omnigenome 0.3.11a2__tar.gz → 0.4.0a0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. omnigenome-0.4.0a0/PKG-INFO +354 -0
  2. {omnigenome-0.3.11a2 → omnigenome-0.4.0a0}/omnigenome/__init__.py +71 -19
  3. omnigenome-0.4.0a0/omnigenome.egg-info/PKG-INFO +354 -0
  4. omnigenome-0.4.0a0/omnigenome.egg-info/SOURCES.txt +25 -0
  5. {omnigenome-0.3.11a2 → omnigenome-0.4.0a0}/setup.py +4 -6
  6. {omnigenome-0.3.11a2 → omnigenome-0.4.0a0}/setup_omnigenome.py +1 -1
  7. omnigenome-0.4.0a0/tests/test_attention_extraction.py +422 -0
  8. omnigenome-0.4.0a0/tests/test_autobench_autotrain.py +522 -0
  9. omnigenome-0.4.0a0/tests/test_autobench_hub_integration.py +250 -0
  10. omnigenome-0.4.0a0/tests/test_autoinfer_cli.py +480 -0
  11. omnigenome-0.4.0a0/tests/test_autotrain_hub_integration.py +273 -0
  12. omnigenome-0.4.0a0/tests/test_benchmark_download.py +0 -0
  13. omnigenome-0.4.0a0/tests/test_cli_commands.py +459 -0
  14. omnigenome-0.4.0a0/tests/test_cli_parameter_mapping.py +273 -0
  15. omnigenome-0.4.0a0/tests/test_example_notebooks.py +285 -0
  16. omnigenome-0.4.0a0/tests/test_genomic_embeddings.py +512 -0
  17. omnigenome-0.4.0a0/tests/test_hf_download.py +238 -0
  18. omnigenome-0.4.0a0/tests/test_rna_design.py +311 -0
  19. omnigenome-0.4.0a0/tests/test_structure_prediction.py +512 -0
  20. omnigenome-0.4.0a0/tests/test_token_classification.py +521 -0
  21. omnigenome-0.4.0a0/tests/test_training_workflows.py +567 -0
  22. omnigenome-0.3.11a2/PKG-INFO +0 -224
  23. omnigenome-0.3.11a2/omnigenome.egg-info/PKG-INFO +0 -224
  24. omnigenome-0.3.11a2/omnigenome.egg-info/SOURCES.txt +0 -15
  25. omnigenome-0.3.11a2/tests/test_dataset_patterns.py +0 -291
  26. omnigenome-0.3.11a2/tests/test_examples_syntax.py +0 -83
  27. omnigenome-0.3.11a2/tests/test_model_loading.py +0 -183
  28. omnigenome-0.3.11a2/tests/test_rna_functions.py +0 -255
  29. omnigenome-0.3.11a2/tests/test_training_patterns.py +0 -302
  30. {omnigenome-0.3.11a2 → omnigenome-0.4.0a0}/LICENSE +0 -0
  31. {omnigenome-0.3.11a2 → omnigenome-0.4.0a0}/omnigenome.egg-info/dependency_links.txt +0 -0
  32. {omnigenome-0.3.11a2 → omnigenome-0.4.0a0}/omnigenome.egg-info/entry_points.txt +0 -0
  33. {omnigenome-0.3.11a2 → omnigenome-0.4.0a0}/omnigenome.egg-info/requires.txt +0 -0
  34. {omnigenome-0.3.11a2 → omnigenome-0.4.0a0}/omnigenome.egg-info/top_level.txt +0 -0
  35. {omnigenome-0.3.11a2 → omnigenome-0.4.0a0}/setup.cfg +0 -0
@@ -0,0 +1,354 @@
1
+ Metadata-Version: 2.4
2
+ Name: omnigenome
3
+ Version: 0.4.0a0
4
+ Summary: OmniGenome: A comprehensive toolkit for genome analysis.
5
+ Home-page: https://github.com/yangheng95/OmniGenBench
6
+ Author: Yang, Heng
7
+ Author-email: hy345@exeter.ac.uk
8
+ License: Apache-2.0
9
+ Platform: Windows
10
+ Platform: Linux
11
+ Platform: Mac OS-X
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Science/Research
14
+ Classifier: License :: OSI Approved :: Apache Software License
15
+ Classifier: Programming Language :: Python :: 3.10
16
+ Classifier: Programming Language :: Python :: 3.11
17
+ Classifier: Programming Language :: Python :: 3.12
18
+ Classifier: Operating System :: OS Independent
19
+ Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
20
+ Requires-Python: >=3.10
21
+ Description-Content-Type: text/markdown
22
+ License-File: LICENSE
23
+ Requires-Dist: omnigenbench>=0.3.3
24
+ Requires-Dist: findfile>=2.0.0
25
+ Requires-Dist: autocuda>=0.16
26
+ Requires-Dist: metric-visualizer>=0.9.6
27
+ Requires-Dist: termcolor
28
+ Requires-Dist: gitpython
29
+ Requires-Dist: torch>=2.6.0
30
+ Requires-Dist: pandas
31
+ Requires-Dist: viennarna
32
+ Requires-Dist: scikit-learn
33
+ Requires-Dist: accelerate
34
+ Requires-Dist: transformers>=4.46.0
35
+ Requires-Dist: packaging
36
+ Requires-Dist: peft
37
+ Requires-Dist: dill
38
+ Provides-Extra: dev
39
+ Requires-Dist: dill; extra == "dev"
40
+ Requires-Dist: pytest; extra == "dev"
41
+ Dynamic: author
42
+ Dynamic: author-email
43
+ Dynamic: classifier
44
+ Dynamic: description
45
+ Dynamic: description-content-type
46
+ Dynamic: home-page
47
+ Dynamic: license
48
+ Dynamic: license-file
49
+ Dynamic: platform
50
+ Dynamic: provides-extra
51
+ Dynamic: requires-dist
52
+ Dynamic: requires-python
53
+ Dynamic: summary
54
+
55
+ [//]: # (![favicon.png](asset/favicon.png))
56
+
57
+ [//]: # (<h3 align="center">OmniGenBench provides an all-in-one solution for genomic foundation model finetuning, inference, deployment and automated benchmarking, designed for research and applications in genomics.</h3>)
58
+
59
+ <div align="center">
60
+
61
+ <a href="https://omnigenbenchdoc.readthedocs.io/en/latest/">
62
+ <img src="https://img.shields.io/readthedocs/omnigenbench?logo=readthedocs&logoColor=white" alt="Documentation Status" />
63
+ </a>
64
+
65
+ <a href="https://pypi.org/project/omnigenome/">
66
+ <img src="https://img.shields.io/pypi/v/omnigenome?color=blue&label=PyPI" alt="PyPI" />
67
+ </a>
68
+
69
+ <a href="https://pepy.tech/project/omnigenome">
70
+ <img src="https://static.pepy.tech/badge/omnigenome" alt="PyPI Downloads" />
71
+ </a>
72
+
73
+ <a href="https://pypi.org/project/omnigenbench/">
74
+ <img src="https://img.shields.io/pypi/pyversions/omnigenbench" alt="Python Versions (omnigenbench)" />
75
+ </a>
76
+
77
+ <a href="https://github.com/yangheng95/omnigenome/blob/main/LICENSE">
78
+ <img src="https://img.shields.io/github/license/yangheng95/omnigenome" alt="License" />
79
+ </a>
80
+
81
+ </div>
82
+ <h3 align="center">
83
+ <a href="#installation">📦 Installation</a>
84
+ <span> · </span>
85
+ <a href="#quick-start">🚀 Getting Started</a>
86
+ <span> · </span>
87
+ <a href="#supported-models">🧬 Model Support</a>
88
+ <span> · </span>
89
+ <a href="#benchmarks">📊 Benchmarks </a>
90
+ <span> · </span>
91
+ <a href="#tutorials">🧪 Application Tutorials</a>
92
+ <span> · </span>
93
+ <a href="https://arxiv.org/pdf/2505.14402">📚 Paper</a>
94
+ </h3>
95
+
96
+
97
+ ## 🔍 What You Can Do with OmniGenBench?
98
+
99
+ - 🧬 **Benchmark effortlessly** — Run automated and reproducible evaluations for genomic foundation models
100
+ - 🧠 **Understand your models** — Explore interpretability across diverse tasks and species
101
+ - ⚙️ **Run tutorials instantly** — Use click-to-run guides for genomic sequence modeling
102
+ - 🚀 **Fine-tune and infer efficiently** — Accelerated workflows for fine-tuning and inference on GFMs on downstream tasks
103
+
104
+ ## Installation
105
+
106
+ ### Requirements
107
+ Before installing OmniGenBench, ensure you have the following:
108
+ - **Python**: 3.10 or higher (3.12 recommended for best compatibility)
109
+ - **PyTorch**: 2.6.0 or higher (with CUDA support for GPU acceleration)
110
+ - **Transformers**: 4.46.0 or higher (HuggingFace library)
111
+
112
+ ### PyPI Installation (Recommended)
113
+ Install the latest stable release from PyPI:
114
+ ```bash
115
+ # Create dedicated conda environment (recommended)
116
+ conda create -n omnigen_env python=3.12
117
+ conda activate omnigen_env
118
+
119
+ # Install OmniGenBench
120
+ pip install omnigenbench -U
121
+ ```
122
+
123
+ ### Source Installation (For Development)
124
+ Clone the repository and install in editable mode for development:
125
+ ```bash
126
+ git clone https://github.com/yangheng95/OmniGenBench.git
127
+ cd OmniGenBench
128
+ pip install -e .
129
+ ```
130
+
131
+ **Note**: For RNA structure prediction and design features, ViennaRNA is required. Install via conda: `conda install -c bioconda viennarna`
132
+
133
+ ## Quick Start
134
+ *OmniGenBench provides unified interfaces for model inference, automated benchmarking, and fine-tuning across 30+ genomic foundation models and 80+ standardized tasks.*
135
+
136
+ ### Auto-inference via CLI
137
+ Run inference with fine-tuned models on genomic sequences:
138
+ ```bash
139
+ # Single sequence inference (TF binding prediction)
140
+ ogb autoinfer \
141
+ --model yangheng/ogb_tfb_finetuned \
142
+ --sequence "ATCGATCGATCGATCG" \
143
+ --output-file predictions.json
144
+
145
+ # Batch inference from file (translation efficiency prediction)
146
+ ogb autoinfer \
147
+ --model yangheng/ogb_te_finetuned \
148
+ --input-file sequences.json \
149
+ --batch-size 64 \
150
+ --output-file results.json
151
+ ```
152
+
153
+ ### Auto-inference via Python API
154
+ Programmatic inference with three-line workflow:
155
+ ```python
156
+ from omnigenbench import ModelHub
157
+
158
+ # Load fine-tuned model from HuggingFace Hub
159
+ model = ModelHub.load("yangheng/ogb_tfb_finetuned")
160
+
161
+ # Predict transcription factor binding (919 TFs, multi-label classification)
162
+ outputs = model.inference("ATCGATCGATCGATCGATCGATCGATCGATCG" * 10)
163
+ print(outputs)
164
+ # {'predictions': array([1, 0, 1, ...]),
165
+ # 'probabilities': array([0.92, 0.15, 0.87, ...])}
166
+
167
+ # Interpret results
168
+ import numpy as np
169
+ binding_sites = np.where(outputs['predictions'] == 1)[0]
170
+ print(f"Predicted binding: {len(binding_sites)}/919 transcription factors")
171
+ ```
172
+ **More Examples**: See [Getting Started Guide](docs/GETTING_STARTED.md) and [AutoInfer Examples](examples/autoinfer_examples/) for advanced usage patterns.
173
+
174
+ ### Auto-benchmark via CLI
175
+ Automated benchmarking with statistical rigor (multi-seed evaluation):
176
+ ```bash
177
+ # Evaluate model on RGB benchmark (12 RNA tasks) with 3 random seeds
178
+ ogb autobench \
179
+ --model yangheng/OmniGenome-186M \
180
+ --benchmark RGB \
181
+ --seeds 0 1 2 \
182
+ --trainer accelerate
183
+
184
+ # Legacy command (still supported for backward compatibility)
185
+ # autobench --config_or_model "yangheng/OmniGenome-186M" --benchmark "RGB"
186
+ ```
187
+ **Output**: Results include mean ± standard deviation for each metric (e.g., MCC: 0.742 ± 0.015, F1: 0.863 ± 0.009)
188
+
189
+ **Visualization**: See [AutoBench GIF](asset/AutoBench.gif) for workflow demonstration.
190
+
191
+ ### Auto-benchmark via Python API
192
+ Programmatic benchmarking with flexible configuration:
193
+ ```python
194
+ from omnigenbench import AutoBench
195
+
196
+ # Initialize benchmark
197
+ gfm = 'LongSafari/hyenadna-medium-160k-seqlen-hf'
198
+ benchmark = "RGB" # Options: RGB, BEACON, PGB, GUE, GB
199
+ bench_size = 8
200
+ seeds = [0, 1, 2, 3, 4] # Multi-seed for statistical rigor
201
+
202
+ # Run automated evaluation
203
+ bench = AutoBench(
204
+ benchmark=benchmark,
205
+ config_or_model=gfm,
206
+ overwrite=False # Skip completed tasks
207
+ )
208
+ bench.run(autocast=False, batch_size=bench_size, seeds=seeds)
209
+ ```
210
+ **Advanced Usage**: See [Benchmarking with LoRA](examples/autobench_gfm_evaluation/benchmarking_with_lora.ipynb) for parameter-efficient fine-tuning during evaluation.
211
+
212
+
213
+ ## Supported Models
214
+
215
+ OmniGenBench provides plug-and-play evaluation for **30+ genomic foundation models**, covering both **RNA** and **DNA** modalities across multiple species. All models integrate seamlessly with the framework's automated benchmarking and fine-tuning workflows.
216
+
217
+ ### Representative Models
218
+
219
+ | Model | Params | Pre-training Corpus | Key Features |
220
+ |----------------|--------|--------------------------------------------|-------------------------------------------------------|
221
+ | **OmniGenome** | 186M | 54B plant RNA+DNA tokens | Multi-modal encoder, structure-aware, plant-specialized |
222
+ | **Agro-NT-1B** | 985M | 48 edible-plant genomes | Billion-scale DNA LM with NT-V2 k-mer vocabulary |
223
+ | **RiNALMo** | 651M | 36M ncRNA sequences | Largest public RNA LM with FlashAttention-2 |
224
+ | **DNABERT-2** | 117M | 32B DNA tokens, 136 species (BPE) | Second-generation DNA BERT with byte-pair encoding |
225
+ | **RNA-FM** | 96M | 23M ncRNA sequences | High performance on RNA structure prediction tasks |
226
+ | **RNA-MSM** | 96M | Multi-sequence alignments | MSA-based evolutionary modeling for RNA |
227
+ | **NT-V2** | 96M | 300B DNA tokens (850 species) | Hybrid k-mer vocabulary, cross-species |
228
+ | **HyenaDNA** | 47M | Human reference genome | Long-context (160k-1M tokens) autoregressive model |
229
+ | **SpliceBERT** | 19M | 2M pre-mRNA sequences | Fine-grained splice-site recognition |
230
+ | **Caduceus** | 1.9M | Human chromosomes | Ultra-compact reverse-complement equivariant DNA LM |
231
+ | **RNA-BERT** | 0.5M | 4,000+ ncRNA families (Rfam) | Compact RNA BERT with nucleotide-level masking |
232
+
233
+ **Complete Model List**: See Appendix E of the [paper](https://arxiv.org/pdf/2505.14402) for all 30+ supported models, including PlantRNA-FM, UTR-LM, MP-RNA, CALM, and more.
234
+
235
+ **Model Access**: All models are available on HuggingFace Hub and can be loaded with `ModelHub.load("model-name")`.
236
+
237
+ ## Benchmarks
238
+
239
+ OmniGenBench supports **five curated benchmark suites** covering both **sequence-level** and **structure-level** genomics tasks across species. All benchmarks are automatically downloaded from HuggingFace Hub on first use.
240
+
241
+ | Suite | Focus | #Tasks / Datasets | Representative Tasks |
242
+ |--------------|-----------------------------|--------------------------|--------------------------------------------------------|
243
+ | **RGB** | RNA structure + function | 12 tasks (SN-level) | Secondary structure, solvent accessibility, degradation |
244
+ | **BEACON** | RNA (multi-domain) | 13 tasks | Base pairing, mRNA design, RNA contact prediction |
245
+ | **PGB** | Plant long-range DNA | 7 categories | PolyA signal, enhancer, chromatin, splice site (up to 50kb context) |
246
+ | **GUE** | DNA general understanding | 36 datasets (9 tasks) | TF binding, core promoter, enhancer, epigenetics |
247
+ | **GB** | Classic DNA classification | 9 datasets | Human/mouse enhancers, promoter variant classification |
248
+
249
+ **Evaluation Protocol**: All benchmarks follow standardized protocols with multi-seed evaluation (typically 3-5 runs) for statistical rigor. Results report mean ± standard deviation for each metric.
250
+
251
+ **Accessing Benchmarks**: Use `AutoBench(benchmark="RGB")` or `ogb autobench --benchmark RGB` to automatically download and evaluate on any suite.
252
+
253
+
254
+ ## Tutorials
255
+
256
+ ### RNA Design
257
+
258
+ RNA design is the inverse problem of RNA structure prediction: given a target secondary structure (in dot-bracket notation), design RNA sequences that fold into that structure. OmniGenBench provides both CLI and Python API for RNA sequence design using genetic algorithms enhanced with masked language modeling.
259
+
260
+ #### CLI Usage
261
+ ```bash
262
+ # Basic RNA design for a simple hairpin structure
263
+ ogb rna_design --structure "(((...)))"
264
+
265
+ # Design with custom parameters for better results
266
+ ogb rna_design \
267
+ --structure "(((...)))" \
268
+ --model yangheng/OmniGenome-186M \
269
+ --mutation-ratio 0.3 \
270
+ --num-population 200 \
271
+ --num-generation 150 \
272
+ --output-file results.json
273
+
274
+ # Design complex structure (stem-loop-stem)
275
+ ogb rna_design \
276
+ --structure "(((..(((...)))..)))" \
277
+ --num-population 300 \
278
+ --num-generation 200 \
279
+ --output-file complex_design.json
280
+ ```
281
+
282
+ **Note**: RNA design is now available through the unified `ogb` command interface.
283
+
284
+ #### Python API Usage
285
+ ```python
286
+ from omnigenbench import OmniModelForRNADesign
287
+
288
+ # Initialize model
289
+ model = OmniModelForRNADesign(model="yangheng/OmniGenome-186M")
290
+
291
+ # Design sequences for target structure
292
+ sequences = model.design(
293
+ structure="(((...)))", # Target structure in dot-bracket notation
294
+ mutation_ratio=0.5, # Mutation rate for genetic algorithm
295
+ num_population=100, # Population size
296
+ num_generation=100 # Number of generations
297
+ )
298
+
299
+ print(f"Designed {len(sequences)} sequences:")
300
+ for seq in sequences[:5]:
301
+ print(f" {seq}")
302
+ ```
303
+
304
+ **Key Features:**
305
+ - 🧬 Multi-objective genetic algorithm with MLM-guided mutations
306
+ - ⚡ Automatic GPU acceleration for large populations
307
+ - 📊 Real-time progress tracking with early termination
308
+ - 🎯 Returns multiple optimal solutions (up to 25 sequences)
309
+ - 💾 JSON output format for downstream analysis
310
+
311
+ **Common Structure Patterns:**
312
+ - Simple hairpin: `"(((...)))"`
313
+ - Stem-loop-stem: `"(((..(((...)))..)))"`
314
+ - Multi-loop: `"(((...(((...)))..(((...))).)))"`
315
+ - Long stem: `"((((((((....))))))))"`
316
+
317
+ The comprehensive tutorials of RNA Design can be found in:
318
+ - [RNA Design Examples](examples/rna_sequence_design/rna_design_examples.py) - Comprehensive examples
319
+ - [RNA Design README](examples/rna_sequence_design/README.md) - Detailed documentation
320
+ - [RNA Design Tutorial](examples/rna_sequence_design/RNA_Design_Tutorial.ipynb) - Interactive notebook
321
+
322
+ You can find a visual demo of RNA Design [here](asset/RNADesign-Demo.gif).
323
+
324
+ ### RNA Secondary Structure Prediction
325
+
326
+ RNA secondary structure prediction is a fundamental problem in computational biology,
327
+ where the goal is to predict the secondary structure of an RNA sequence.
328
+ In this demo, we show how to use OmniGenBench to predict the secondary structure of RNA sequences using a pre-trained model.
329
+ The tutorials of RNA Secondary Structure Prediction can be found in
330
+ [Secondary_Structure_Prediction_Tutorial.ipynb](examples/rna_secondary_structure_prediction/00_quickstart_rna_ssp.ipynb)(examples/rna_secondary_structure_prediction/00.ipynb).
331
+
332
+ You can find a visual example of RNA Secondary Structure Prediction [here](asset/RNASSP-Demo.gif).
333
+
334
+ ### More Tutorials
335
+ Please find more usage tutorials in [examples](examples).
336
+
337
+ ## Citation
338
+ ```bibtex
339
+ @article{yang2024omnigenbench,
340
+ title={OmniGenBench: A Modular Platform for Reproducible Genomic Foundation Models Benchmarking},
341
+ author={Heng Yang and Jack Cole, Yuan Li, Renzhi Chen, Geyong Min and Ke Li},
342
+ year={2024},
343
+ eprint={https://arxiv.org/abs/2505.14402},
344
+ archivePrefix={arXiv},
345
+ primaryClass={q-bio.GN},
346
+ url={https://arxiv.org/abs/2505.14402},
347
+ }
348
+ ```
349
+ ## License
350
+ OmniGenBench is licensed under the Apache License 2.0. See the LICENSE file for more information.
351
+
352
+
353
+ ## Contribution
354
+ We welcome contributions to OmniGenBench! If you have any ideas, suggestions, or bug reports, please open an issue or submit a pull request on GitHub.
@@ -29,7 +29,7 @@ import warnings
29
29
 
30
30
  warnings.warn(
31
31
  "The 'omnigenome' package is deprecated, please use omnigenbench package instead. "
32
- "e.g., from omnigenome import * -> from omnigenbench import *\n"
32
+ "e.g., from omnigenbench import * -> from omnigenbench import *\n"
33
33
  "All imports from omnigenome will be redirected to omnigenbench. ",
34
34
  DeprecationWarning,
35
35
  )
@@ -59,6 +59,7 @@ try:
59
59
  OmniDatasetForSequenceRegression,
60
60
  OmniDatasetForTokenClassification,
61
61
  OmniDatasetForTokenRegression,
62
+ OmniDatasetForMultiLabelClassification,
62
63
  )
63
64
 
64
65
  # Import metric classes
@@ -99,6 +100,15 @@ try:
99
100
  OmniModelForAugmentation,
100
101
  )
101
102
 
103
+ from omnigenbench.src.model.baselines import (
104
+ OmniCNNBaseline,
105
+ OmniRNNBaseline,
106
+ OmniBPNetBaseline,
107
+ OmniBasenjiBaseline,
108
+ OmniDeepSTARRBaseline,
109
+ OmniGenericBaseline,
110
+ )
111
+
102
112
  # Import LoRA model
103
113
  from omnigenbench.src.lora.lora_model import OmniLoraModel
104
114
 
@@ -115,27 +125,37 @@ try:
115
125
  from omnigenbench.src.trainer.accelerate_trainer import AccelerateTrainer
116
126
 
117
127
  # Import hub utilities
118
- from omnigenbench.utility.hub_utils import (
128
+ from omnigenbench.src.utility.hub_utils import (
119
129
  download_benchmark,
120
130
  download_model,
121
131
  download_pipeline,
122
132
  query_models_info,
123
133
  )
124
- from omnigenbench.utility import hub_utils
134
+ from omnigenbench.src.utility import hub_utils
125
135
 
126
136
  # Import hub classes
127
- from omnigenbench.utility.model_hub.model_hub import ModelHub
128
- from omnigenbench.utility.dataset_hub.dataset_hub import load_benchmark_datasets
129
- from omnigenbench.utility.pipeline_hub.pipeline import Pipeline
130
- from omnigenbench.utility.pipeline_hub.pipeline_hub import PipelineHub
137
+ from omnigenbench.src.utility.model_hub.model_hub import ModelHub
138
+ from omnigenbench.src.utility.dataset_hub.dataset_hub import load_benchmark_datasets
139
+ from omnigenbench.src.utility.pipeline_hub.pipeline import Pipeline
140
+ from omnigenbench.src.utility.pipeline_hub.pipeline_hub import PipelineHub
131
141
 
132
142
  # Import module utilities
133
143
  from omnigenbench.src.model.module_utils import OmniPooling
134
- from omnigenbench.utility.ensemble import VoteEnsemblePredictor
144
+ from omnigenbench.src.utility.ensemble import VoteEnsemblePredictor
135
145
 
136
146
  # For backward compatibility version 0.2.7alpha and earlier
137
147
  from omnigenbench.auto.config.auto_config import AutoBenchConfig
138
148
 
149
+ # Import explainer classes
150
+ from omnigenbench.src.explainability.epistasis.explainer import EpistasisExplainer
151
+ from omnigenbench.src.explainability.sequence_logo.explainer import (
152
+ SequenceLogoExplainer,
153
+ )
154
+ from omnigenbench.src.explainability.visualization_2d.explainer import (
155
+ Visualization2DExplainer,
156
+ )
157
+ from omnigenbench.src.explainability.attention.explainer import AttentionExplainer
158
+
139
159
  # Create backward compatibility aliases
140
160
  OmniGenomeTokenizer = OmniTokenizer
141
161
  OmniGenomeKmersTokenizer = OmniKmersTokenizer
@@ -167,6 +187,7 @@ try:
167
187
 
168
188
  # Define __all__ for explicit exports
169
189
  __all__ = [
190
+ "__version__",
170
191
  "load_benchmark_datasets",
171
192
  "OmniDataset",
172
193
  "OmniModel",
@@ -203,6 +224,44 @@ try:
203
224
  "print_args",
204
225
  "env_meta_info",
205
226
  "RNA2StructureCache",
227
+ "OmniDatasetForSequenceClassification",
228
+ "OmniDatasetForSequenceRegression",
229
+ "OmniDatasetForTokenClassification",
230
+ "OmniDatasetForTokenRegression",
231
+ "OmniDatasetForMultiLabelClassification",
232
+ "OmniTokenizer",
233
+ "OmniKmersTokenizer",
234
+ "OmniSingleNucleotideTokenizer",
235
+ "OmniBPETokenizer",
236
+ "OmniDataset",
237
+ "OmniMetric",
238
+ "OmniModel",
239
+ "OmniLoraModel",
240
+ "OmniModelForSequenceClassification",
241
+ "OmniModelForMultiLabelSequenceClassification",
242
+ "OmniModelForTokenClassification",
243
+ "OmniModelForSequenceRegression",
244
+ "OmniModelForTokenRegression",
245
+ "OmniModelForStructuralImputation",
246
+ "OmniModelForMatrixRegression",
247
+ "OmniModelForMatrixClassification",
248
+ "OmniModelForMLM",
249
+ "OmniModelForSeq2Seq",
250
+ "OmniModelForRNADesign",
251
+ "OmniModelForEmbedding",
252
+ "OmniModelForAugmentation",
253
+ "OmniPooling",
254
+ "download_benchmark",
255
+ "download_model",
256
+ "download_pipeline",
257
+ "query_models_info",
258
+ "hub_utils",
259
+ "OmniCNNBaseline",
260
+ "OmniRNNBaseline",
261
+ "OmniBPNetBaseline",
262
+ "OmniBasenjiBaseline",
263
+ "OmniDeepSTARRBaseline",
264
+ "OmniGenericBaseline",
206
265
  # OmniGenome* aliases for backward compatibility
207
266
  "OmniGenomeTokenizer",
208
267
  "OmniGenomeKmersTokenizer",
@@ -234,19 +293,12 @@ try:
234
293
  "bench_command",
235
294
  "run_train",
236
295
  "train_command",
296
+ "EpistasisExplainer",
297
+ "SequenceLogoExplainer",
298
+ "Visualization2DExplainer",
299
+ "AttentionExplainer",
237
300
  ]
238
301
 
239
302
  except ImportError as e:
240
- import warnings
241
-
242
- warnings.warn(
243
- f"Failed to import omnigenbench modules: {e}. "
244
- "Please ensure omnigenbench is properly installed.\n"
245
- "You can install it with: pip install omnigenbench\n"
246
- "and replace all 'omnigenome' with 'omnigenbench' in your code.\n"
247
- "e.g., from omnigenome import * -> from omnigenbench import *",
248
- ImportWarning,
249
- )
250
-
251
303
  # Minimal fallback to prevent complete failure
252
304
  __all__ = []