oikan 0.0.3.9__tar.gz → 0.0.3.10__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: oikan
3
- Version: 0.0.3.9
3
+ Version: 0.0.3.10
4
4
  Summary: OIKAN: Neuro-Symbolic ML for Scientific Discovery
5
5
  Author: Arman Zhalgasbayev
6
6
  License: MIT
@@ -132,7 +132,7 @@ model = OIKANRegressor(
132
132
  activation='relu', # Activation function (other options: 'tanh', 'leaky_relu', 'elu', 'swish', 'gelu')
133
133
  augmentation_factor=5, # Augmentation factor for data generation
134
134
  alpha=1.0, # ElasticNet regularization strength (Symbolic regression)
135
- l1_rate=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
135
+ l1_ratio=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
136
136
  sigma=5, # Standard deviation of Gaussian noise for data augmentation
137
137
  top_k=5, # Number of top features to select (Symbolic regression)
138
138
  epochs=100, # Number of training epochs
@@ -186,7 +186,7 @@ model = OIKANClassifier(
186
186
  activation='relu', # Activation function (other options: 'tanh', 'leaky_relu', 'elu', 'swish', 'gelu')
187
187
  augmentation_factor=10, # Augmentation factor for data generation
188
188
  alpha=1.0, # ElasticNet regularization strength (Symbolic regression)
189
- l1_rate=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
189
+ l1_ratio=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
190
190
  sigma=5, # Standard deviation of Gaussian noise for data augmentation
191
191
  top_k=5, # Number of top features to select (Symbolic regression)
192
192
  epochs=100, # # Number of training epochs
@@ -111,7 +111,7 @@ model = OIKANRegressor(
111
111
  activation='relu', # Activation function (other options: 'tanh', 'leaky_relu', 'elu', 'swish', 'gelu')
112
112
  augmentation_factor=5, # Augmentation factor for data generation
113
113
  alpha=1.0, # ElasticNet regularization strength (Symbolic regression)
114
- l1_rate=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
114
+ l1_ratio=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
115
115
  sigma=5, # Standard deviation of Gaussian noise for data augmentation
116
116
  top_k=5, # Number of top features to select (Symbolic regression)
117
117
  epochs=100, # Number of training epochs
@@ -165,7 +165,7 @@ model = OIKANClassifier(
165
165
  activation='relu', # Activation function (other options: 'tanh', 'leaky_relu', 'elu', 'swish', 'gelu')
166
166
  augmentation_factor=10, # Augmentation factor for data generation
167
167
  alpha=1.0, # ElasticNet regularization strength (Symbolic regression)
168
- l1_rate=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
168
+ l1_ratio=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
169
169
  sigma=5, # Standard deviation of Gaussian noise for data augmentation
170
170
  top_k=5, # Number of top features to select (Symbolic regression)
171
171
  epochs=100, # # Number of training epochs
@@ -3,7 +3,7 @@ import torch
3
3
  import numpy as np
4
4
 
5
5
  class ElasticNet(nn.Module):
6
- def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=False, max_iter=1000, tol=1e-4, random_state=None):
6
+ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=False, max_iter=5000, tol=1e-4, random_state=None):
7
7
  super().__init__()
8
8
  self.alpha = alpha
9
9
  self.l1_ratio = l1_ratio
@@ -301,7 +301,7 @@ class OIKAN(ABC):
301
301
  self.neural_net = TabularNet(input_size, self.hidden_sizes, output_size, self.activation)
302
302
  optimizer = optim.Adam(self.neural_net.parameters(), lr=self.lr)
303
303
  dataset = torch.utils.data.TensorDataset(torch.tensor(X, dtype=torch.float32),
304
- torch.tensor(y, dtype=torch.float32))
304
+ y.clone().detach())
305
305
  loader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, shuffle=True)
306
306
  self.neural_net.train()
307
307
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: oikan
3
- Version: 0.0.3.9
3
+ Version: 0.0.3.10
4
4
  Summary: OIKAN: Neuro-Symbolic ML for Scientific Discovery
5
5
  Author: Arman Zhalgasbayev
6
6
  License: MIT
@@ -132,7 +132,7 @@ model = OIKANRegressor(
132
132
  activation='relu', # Activation function (other options: 'tanh', 'leaky_relu', 'elu', 'swish', 'gelu')
133
133
  augmentation_factor=5, # Augmentation factor for data generation
134
134
  alpha=1.0, # ElasticNet regularization strength (Symbolic regression)
135
- l1_rate=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
135
+ l1_ratio=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
136
136
  sigma=5, # Standard deviation of Gaussian noise for data augmentation
137
137
  top_k=5, # Number of top features to select (Symbolic regression)
138
138
  epochs=100, # Number of training epochs
@@ -186,7 +186,7 @@ model = OIKANClassifier(
186
186
  activation='relu', # Activation function (other options: 'tanh', 'leaky_relu', 'elu', 'swish', 'gelu')
187
187
  augmentation_factor=10, # Augmentation factor for data generation
188
188
  alpha=1.0, # ElasticNet regularization strength (Symbolic regression)
189
- l1_rate=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
189
+ l1_ratio=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
190
190
  sigma=5, # Standard deviation of Gaussian noise for data augmentation
191
191
  top_k=5, # Number of top features to select (Symbolic regression)
192
192
  epochs=100, # # Number of training epochs
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "oikan"
7
- version = "0.0.3.9"
7
+ version = "0.0.3.10"
8
8
  description = "OIKAN: Neuro-Symbolic ML for Scientific Discovery"
9
9
  readme = "README.md"
10
10
  authors = [{name = "Arman Zhalgasbayev"}]
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes