oikan 0.0.1.5__tar.gz → 0.0.1.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: oikan
3
- Version: 0.0.1.5
3
+ Version: 0.0.1.7
4
4
  Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
5
5
  Author: Arman Zhalgasbayev
6
6
  License: MIT
@@ -0,0 +1,25 @@
1
+ import numpy as np
2
+ import torch
3
+
4
+ def evaluate_regression(model, X, y):
5
+ # Evaluate regression performance (MSE, MAE, RMSE)
6
+ with torch.no_grad():
7
+ X_tensor = torch.FloatTensor(X)
8
+ y_pred = model(X_tensor).numpy().ravel()
9
+ mse = np.mean((y - y_pred)**2)
10
+ mae = np.mean(np.abs(y - y_pred))
11
+ rmse = np.sqrt(mse)
12
+ print("Mean Squared Error:", mse)
13
+ print("Mean Absolute Error:", mae)
14
+ print("Root Mean Squared Error:", rmse)
15
+ return mse, mae, rmse
16
+
17
+ def evaluate_classification(model, X, y):
18
+ # Evaluate classification accuracy
19
+ with torch.no_grad():
20
+ X_tensor = torch.FloatTensor(X)
21
+ logits = model(X_tensor)
22
+ y_pred = torch.argmax(logits, dim=1).numpy()
23
+ accuracy = np.mean(y_pred == y)
24
+ print("Classification Accuracy:", accuracy)
25
+ return accuracy
@@ -0,0 +1,69 @@
1
+ import numpy as np
2
+ import matplotlib.pyplot as plt
3
+ import torch
4
+
5
+ def visualize_regression(model, X, y):
6
+ model.eval()
7
+ with torch.no_grad():
8
+ X_tensor = torch.FloatTensor(X)
9
+ y_pred = model(X_tensor).numpy()
10
+
11
+ plt.figure(figsize=(10, 6))
12
+ plt.scatter(X[:, 0], y, color='blue', label='True')
13
+ plt.scatter(X[:, 0], y_pred, color='red', label='Predicted')
14
+ plt.legend()
15
+ plt.show()
16
+
17
+ def visualize_classification(model, X, y):
18
+ model.eval()
19
+
20
+ if X.shape[1] > 2:
21
+ # SVD projection for high-dimensional inputs.
22
+ X_mean = np.mean(X, axis=0)
23
+ X_centered = X - X_mean
24
+ _, _, Vt = np.linalg.svd(X_centered, full_matrices=False)
25
+ principal = Vt[:2] # shape: (2, D)
26
+ X_proj = (X - X_mean) @ principal.T
27
+
28
+ x1, x2 = X_proj[:, 0], X_proj[:, 1]
29
+ x_min, x_max = x1.min() - 1, x1.max() + 1
30
+ y_min, y_max = x2.min() - 1, x2.max() + 1
31
+ xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
32
+ np.linspace(y_min, y_max, 100))
33
+ grid_2d = np.c_[xx.ravel(), yy.ravel()]
34
+ # Inverse transform grid points to original space.
35
+ X_grid = X_mean + grid_2d @ principal
36
+
37
+ with torch.no_grad():
38
+ X_grid_tensor = torch.FloatTensor(X_grid)
39
+ Z = model(X_grid_tensor)
40
+ Z = torch.argmax(Z, dim=1).numpy()
41
+ Z = Z.reshape(xx.shape)
42
+
43
+ plt.figure(figsize=(10, 8))
44
+ plt.contourf(xx, yy, Z, alpha=0.4)
45
+ plt.scatter(X_proj[:, 0], X_proj[:, 1], c=y, alpha=0.8)
46
+ plt.title("Classification Visualization (SVD Projection)")
47
+ plt.show()
48
+
49
+ else:
50
+ x1 = X[:, 0]
51
+ x2 = X[:, 1]
52
+ x_min, x_max = x1.min() - 1, x1.max() + 1
53
+ y_min, y_max = x2.min() - 1, x2.max() + 1
54
+ xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
55
+ np.linspace(y_min, y_max, 100))
56
+ grid_2d = np.c_[xx.ravel(), yy.ravel()]
57
+ X_grid = grid_2d
58
+
59
+ with torch.no_grad():
60
+ X_grid_tensor = torch.FloatTensor(X_grid)
61
+ Z = model(X_grid_tensor)
62
+ Z = torch.argmax(Z, dim=1).numpy()
63
+ Z = Z.reshape(xx.shape)
64
+
65
+ plt.figure(figsize=(10, 8))
66
+ plt.contourf(xx, yy, Z, alpha=0.4)
67
+ plt.scatter(X[:, 0], X[:, 1], c=y, alpha=0.8)
68
+ plt.title("Classification Visualization")
69
+ plt.show()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: oikan
3
- Version: 0.0.1.5
3
+ Version: 0.0.1.7
4
4
  Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
5
5
  Author: Arman Zhalgasbayev
6
6
  License: MIT
@@ -3,6 +3,7 @@ README.md
3
3
  pyproject.toml
4
4
  setup.py
5
5
  oikan/__init__.py
6
+ oikan/metrics.py
6
7
  oikan/model.py
7
8
  oikan/regularization.py
8
9
  oikan/symbolic.py
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "oikan"
7
- version = "0.0.1.5"
7
+ version = "0.0.1.7"
8
8
  description = "OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks"
9
9
  authors = [{name = "Arman Zhalgasbayev"}]
10
10
  dependencies = [
@@ -1,37 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
- import torch
4
-
5
- def visualize_regression(model, X, y):
6
- model.eval()
7
- with torch.no_grad():
8
- X_tensor = torch.FloatTensor(X)
9
- y_pred = model(X_tensor).numpy()
10
-
11
- plt.figure(figsize=(10, 6))
12
- plt.scatter(X[:, 0], y, color='blue', label='True')
13
- plt.scatter(X[:, 0], y_pred, color='red', label='Predicted')
14
- plt.legend()
15
- plt.show()
16
-
17
- def visualize_classification(model, X, y):
18
- model.eval()
19
-
20
- # Create a mesh grid
21
- x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
22
- y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
23
- xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
24
- np.linspace(y_min, y_max, 100))
25
-
26
- # Make predictions
27
- with torch.no_grad():
28
- X_grid = torch.FloatTensor(np.c_[xx.ravel(), yy.ravel()])
29
- Z = model(X_grid)
30
- Z = torch.argmax(Z, dim=1).numpy()
31
- Z = Z.reshape(xx.shape)
32
-
33
- # Plot
34
- plt.figure(figsize=(10, 8))
35
- plt.contourf(xx, yy, Z, alpha=0.4)
36
- plt.scatter(X[:, 0], X[:, 1], c=y, alpha=0.8)
37
- plt.show()
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes