
54
-
55
- ![favicon.png](asset/favicon.png)
56
-
57
- <h3 align="center">OmniGenBench provides an all-in-one solution for genomic foundation model finetuning, inference, deployment and automated benchmarking, designed for research and applications in genomics.</h3>
23
+ License-File: LICENSE
24
+
25
+ [//]: # (![favicon.png]&#40;asset/favicon.png&#41;)
26
+
27
+ [//]: # (<h3 align="center">OmniGenBench provides an all-in-one solution for genomic foundation model finetuning, inference, deployment and automated benchmarking, designed for research and applications in genomics.</h3>)
58
28
 
59
29
  <div align="center">
60
30
 
@@ -124,15 +94,43 @@ pip install -e .
124
94
  ```
125
95
 
126
96
  ## Quick Start
127
- `OmniGenBench is available for diverse models and benchmark suites, please refer to the following sections for more details.`
97
+ `OmniGenBench is available for diverse models and benchmark suites, please refer to the following sections for more details.`
98
+
99
+ ### Auto-inference via CLI
100
+ Run inference with fine-tuned models on genomic sequences:
101
+ ```bash
102
+ # Single sequence inference
103
+ ogb autoinfer --model yangheng/ogb_tfb_finetuned --sequence "ATCGATCGATCGATCG" --output-file predictions.json
104
+
105
+ # Batch inference from file
106
+ ogb autoinfer --model yangheng/ogb_te_finetuned --input-file sequences.json --batch-size 64 --output-file results.json
107
+
108
+ # Legacy command (still supported)
109
+ autoinfer --model yangheng/ogb_tfb_finetuned --sequence "ATCGATCGATCG"
110
+ ```
111
+
112
+ ### Auto-inference via Python API
113
+ Or use the Python API for programmatic inference:
114
+ ```python
115
+ from omnigenbench import ModelHub
116
+
117
+ model = ModelHub.load("yangheng/ogb_tfb_finetuned")
118
+ outputs = model.inference("ATCGATCGATCGATCGATCGATCGATCGATCG")
119
+ print(outputs) # {'predictions': array([1, 0, 1, ...]), 'probabilities': array([0.92, 0.15, ...])}
120
+ ```
121
+ You can find more examples in the [Getting Started Guide](docs/GETTING_STARTED.md) and [AutoInfer Examples](examples/autoinfer_examples/).
122
+
128
123
  ### Auto-benchmark via CLI
129
124
  The following command will download the model from the Hugging Face model hub and run the benchmark on the RGB benchmark:
130
125
  ```bash
126
+ # New unified command
127
+ ogb autobench --model yangheng/OmniGenome-186M --benchmark RGB --trainer accelerate
128
+
129
+ # Legacy command (still supported)
131
130
  autobench --model_name_or_path "yangheng/OmniGenome-186M" --benchmark "RGB" --trainer accelerate
132
131
  ```
133
132
  You can find a visualization of AutoBench [here](asset/AutoBench.gif).
134
133
 
135
-
136
134
  ### Auto-benchmark via Python API
137
135
  Or you can use the following python code to run the auto-benchmark:
138
136
  ```python
@@ -54,8 +54,11 @@ setup(
54
54
  packages=find_packages(include=["omnigenbench", "omnigenbench.*", "omnigenome", "omnigenome.*"]),
55
55
  entry_points={
56
56
  "console_scripts": [
57
+ "ogb=omnigenbench.cli.ogb_cli:main",
58
+ # Legacy commands for backward compatibility
57
59
  "autobench=omnigenbench.auto.auto_bench.auto_bench_cli:run_bench",
58
60
  "autotrain=omnigenbench.auto.auto_train.auto_train_cli:run_train",
61
+ "autoinfer=omnigenbench.cli.autoinfer_cli:main",
59
62
  ],
60
63
  },
61
64
  install_requires=[
File without changes
File without changes