ommx-openjij-adapter 1.6.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,23 @@
1
+ Metadata-Version: 2.1
2
+ Name: ommx_openjij_adapter
3
+ Version: 1.6.0
4
+ Summary: OMMX Adapter for OpenJij.
5
+ Author-email: "Jij Inc." <info@j-ij.com>
6
+ Project-URL: Repository, https://github.com/Jij-Inc/ommx
7
+ Project-URL: Issues, https://github.com/Jij-Inc/ommx/issues
8
+ Classifier: Programming Language :: Python :: 3 :: Only
9
+ Classifier: Programming Language :: Python :: 3.9
10
+ Classifier: Programming Language :: Python :: 3.10
11
+ Classifier: Programming Language :: Python :: 3.11
12
+ Classifier: Programming Language :: Python :: 3.12
13
+ Classifier: License :: OSI Approved :: Apache Software License
14
+ Classifier: License :: OSI Approved :: MIT License
15
+ Requires-Python: <3.13,>=3.9
16
+ Description-Content-Type: text/markdown
17
+ Requires-Dist: ommx<2.0.0,>=1.4.0
18
+ Requires-Dist: openjij>=0.9.2
19
+ Provides-Extra: dev
20
+
21
+ OMMX Adapter for OpenJij
22
+ =========================
23
+
@@ -0,0 +1,3 @@
1
+ OMMX Adapter for OpenJij
2
+ =========================
3
+
@@ -0,0 +1,87 @@
1
+ from __future__ import annotations
2
+
3
+ from ommx.v1 import Instance, State, Samples
4
+ import openjij as oj
5
+
6
+
7
+ def response_to_samples(response: oj.Response) -> Samples:
8
+ """
9
+ Convert OpenJij's `Response` to `ommx.v1.Samples`
10
+ """
11
+ # Filling into ommx.v1.Samples
12
+ # Since OpenJij does not issue the sample ID, we need to generate it in the responsibility of this OMMX Adapter
13
+ sample_id = 0
14
+ entries = []
15
+
16
+ num_reads = len(response.record.num_occurrences)
17
+ for i in range(num_reads):
18
+ sample = response.record.sample[i]
19
+ state = State(entries=zip(response.variables, sample)) # type: ignore
20
+ # `num_occurrences` is encoded into sample ID list.
21
+ # For example, if `num_occurrences` is 2, there are two samples with the same state, thus two sample IDs are generated.
22
+ ids = []
23
+ for _ in range(response.record.num_occurrences[i]):
24
+ ids.append(sample_id)
25
+ sample_id += 1
26
+ entries.append(Samples.SamplesEntry(state=state, ids=ids))
27
+ return Samples(entries=entries)
28
+
29
+
30
+ def sample_qubo_sa(
31
+ instance: Instance,
32
+ *,
33
+ beta_min: float | None = None,
34
+ beta_max: float | None = None,
35
+ num_sweeps: int | None = None,
36
+ num_reads: int | None = None,
37
+ schedule: list | None = None,
38
+ initial_state: list | dict | None = None,
39
+ updater: str | None = None,
40
+ sparse: bool | None = None,
41
+ reinitialize_state: bool | None = None,
42
+ seed: int | None = None,
43
+ ) -> Samples:
44
+ """
45
+ Sampling QUBO with Simulated Annealing (SA) by [`openjij.SASampler`](https://openjij.github.io/OpenJij/reference/openjij/index.html#openjij.SASampler)
46
+
47
+ The input `instance` must be a QUBO (Quadratic Unconstrained Binary Optimization) problem, i.e.
48
+
49
+ - Every decision variables are binary
50
+ - No constraint
51
+ - Objective function is quadratic
52
+ - Minimization problem
53
+
54
+ You can convert a problem to QUBO via [`ommx.v1.Instance.penalty_method`](https://jij-inc.github.io/ommx/python/ommx/autoapi/ommx/v1/index.html#ommx.v1.Instance.penalty_method) or other corresponding method.
55
+
56
+ :param instance: ommx.v1.Instance representing a QUBO problem
57
+ :param beta_min: minimal value of inverse temperature
58
+ :param beta_max: maximum value of inverse temperature
59
+ :param num_sweeps: number of sweeps
60
+ :param num_reads: number of reads
61
+ :param schedule: list of inverse temperature
62
+ :param initial_state: initial state
63
+ :param updater: updater algorithm
64
+ :param sparse: use sparse matrix or not.
65
+ :param reinitialize_state: if true reinitialize state for each run
66
+ :param seed: seed for Monte Carlo algorithm
67
+
68
+ Note that this is a simple wrapper function for `openjij.SASampler.sample_qubo` method.
69
+ For more advanced usage, you can use `ommx.v1.Instance.as_qubo_format` to get QUBO matrix,
70
+ and use OpenJij manually, and convert the `openjij.Response` via `response_to_samples` function.
71
+ """
72
+ q, _offset = instance.as_qubo_format()
73
+ sampler = oj.SASampler()
74
+ response = sampler.sample_qubo(
75
+ q, # type: ignore
76
+ beta_min=beta_min,
77
+ beta_max=beta_max,
78
+ num_sweeps=num_sweeps,
79
+ num_reads=num_reads,
80
+ schedule=schedule,
81
+ initial_state=initial_state,
82
+ updater=updater,
83
+ sparse=sparse,
84
+ reinitialize_state=reinitialize_state,
85
+ seed=seed,
86
+ )
87
+ return response_to_samples(response)
@@ -0,0 +1,23 @@
1
+ Metadata-Version: 2.1
2
+ Name: ommx_openjij_adapter
3
+ Version: 1.6.0
4
+ Summary: OMMX Adapter for OpenJij.
5
+ Author-email: "Jij Inc." <info@j-ij.com>
6
+ Project-URL: Repository, https://github.com/Jij-Inc/ommx
7
+ Project-URL: Issues, https://github.com/Jij-Inc/ommx/issues
8
+ Classifier: Programming Language :: Python :: 3 :: Only
9
+ Classifier: Programming Language :: Python :: 3.9
10
+ Classifier: Programming Language :: Python :: 3.10
11
+ Classifier: Programming Language :: Python :: 3.11
12
+ Classifier: Programming Language :: Python :: 3.12
13
+ Classifier: License :: OSI Approved :: Apache Software License
14
+ Classifier: License :: OSI Approved :: MIT License
15
+ Requires-Python: <3.13,>=3.9
16
+ Description-Content-Type: text/markdown
17
+ Requires-Dist: ommx<2.0.0,>=1.4.0
18
+ Requires-Dist: openjij>=0.9.2
19
+ Provides-Extra: dev
20
+
21
+ OMMX Adapter for OpenJij
22
+ =========================
23
+
@@ -0,0 +1,9 @@
1
+ README.md
2
+ pyproject.toml
3
+ ommx_openjij_adapter/__init__.py
4
+ ommx_openjij_adapter.egg-info/PKG-INFO
5
+ ommx_openjij_adapter.egg-info/SOURCES.txt
6
+ ommx_openjij_adapter.egg-info/dependency_links.txt
7
+ ommx_openjij_adapter.egg-info/requires.txt
8
+ ommx_openjij_adapter.egg-info/top_level.txt
9
+ tests/test_sample.py
@@ -0,0 +1,4 @@
1
+ ommx<2.0.0,>=1.4.0
2
+ openjij>=0.9.2
3
+
4
+ [dev]
@@ -0,0 +1 @@
1
+ ommx_openjij_adapter
@@ -0,0 +1,30 @@
1
+ [build-system]
2
+ requires = ["setuptools>=64", "wheel"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "ommx_openjij_adapter"
7
+ version = "1.6.0"
8
+
9
+ description = "OMMX Adapter for OpenJij."
10
+ authors = [{ name = "Jij Inc.", email = "info@j-ij.com" }]
11
+ readme = "README.md"
12
+
13
+ requires-python = ">=3.9, <3.13"
14
+ classifiers = [
15
+ "Programming Language :: Python :: 3 :: Only",
16
+ "Programming Language :: Python :: 3.9",
17
+ "Programming Language :: Python :: 3.10",
18
+ "Programming Language :: Python :: 3.11",
19
+ "Programming Language :: Python :: 3.12",
20
+ "License :: OSI Approved :: Apache Software License",
21
+ "License :: OSI Approved :: MIT License",
22
+ ]
23
+ dependencies = ["ommx>=1.4.0,<2.0.0", "openjij>=0.9.2"]
24
+
25
+ [project.urls]
26
+ Repository = "https://github.com/Jij-Inc/ommx"
27
+ Issues = "https://github.com/Jij-Inc/ommx/issues"
28
+
29
+ [project.optional-dependencies]
30
+ dev = []
@@ -0,0 +1,4 @@
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+
@@ -0,0 +1,37 @@
1
+ from ommx.v1 import Instance, DecisionVariable
2
+ import ommx_openjij_adapter as adapter
3
+
4
+
5
+ def test_minimize():
6
+ x0 = DecisionVariable.binary(0, name="x", subscripts=[0])
7
+ x1 = DecisionVariable.binary(1, name="x", subscripts=[1])
8
+
9
+ instance = Instance.from_components(
10
+ decision_variables=[x0, x1],
11
+ objective=x0 + x1,
12
+ constraints=[],
13
+ sense=Instance.MINIMIZE,
14
+ )
15
+ samples = adapter.sample_qubo_sa(instance, num_reads=1)
16
+ sample_set = instance.evaluate_samples(samples)
17
+
18
+ # x0 = x1 = 0 is minimum
19
+ assert sample_set.extract_decision_variables("x", 0) == {(0,): 0.0, (1,): 0.0}
20
+
21
+
22
+ def test_maximize():
23
+ x0 = DecisionVariable.binary(0, name="x", subscripts=[0])
24
+ x1 = DecisionVariable.binary(1, name="x", subscripts=[1])
25
+
26
+ instance = Instance.from_components(
27
+ decision_variables=[x0, x1],
28
+ objective=x0 + x1,
29
+ constraints=[],
30
+ sense=Instance.MAXIMIZE,
31
+ )
32
+ instance.as_minimization_problem()
33
+ samples = adapter.sample_qubo_sa(instance, num_reads=1)
34
+ sample_set = instance.evaluate_samples(samples)
35
+
36
+ # x0 = x1 = 1 is maximum
37
+ assert sample_set.extract_decision_variables("x", 0) == {(0,): 1.0, (1,): 1.0}