oikan 0.0.3.9__tar.gz → 0.0.3.10__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {oikan-0.0.3.9 → oikan-0.0.3.10}/PKG-INFO +3 -3
- {oikan-0.0.3.9 → oikan-0.0.3.10}/README.md +2 -2
- {oikan-0.0.3.9 → oikan-0.0.3.10}/oikan/elasticnet.py +1 -1
- {oikan-0.0.3.9 → oikan-0.0.3.10}/oikan/model.py +1 -1
- {oikan-0.0.3.9 → oikan-0.0.3.10}/oikan.egg-info/PKG-INFO +3 -3
- {oikan-0.0.3.9 → oikan-0.0.3.10}/pyproject.toml +1 -1
- {oikan-0.0.3.9 → oikan-0.0.3.10}/LICENSE +0 -0
- {oikan-0.0.3.9 → oikan-0.0.3.10}/oikan/__init__.py +0 -0
- {oikan-0.0.3.9 → oikan-0.0.3.10}/oikan/exceptions.py +0 -0
- {oikan-0.0.3.9 → oikan-0.0.3.10}/oikan/neural.py +0 -0
- {oikan-0.0.3.9 → oikan-0.0.3.10}/oikan/utils.py +0 -0
- {oikan-0.0.3.9 → oikan-0.0.3.10}/oikan.egg-info/SOURCES.txt +0 -0
- {oikan-0.0.3.9 → oikan-0.0.3.10}/oikan.egg-info/dependency_links.txt +0 -0
- {oikan-0.0.3.9 → oikan-0.0.3.10}/oikan.egg-info/requires.txt +0 -0
- {oikan-0.0.3.9 → oikan-0.0.3.10}/oikan.egg-info/top_level.txt +0 -0
- {oikan-0.0.3.9 → oikan-0.0.3.10}/setup.cfg +0 -0
- {oikan-0.0.3.9 → oikan-0.0.3.10}/setup.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: oikan
|
3
|
-
Version: 0.0.3.
|
3
|
+
Version: 0.0.3.10
|
4
4
|
Summary: OIKAN: Neuro-Symbolic ML for Scientific Discovery
|
5
5
|
Author: Arman Zhalgasbayev
|
6
6
|
License: MIT
|
@@ -132,7 +132,7 @@ model = OIKANRegressor(
|
|
132
132
|
activation='relu', # Activation function (other options: 'tanh', 'leaky_relu', 'elu', 'swish', 'gelu')
|
133
133
|
augmentation_factor=5, # Augmentation factor for data generation
|
134
134
|
alpha=1.0, # ElasticNet regularization strength (Symbolic regression)
|
135
|
-
|
135
|
+
l1_ratio=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
|
136
136
|
sigma=5, # Standard deviation of Gaussian noise for data augmentation
|
137
137
|
top_k=5, # Number of top features to select (Symbolic regression)
|
138
138
|
epochs=100, # Number of training epochs
|
@@ -186,7 +186,7 @@ model = OIKANClassifier(
|
|
186
186
|
activation='relu', # Activation function (other options: 'tanh', 'leaky_relu', 'elu', 'swish', 'gelu')
|
187
187
|
augmentation_factor=10, # Augmentation factor for data generation
|
188
188
|
alpha=1.0, # ElasticNet regularization strength (Symbolic regression)
|
189
|
-
|
189
|
+
l1_ratio=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
|
190
190
|
sigma=5, # Standard deviation of Gaussian noise for data augmentation
|
191
191
|
top_k=5, # Number of top features to select (Symbolic regression)
|
192
192
|
epochs=100, # # Number of training epochs
|
@@ -111,7 +111,7 @@ model = OIKANRegressor(
|
|
111
111
|
activation='relu', # Activation function (other options: 'tanh', 'leaky_relu', 'elu', 'swish', 'gelu')
|
112
112
|
augmentation_factor=5, # Augmentation factor for data generation
|
113
113
|
alpha=1.0, # ElasticNet regularization strength (Symbolic regression)
|
114
|
-
|
114
|
+
l1_ratio=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
|
115
115
|
sigma=5, # Standard deviation of Gaussian noise for data augmentation
|
116
116
|
top_k=5, # Number of top features to select (Symbolic regression)
|
117
117
|
epochs=100, # Number of training epochs
|
@@ -165,7 +165,7 @@ model = OIKANClassifier(
|
|
165
165
|
activation='relu', # Activation function (other options: 'tanh', 'leaky_relu', 'elu', 'swish', 'gelu')
|
166
166
|
augmentation_factor=10, # Augmentation factor for data generation
|
167
167
|
alpha=1.0, # ElasticNet regularization strength (Symbolic regression)
|
168
|
-
|
168
|
+
l1_ratio=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
|
169
169
|
sigma=5, # Standard deviation of Gaussian noise for data augmentation
|
170
170
|
top_k=5, # Number of top features to select (Symbolic regression)
|
171
171
|
epochs=100, # # Number of training epochs
|
@@ -3,7 +3,7 @@ import torch
|
|
3
3
|
import numpy as np
|
4
4
|
|
5
5
|
class ElasticNet(nn.Module):
|
6
|
-
def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=False, max_iter=
|
6
|
+
def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=False, max_iter=5000, tol=1e-4, random_state=None):
|
7
7
|
super().__init__()
|
8
8
|
self.alpha = alpha
|
9
9
|
self.l1_ratio = l1_ratio
|
@@ -301,7 +301,7 @@ class OIKAN(ABC):
|
|
301
301
|
self.neural_net = TabularNet(input_size, self.hidden_sizes, output_size, self.activation)
|
302
302
|
optimizer = optim.Adam(self.neural_net.parameters(), lr=self.lr)
|
303
303
|
dataset = torch.utils.data.TensorDataset(torch.tensor(X, dtype=torch.float32),
|
304
|
-
|
304
|
+
y.clone().detach())
|
305
305
|
loader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, shuffle=True)
|
306
306
|
self.neural_net.train()
|
307
307
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: oikan
|
3
|
-
Version: 0.0.3.
|
3
|
+
Version: 0.0.3.10
|
4
4
|
Summary: OIKAN: Neuro-Symbolic ML for Scientific Discovery
|
5
5
|
Author: Arman Zhalgasbayev
|
6
6
|
License: MIT
|
@@ -132,7 +132,7 @@ model = OIKANRegressor(
|
|
132
132
|
activation='relu', # Activation function (other options: 'tanh', 'leaky_relu', 'elu', 'swish', 'gelu')
|
133
133
|
augmentation_factor=5, # Augmentation factor for data generation
|
134
134
|
alpha=1.0, # ElasticNet regularization strength (Symbolic regression)
|
135
|
-
|
135
|
+
l1_ratio=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
|
136
136
|
sigma=5, # Standard deviation of Gaussian noise for data augmentation
|
137
137
|
top_k=5, # Number of top features to select (Symbolic regression)
|
138
138
|
epochs=100, # Number of training epochs
|
@@ -186,7 +186,7 @@ model = OIKANClassifier(
|
|
186
186
|
activation='relu', # Activation function (other options: 'tanh', 'leaky_relu', 'elu', 'swish', 'gelu')
|
187
187
|
augmentation_factor=10, # Augmentation factor for data generation
|
188
188
|
alpha=1.0, # ElasticNet regularization strength (Symbolic regression)
|
189
|
-
|
189
|
+
l1_ratio=0.5, # ElasticNet mixing parameter (0 <= l1_ratio <= 1). 0 is equivalent to Ridge regression, 1 is equivalent to Lasso (Symbolic regression)
|
190
190
|
sigma=5, # Standard deviation of Gaussian noise for data augmentation
|
191
191
|
top_k=5, # Number of top features to select (Symbolic regression)
|
192
192
|
epochs=100, # # Number of training epochs
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|