omni-split 0.0.1rc0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of omni-split might be problematic. Click here for more details.
- omni_split-0.0.1rc0/LICENSE +21 -0
- omni_split-0.0.1rc0/PKG-INFO +139 -0
- omni_split-0.0.1rc0/README.md +109 -0
- omni_split-0.0.1rc0/omni_split/__init__.py +16 -0
- omni_split-0.0.1rc0/omni_split/base/__init__.py +0 -0
- omni_split-0.0.1rc0/omni_split/base/chonkie_base.py +139 -0
- omni_split-0.0.1rc0/omni_split/base/chonkie_tokenizer.py +285 -0
- omni_split-0.0.1rc0/omni_split/base/chonkie_types.py +519 -0
- omni_split-0.0.1rc0/omni_split/base/md2json_list.py +303 -0
- omni_split-0.0.1rc0/omni_split/base/md_json_list2chunk.py +310 -0
- omni_split-0.0.1rc0/omni_split/base/native_text_split_utils4content2.py +306 -0
- omni_split-0.0.1rc0/omni_split/main.py +73 -0
- omni_split-0.0.1rc0/omni_split/model/text_chunker_tokenizer/qwen_tokenizer.json +303282 -0
- omni_split-0.0.1rc0/omni_split/omni_split.py +93 -0
- omni_split-0.0.1rc0/omni_split/sub_chunker/__init__.py +0 -0
- omni_split-0.0.1rc0/omni_split/sub_chunker/document_split.py +32 -0
- omni_split-0.0.1rc0/omni_split/sub_chunker/markdown_split.py +47 -0
- omni_split-0.0.1rc0/omni_split/sub_chunker/text_split.py +343 -0
- omni_split-0.0.1rc0/omni_split/test.py +80 -0
- omni_split-0.0.1rc0/omni_split/utils/__init__.py +0 -0
- omni_split-0.0.1rc0/omni_split/utils/base_utils.py +181 -0
- omni_split-0.0.1rc0/omni_split/utils/download_test_doc.py +61 -0
- omni_split-0.0.1rc0/omni_split.egg-info/PKG-INFO +139 -0
- omni_split-0.0.1rc0/omni_split.egg-info/SOURCES.txt +29 -0
- omni_split-0.0.1rc0/omni_split.egg-info/dependency_links.txt +1 -0
- omni_split-0.0.1rc0/omni_split.egg-info/requires.txt +6 -0
- omni_split-0.0.1rc0/omni_split.egg-info/top_level.txt +1 -0
- omni_split-0.0.1rc0/pyproject.toml +3 -0
- omni_split-0.0.1rc0/setup.cfg +4 -0
- omni_split-0.0.1rc0/setup.py +32 -0
- omni_split-0.0.1rc0/tests/test.py +86 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 M5Stack Technology CO LTD
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,139 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: omni_split
|
|
3
|
+
Version: 0.0.1rc0
|
|
4
|
+
Summary: A comprehensive document splitting toolkit
|
|
5
|
+
Home-page: https://github.com/dinobot22/omni_split
|
|
6
|
+
Author: dinobot22
|
|
7
|
+
Author-email: 2802701695yyb@gmail.com
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Requires-Python: >=3.7
|
|
12
|
+
Description-Content-Type: text/markdown
|
|
13
|
+
License-File: LICENSE
|
|
14
|
+
Requires-Dist: mistletoe
|
|
15
|
+
Requires-Dist: transformers
|
|
16
|
+
Requires-Dist: markitdown[docx,pptx,xls,xlsx]
|
|
17
|
+
Requires-Dist: python-docx
|
|
18
|
+
Requires-Dist: loguru
|
|
19
|
+
Requires-Dist: wand
|
|
20
|
+
Dynamic: author
|
|
21
|
+
Dynamic: author-email
|
|
22
|
+
Dynamic: classifier
|
|
23
|
+
Dynamic: description
|
|
24
|
+
Dynamic: description-content-type
|
|
25
|
+
Dynamic: home-page
|
|
26
|
+
Dynamic: license-file
|
|
27
|
+
Dynamic: requires-dist
|
|
28
|
+
Dynamic: requires-python
|
|
29
|
+
Dynamic: summary
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
# omni_split: Split commonly used document (md, doc etc.) forms for RAG that support LLM.
|
|
35
|
+
---
|
|
36
|
+
<img src="./docs/icon.png" alt="omni_split" >
|
|
37
|
+
|
|
38
|
+
---
|
|
39
|
+
### note: All other text formats are highly recommended to be converted to Markdown, and we focus on optimizing documents for Markdown.
|
|
40
|
+
---
|
|
41
|
+
# usage
|
|
42
|
+
### install
|
|
43
|
+
```bash
|
|
44
|
+
pip install omni_split
|
|
45
|
+
```
|
|
46
|
+
### use case
|
|
47
|
+
```python
|
|
48
|
+
import json
|
|
49
|
+
from omni_split import OmniSplit
|
|
50
|
+
from omni_split import word_preprocessing_and_return_bytesIO
|
|
51
|
+
from omni_split import download_files_to_test_doc
|
|
52
|
+
|
|
53
|
+
### == step 2: download test_doc file ==
|
|
54
|
+
|
|
55
|
+
doc_dict = download_files_to_test_doc()
|
|
56
|
+
text_doc_file_path = doc_dict["text_test.txt"]
|
|
57
|
+
json_list_doc_file_path = doc_dict["json_list_test.json"]
|
|
58
|
+
markdown_doc_file_path = doc_dict["markdown_test.md"]
|
|
59
|
+
word_doc_file_path = doc_dict["docx_test.docx"]
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
### == step 3: split to chunk ==
|
|
63
|
+
|
|
64
|
+
omni_spliter = OmniSplit()
|
|
65
|
+
|
|
66
|
+
## note: test text split
|
|
67
|
+
test_text = True
|
|
68
|
+
if test_text:
|
|
69
|
+
with open(text_doc_file_path, "r") as f:
|
|
70
|
+
text_content = "".join(f.readlines())
|
|
71
|
+
res = omni_spliter.text_chunk_func(text_content,txt_chunk_size=1000)
|
|
72
|
+
for item in res:
|
|
73
|
+
print(item)
|
|
74
|
+
print("------------")
|
|
75
|
+
print("=" * 10)
|
|
76
|
+
|
|
77
|
+
## note: test markdown json split
|
|
78
|
+
test_markdown = True
|
|
79
|
+
if test_markdown:
|
|
80
|
+
with open(json_list_doc_file_path, "r") as f:
|
|
81
|
+
md_content_json = json.load(f)
|
|
82
|
+
res = omni_spliter.markdown_json_chunk_func(md_content_json)
|
|
83
|
+
for item in res:
|
|
84
|
+
print(item)
|
|
85
|
+
print("------------")
|
|
86
|
+
print("=" * 10)
|
|
87
|
+
|
|
88
|
+
res = omni_spliter.markdown_json_chunk_func(md_content_json, clear_model=True)
|
|
89
|
+
for item in res:
|
|
90
|
+
print(item)
|
|
91
|
+
print("------------")
|
|
92
|
+
print("=" * 10)
|
|
93
|
+
|
|
94
|
+
## note: test markdown split
|
|
95
|
+
test_markdown = True
|
|
96
|
+
if test_markdown:
|
|
97
|
+
with open(markdown_doc_file_path, "r") as f:
|
|
98
|
+
md_content = f.read()
|
|
99
|
+
res = omni_spliter.markdown_chunk_func(md_content)
|
|
100
|
+
for item in res:
|
|
101
|
+
print(item)
|
|
102
|
+
print("------------")
|
|
103
|
+
print("=" * 10)
|
|
104
|
+
|
|
105
|
+
res = omni_spliter.markdown_chunk_func(md_content, clear_model=True)
|
|
106
|
+
for item in res:
|
|
107
|
+
print(item)
|
|
108
|
+
print("------------")
|
|
109
|
+
print("=" * 10)
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
## note: test word split
|
|
113
|
+
test_document = True
|
|
114
|
+
if test_document:
|
|
115
|
+
|
|
116
|
+
new_doc_io = word_preprocessing_and_return_bytesIO(word_doc_file_path)
|
|
117
|
+
res = omni_spliter.document_chunk_func(new_doc_io, txt_chunk_size=1000, clear_model=False)
|
|
118
|
+
for item in res:
|
|
119
|
+
print(item)
|
|
120
|
+
print("------------")
|
|
121
|
+
print("=" * 10)
|
|
122
|
+
|
|
123
|
+
res = omni_spliter.document_chunk_func(new_doc_io, txt_chunk_size=1000, clear_model=False, save_local_images_dir="./images")
|
|
124
|
+
for item in res:
|
|
125
|
+
print(item)
|
|
126
|
+
print("------------")
|
|
127
|
+
print("=" * 10)
|
|
128
|
+
|
|
129
|
+
res = omni_spliter.document_chunk_func(new_doc_io, txt_chunk_size=1000, clear_model=True)
|
|
130
|
+
for item in res:
|
|
131
|
+
print(item)
|
|
132
|
+
print("------------")
|
|
133
|
+
print("=" * 10)
|
|
134
|
+
|
|
135
|
+
```
|
|
136
|
+
# Reminder of dependency:
|
|
137
|
+
To automatically convert binary metafiles(e.g. x-wmf.) in Word to PNG, you need to install ImageMagick on Linux.
|
|
138
|
+
Try to install:
|
|
139
|
+
https://docs.wand-py.org/en/latest/guide/install.html
|
|
@@ -0,0 +1,109 @@
|
|
|
1
|
+
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
# omni_split: Split commonly used document (md, doc etc.) forms for RAG that support LLM.
|
|
5
|
+
---
|
|
6
|
+
<img src="./docs/icon.png" alt="omni_split" >
|
|
7
|
+
|
|
8
|
+
---
|
|
9
|
+
### note: All other text formats are highly recommended to be converted to Markdown, and we focus on optimizing documents for Markdown.
|
|
10
|
+
---
|
|
11
|
+
# usage
|
|
12
|
+
### install
|
|
13
|
+
```bash
|
|
14
|
+
pip install omni_split
|
|
15
|
+
```
|
|
16
|
+
### use case
|
|
17
|
+
```python
|
|
18
|
+
import json
|
|
19
|
+
from omni_split import OmniSplit
|
|
20
|
+
from omni_split import word_preprocessing_and_return_bytesIO
|
|
21
|
+
from omni_split import download_files_to_test_doc
|
|
22
|
+
|
|
23
|
+
### == step 2: download test_doc file ==
|
|
24
|
+
|
|
25
|
+
doc_dict = download_files_to_test_doc()
|
|
26
|
+
text_doc_file_path = doc_dict["text_test.txt"]
|
|
27
|
+
json_list_doc_file_path = doc_dict["json_list_test.json"]
|
|
28
|
+
markdown_doc_file_path = doc_dict["markdown_test.md"]
|
|
29
|
+
word_doc_file_path = doc_dict["docx_test.docx"]
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
### == step 3: split to chunk ==
|
|
33
|
+
|
|
34
|
+
omni_spliter = OmniSplit()
|
|
35
|
+
|
|
36
|
+
## note: test text split
|
|
37
|
+
test_text = True
|
|
38
|
+
if test_text:
|
|
39
|
+
with open(text_doc_file_path, "r") as f:
|
|
40
|
+
text_content = "".join(f.readlines())
|
|
41
|
+
res = omni_spliter.text_chunk_func(text_content,txt_chunk_size=1000)
|
|
42
|
+
for item in res:
|
|
43
|
+
print(item)
|
|
44
|
+
print("------------")
|
|
45
|
+
print("=" * 10)
|
|
46
|
+
|
|
47
|
+
## note: test markdown json split
|
|
48
|
+
test_markdown = True
|
|
49
|
+
if test_markdown:
|
|
50
|
+
with open(json_list_doc_file_path, "r") as f:
|
|
51
|
+
md_content_json = json.load(f)
|
|
52
|
+
res = omni_spliter.markdown_json_chunk_func(md_content_json)
|
|
53
|
+
for item in res:
|
|
54
|
+
print(item)
|
|
55
|
+
print("------------")
|
|
56
|
+
print("=" * 10)
|
|
57
|
+
|
|
58
|
+
res = omni_spliter.markdown_json_chunk_func(md_content_json, clear_model=True)
|
|
59
|
+
for item in res:
|
|
60
|
+
print(item)
|
|
61
|
+
print("------------")
|
|
62
|
+
print("=" * 10)
|
|
63
|
+
|
|
64
|
+
## note: test markdown split
|
|
65
|
+
test_markdown = True
|
|
66
|
+
if test_markdown:
|
|
67
|
+
with open(markdown_doc_file_path, "r") as f:
|
|
68
|
+
md_content = f.read()
|
|
69
|
+
res = omni_spliter.markdown_chunk_func(md_content)
|
|
70
|
+
for item in res:
|
|
71
|
+
print(item)
|
|
72
|
+
print("------------")
|
|
73
|
+
print("=" * 10)
|
|
74
|
+
|
|
75
|
+
res = omni_spliter.markdown_chunk_func(md_content, clear_model=True)
|
|
76
|
+
for item in res:
|
|
77
|
+
print(item)
|
|
78
|
+
print("------------")
|
|
79
|
+
print("=" * 10)
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
## note: test word split
|
|
83
|
+
test_document = True
|
|
84
|
+
if test_document:
|
|
85
|
+
|
|
86
|
+
new_doc_io = word_preprocessing_and_return_bytesIO(word_doc_file_path)
|
|
87
|
+
res = omni_spliter.document_chunk_func(new_doc_io, txt_chunk_size=1000, clear_model=False)
|
|
88
|
+
for item in res:
|
|
89
|
+
print(item)
|
|
90
|
+
print("------------")
|
|
91
|
+
print("=" * 10)
|
|
92
|
+
|
|
93
|
+
res = omni_spliter.document_chunk_func(new_doc_io, txt_chunk_size=1000, clear_model=False, save_local_images_dir="./images")
|
|
94
|
+
for item in res:
|
|
95
|
+
print(item)
|
|
96
|
+
print("------------")
|
|
97
|
+
print("=" * 10)
|
|
98
|
+
|
|
99
|
+
res = omni_spliter.document_chunk_func(new_doc_io, txt_chunk_size=1000, clear_model=True)
|
|
100
|
+
for item in res:
|
|
101
|
+
print(item)
|
|
102
|
+
print("------------")
|
|
103
|
+
print("=" * 10)
|
|
104
|
+
|
|
105
|
+
```
|
|
106
|
+
# Reminder of dependency:
|
|
107
|
+
To automatically convert binary metafiles(e.g. x-wmf.) in Word to PNG, you need to install ImageMagick on Linux.
|
|
108
|
+
Try to install:
|
|
109
|
+
https://docs.wand-py.org/en/latest/guide/install.html
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
from .omni_split import OmniSplit
|
|
2
|
+
from .utils.base_utils import word_preprocessing_and_return_bytesIO
|
|
3
|
+
from .utils.download_test_doc import download_files_to_test_doc
|
|
4
|
+
|
|
5
|
+
__version__ = "0.0.1"
|
|
6
|
+
__name__ = "omni_split"
|
|
7
|
+
__author__ = "dinobot22"
|
|
8
|
+
|
|
9
|
+
__all__ = [
|
|
10
|
+
"__name__",
|
|
11
|
+
"__version__",
|
|
12
|
+
"__author__",
|
|
13
|
+
"OmniSplit",
|
|
14
|
+
"word_preprocessing_and_return_bytesIO",
|
|
15
|
+
"download_files_to_test_doc"
|
|
16
|
+
]
|
|
File without changes
|
|
@@ -0,0 +1,139 @@
|
|
|
1
|
+
"""Base classes for chunking text."""
|
|
2
|
+
|
|
3
|
+
import warnings
|
|
4
|
+
from abc import ABC, abstractmethod
|
|
5
|
+
from multiprocessing import Pool, cpu_count
|
|
6
|
+
from typing import Any, Callable, List, Union
|
|
7
|
+
|
|
8
|
+
from tqdm import tqdm
|
|
9
|
+
|
|
10
|
+
from .chonkie_tokenizer import Tokenizer
|
|
11
|
+
from .chonkie_types import Chunk
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class BaseChunker(ABC):
|
|
15
|
+
"""Abstract base class for all chunker implementations.
|
|
16
|
+
|
|
17
|
+
All chunker implementations should inherit from this class and implement
|
|
18
|
+
the chunk() method according to their specific chunking strategy.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
def __init__(self, tokenizer_or_token_counter: Union[str, Any, Callable[[str], int]]):
|
|
22
|
+
"""Initialize the chunker with a tokenizer.
|
|
23
|
+
|
|
24
|
+
Args:
|
|
25
|
+
tokenizer_or_token_counter (Union[str, Any]): String, tokenizer object, or token counter object
|
|
26
|
+
|
|
27
|
+
"""
|
|
28
|
+
self.tokenizer = Tokenizer(tokenizer_or_token_counter)
|
|
29
|
+
|
|
30
|
+
# Set whether to use multiprocessing or not
|
|
31
|
+
self._use_multiprocessing = True
|
|
32
|
+
|
|
33
|
+
@abstractmethod
|
|
34
|
+
def chunk(self, text: str) -> List[Chunk]:
|
|
35
|
+
"""Split text into chunks according to the implementation strategy.
|
|
36
|
+
|
|
37
|
+
Args:
|
|
38
|
+
text: Input text to be chunked
|
|
39
|
+
|
|
40
|
+
Returns:
|
|
41
|
+
List of Chunk objects containing the chunked text and metadata
|
|
42
|
+
|
|
43
|
+
"""
|
|
44
|
+
pass
|
|
45
|
+
|
|
46
|
+
def _determine_optimal_workers(self) -> int:
|
|
47
|
+
"""Determine optimal number of workers based on system resources."""
|
|
48
|
+
try:
|
|
49
|
+
# Get CPU cores
|
|
50
|
+
cpu_cores = cpu_count()
|
|
51
|
+
|
|
52
|
+
# Never use more than 75% of available cores
|
|
53
|
+
max_workers = max(1, int(cpu_cores * 0.75))
|
|
54
|
+
|
|
55
|
+
# Cap at 8 workers
|
|
56
|
+
return min(max_workers, 8)
|
|
57
|
+
|
|
58
|
+
except Exception as e:
|
|
59
|
+
warnings.warn(f"Error determining optimal workers: {e}. Using single process.")
|
|
60
|
+
return 1
|
|
61
|
+
|
|
62
|
+
def _process_batch_sequential(self, texts: List[str], show_progress_bar: bool = True) -> List[List[Chunk]]:
|
|
63
|
+
"""Process a batch of texts sequentially."""
|
|
64
|
+
return [
|
|
65
|
+
self.chunk(t)
|
|
66
|
+
for t in tqdm(
|
|
67
|
+
texts,
|
|
68
|
+
desc="🦛",
|
|
69
|
+
disable=not show_progress_bar,
|
|
70
|
+
unit="doc",
|
|
71
|
+
bar_format="{desc} ch{bar:20}nk {percentage:3.0f}% • {n_fmt}/{total_fmt} docs chunked [{elapsed}<{remaining}, {rate_fmt}] 🌱",
|
|
72
|
+
ascii=" o",
|
|
73
|
+
)
|
|
74
|
+
]
|
|
75
|
+
|
|
76
|
+
def _process_batch_multiprocessing(self, texts: List[str], show_progress_bar: bool = True) -> List[List[Chunk]]:
|
|
77
|
+
"""Process a batch of texts using multiprocessing."""
|
|
78
|
+
num_workers = self._determine_optimal_workers()
|
|
79
|
+
total = len(texts)
|
|
80
|
+
chunksize = max(1, min(total // (num_workers * 16), 10)) # Optimize chunk size
|
|
81
|
+
|
|
82
|
+
with Pool(processes=num_workers) as pool:
|
|
83
|
+
results = []
|
|
84
|
+
with tqdm(
|
|
85
|
+
total=total,
|
|
86
|
+
desc="🦛",
|
|
87
|
+
disable=not show_progress_bar,
|
|
88
|
+
unit="doc",
|
|
89
|
+
bar_format="{desc} ch{bar:20}nk {percentage:3.0f}% • {n_fmt}/{total_fmt} docs chunked [{elapsed}<{remaining}, {rate_fmt}] 🌱",
|
|
90
|
+
ascii=" o",
|
|
91
|
+
) as pbar:
|
|
92
|
+
for result in pool.imap(self.chunk, texts, chunksize=chunksize):
|
|
93
|
+
results.append(result)
|
|
94
|
+
pbar.update()
|
|
95
|
+
return results
|
|
96
|
+
|
|
97
|
+
def chunk_batch(
|
|
98
|
+
self,
|
|
99
|
+
texts: List[str],
|
|
100
|
+
show_progress_bar: bool = True,
|
|
101
|
+
) -> List[List[Chunk]]:
|
|
102
|
+
"""Split a List of texts into their respective chunks.
|
|
103
|
+
|
|
104
|
+
By default, this method uses multiprocessing to parallelize the chunking process.
|
|
105
|
+
|
|
106
|
+
Args:
|
|
107
|
+
texts: List of input texts to be chunked.
|
|
108
|
+
show_progress_bar: Whether to show a progress bar.
|
|
109
|
+
|
|
110
|
+
Returns:
|
|
111
|
+
List of lists of Chunk objects containing the chunked text and metadata
|
|
112
|
+
|
|
113
|
+
"""
|
|
114
|
+
if self._use_multiprocessing:
|
|
115
|
+
return self._process_batch_multiprocessing(texts, show_progress_bar)
|
|
116
|
+
else:
|
|
117
|
+
return self._process_batch_sequential(texts, show_progress_bar)
|
|
118
|
+
|
|
119
|
+
def __call__(self, text: Union[str, List[str]], show_progress_bar: bool = True) -> Union[List[Chunk], List[List[Chunk]]]:
|
|
120
|
+
"""Make the chunker callable directly.
|
|
121
|
+
|
|
122
|
+
Args:
|
|
123
|
+
text: Input text or list of texts to be chunked
|
|
124
|
+
show_progress_bar: Whether to show a progress bar (for batch chunking)
|
|
125
|
+
|
|
126
|
+
Returns:
|
|
127
|
+
List of Chunk objects or list of lists of Chunk
|
|
128
|
+
|
|
129
|
+
"""
|
|
130
|
+
if isinstance(text, str):
|
|
131
|
+
return self.chunk(text)
|
|
132
|
+
elif isinstance(text, list):
|
|
133
|
+
return self.chunk_batch(text, show_progress_bar)
|
|
134
|
+
else:
|
|
135
|
+
raise ValueError("Input must be a string or a list of strings.")
|
|
136
|
+
|
|
137
|
+
def __repr__(self) -> str:
|
|
138
|
+
"""Return string representation of the chunker."""
|
|
139
|
+
return f"{self.__class__.__name__}()"
|