oikan 0.0.1.3__tar.gz → 0.0.1.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- oikan-0.0.1.5/LICENSE +21 -0
- oikan-0.0.1.5/PKG-INFO +94 -0
- oikan-0.0.1.5/README.md +76 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/oikan/symbolic.py +3 -0
- oikan-0.0.1.5/oikan.egg-info/PKG-INFO +94 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/oikan.egg-info/SOURCES.txt +1 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/pyproject.toml +1 -1
- oikan-0.0.1.3/PKG-INFO +0 -65
- oikan-0.0.1.3/README.md +0 -48
- oikan-0.0.1.3/oikan.egg-info/PKG-INFO +0 -65
- {oikan-0.0.1.3 → oikan-0.0.1.5}/oikan/__init__.py +0 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/oikan/model.py +0 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/oikan/regularization.py +0 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/oikan/trainer.py +0 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/oikan/utils.py +0 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/oikan/visualize.py +0 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/oikan.egg-info/dependency_links.txt +0 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/oikan.egg-info/requires.txt +0 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/oikan.egg-info/top_level.txt +0 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/setup.cfg +0 -0
- {oikan-0.0.1.3 → oikan-0.0.1.5}/setup.py +0 -0
oikan-0.0.1.5/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2025 Arman Zhalgasbayev
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
oikan-0.0.1.5/PKG-INFO
ADDED
@@ -0,0 +1,94 @@
|
|
1
|
+
Metadata-Version: 2.2
|
2
|
+
Name: oikan
|
3
|
+
Version: 0.0.1.5
|
4
|
+
Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
|
5
|
+
Author: Arman Zhalgasbayev
|
6
|
+
License: MIT
|
7
|
+
Classifier: Programming Language :: Python :: 3
|
8
|
+
Classifier: License :: OSI Approved :: MIT License
|
9
|
+
Classifier: Operating System :: OS Independent
|
10
|
+
Requires-Python: >=3.7
|
11
|
+
Description-Content-Type: text/markdown
|
12
|
+
License-File: LICENSE
|
13
|
+
Requires-Dist: torch
|
14
|
+
Requires-Dist: numpy
|
15
|
+
Requires-Dist: sympy
|
16
|
+
Requires-Dist: scipy
|
17
|
+
Requires-Dist: matplotlib
|
18
|
+
|
19
|
+
# OIKAN
|
20
|
+
|
21
|
+
Optimized Interpretable Kolmogorov-Arnold Networks (OIKAN)
|
22
|
+
A deep learning framework for interpretable neural networks using advanced basis functions.
|
23
|
+
|
24
|
+
[](https://badge.fury.io/py/oikan)
|
25
|
+
[](https://pypistats.org/packages/oikan)
|
26
|
+
|
27
|
+
## Key Features
|
28
|
+
- EfficientKAN layer implementation
|
29
|
+
- Built-in visualization tools
|
30
|
+
- Support for both regression and classification tasks
|
31
|
+
- Symbolic formula extraction
|
32
|
+
- Easy-to-use training interface
|
33
|
+
- LaTeX-formatted formula extraction
|
34
|
+
|
35
|
+
## Installation
|
36
|
+
|
37
|
+
```bash
|
38
|
+
git clone https://github.com/silvermete0r/OIKAN.git
|
39
|
+
cd OIKAN
|
40
|
+
pip install -e . # Install in development mode
|
41
|
+
```
|
42
|
+
|
43
|
+
## Quick Start
|
44
|
+
|
45
|
+
### Regression Example
|
46
|
+
```python
|
47
|
+
from oikan.model import OIKAN
|
48
|
+
from oikan.trainer import train
|
49
|
+
from oikan.symbolic import extract_symbolic_formula
|
50
|
+
|
51
|
+
model = OIKAN(input_dim=2, output_dim=1)
|
52
|
+
train(model, (X_train, y_train))
|
53
|
+
|
54
|
+
visualize_regression(model, X, y)
|
55
|
+
|
56
|
+
formula = extract_symbolic_formula(model, X_test, mode='regression')
|
57
|
+
print("Extracted formula:", formula)
|
58
|
+
|
59
|
+
plot_symbolic_formula(model, X_test, mode='regression')
|
60
|
+
|
61
|
+
latex_formula = extract_latex_formula(model, X_test, mode='regression')
|
62
|
+
print("LaTeX:", latex_formula)
|
63
|
+
```
|
64
|
+
|
65
|
+
### Classification Example
|
66
|
+
```python
|
67
|
+
from oikan.model import OIKAN
|
68
|
+
from oikan.trainer import train_classification
|
69
|
+
from oikan.visualize import visualize_classification
|
70
|
+
from oikan.symbolic import extract_symbolic_formula, plot_symbolic_formula, extract_latex_formula
|
71
|
+
|
72
|
+
model = OIKAN(input_dim=2, output_dim=2)
|
73
|
+
train_classification(model, (X_train, y_train))
|
74
|
+
|
75
|
+
visualize_classification(model, X_test, y_test)
|
76
|
+
|
77
|
+
formula = extract_symbolic_formula(model, X_test, mode='classification')
|
78
|
+
print("Extracted formula:", formula)
|
79
|
+
|
80
|
+
plot_symbolic_formula(model, X_test, mode='classification')
|
81
|
+
|
82
|
+
latex_formula = extract_latex_formula(model, X_test, mode='classification')
|
83
|
+
print("LaTeX:", latex_formula)
|
84
|
+
```
|
85
|
+
|
86
|
+
## Usage
|
87
|
+
- Explore the `oikan/` folder for model architectures, training routines, and symbolic extraction.
|
88
|
+
- Check the `examples/` directory for complete usage examples for both regression and classification.
|
89
|
+
|
90
|
+
## Contributing
|
91
|
+
Contributions are welcome! Submit a Pull Request with your improvements.
|
92
|
+
|
93
|
+
## License
|
94
|
+
This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
|
oikan-0.0.1.5/README.md
ADDED
@@ -0,0 +1,76 @@
|
|
1
|
+
# OIKAN
|
2
|
+
|
3
|
+
Optimized Interpretable Kolmogorov-Arnold Networks (OIKAN)
|
4
|
+
A deep learning framework for interpretable neural networks using advanced basis functions.
|
5
|
+
|
6
|
+
[](https://badge.fury.io/py/oikan)
|
7
|
+
[](https://pypistats.org/packages/oikan)
|
8
|
+
|
9
|
+
## Key Features
|
10
|
+
- EfficientKAN layer implementation
|
11
|
+
- Built-in visualization tools
|
12
|
+
- Support for both regression and classification tasks
|
13
|
+
- Symbolic formula extraction
|
14
|
+
- Easy-to-use training interface
|
15
|
+
- LaTeX-formatted formula extraction
|
16
|
+
|
17
|
+
## Installation
|
18
|
+
|
19
|
+
```bash
|
20
|
+
git clone https://github.com/silvermete0r/OIKAN.git
|
21
|
+
cd OIKAN
|
22
|
+
pip install -e . # Install in development mode
|
23
|
+
```
|
24
|
+
|
25
|
+
## Quick Start
|
26
|
+
|
27
|
+
### Regression Example
|
28
|
+
```python
|
29
|
+
from oikan.model import OIKAN
|
30
|
+
from oikan.trainer import train
|
31
|
+
from oikan.symbolic import extract_symbolic_formula
|
32
|
+
|
33
|
+
model = OIKAN(input_dim=2, output_dim=1)
|
34
|
+
train(model, (X_train, y_train))
|
35
|
+
|
36
|
+
visualize_regression(model, X, y)
|
37
|
+
|
38
|
+
formula = extract_symbolic_formula(model, X_test, mode='regression')
|
39
|
+
print("Extracted formula:", formula)
|
40
|
+
|
41
|
+
plot_symbolic_formula(model, X_test, mode='regression')
|
42
|
+
|
43
|
+
latex_formula = extract_latex_formula(model, X_test, mode='regression')
|
44
|
+
print("LaTeX:", latex_formula)
|
45
|
+
```
|
46
|
+
|
47
|
+
### Classification Example
|
48
|
+
```python
|
49
|
+
from oikan.model import OIKAN
|
50
|
+
from oikan.trainer import train_classification
|
51
|
+
from oikan.visualize import visualize_classification
|
52
|
+
from oikan.symbolic import extract_symbolic_formula, plot_symbolic_formula, extract_latex_formula
|
53
|
+
|
54
|
+
model = OIKAN(input_dim=2, output_dim=2)
|
55
|
+
train_classification(model, (X_train, y_train))
|
56
|
+
|
57
|
+
visualize_classification(model, X_test, y_test)
|
58
|
+
|
59
|
+
formula = extract_symbolic_formula(model, X_test, mode='classification')
|
60
|
+
print("Extracted formula:", formula)
|
61
|
+
|
62
|
+
plot_symbolic_formula(model, X_test, mode='classification')
|
63
|
+
|
64
|
+
latex_formula = extract_latex_formula(model, X_test, mode='classification')
|
65
|
+
print("LaTeX:", latex_formula)
|
66
|
+
```
|
67
|
+
|
68
|
+
## Usage
|
69
|
+
- Explore the `oikan/` folder for model architectures, training routines, and symbolic extraction.
|
70
|
+
- Check the `examples/` directory for complete usage examples for both regression and classification.
|
71
|
+
|
72
|
+
## Contributing
|
73
|
+
Contributions are welcome! Submit a Pull Request with your improvements.
|
74
|
+
|
75
|
+
## License
|
76
|
+
This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
|
@@ -122,6 +122,9 @@ def extract_latex_formula(model, X, mode='regression'):
|
|
122
122
|
expr = term.strip("()")
|
123
123
|
coeff_str, basis = expr.split("*", 1) if "*" in expr else (expr, "")
|
124
124
|
coeff = float(coeff_str)
|
125
|
+
missing = basis.count("(") - basis.count(")")
|
126
|
+
if missing > 0:
|
127
|
+
basis = basis + ")" * missing
|
125
128
|
coeff_latex = f"{abs(coeff):.2f}".rstrip("0").rstrip(".")
|
126
129
|
term_latex = coeff_latex if basis.strip() == "1" else f"{coeff_latex} \\cdot {basis.strip()}"
|
127
130
|
latex_terms.append(f"- {term_latex}" if coeff < 0 else f"+ {term_latex}")
|
@@ -0,0 +1,94 @@
|
|
1
|
+
Metadata-Version: 2.2
|
2
|
+
Name: oikan
|
3
|
+
Version: 0.0.1.5
|
4
|
+
Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
|
5
|
+
Author: Arman Zhalgasbayev
|
6
|
+
License: MIT
|
7
|
+
Classifier: Programming Language :: Python :: 3
|
8
|
+
Classifier: License :: OSI Approved :: MIT License
|
9
|
+
Classifier: Operating System :: OS Independent
|
10
|
+
Requires-Python: >=3.7
|
11
|
+
Description-Content-Type: text/markdown
|
12
|
+
License-File: LICENSE
|
13
|
+
Requires-Dist: torch
|
14
|
+
Requires-Dist: numpy
|
15
|
+
Requires-Dist: sympy
|
16
|
+
Requires-Dist: scipy
|
17
|
+
Requires-Dist: matplotlib
|
18
|
+
|
19
|
+
# OIKAN
|
20
|
+
|
21
|
+
Optimized Interpretable Kolmogorov-Arnold Networks (OIKAN)
|
22
|
+
A deep learning framework for interpretable neural networks using advanced basis functions.
|
23
|
+
|
24
|
+
[](https://badge.fury.io/py/oikan)
|
25
|
+
[](https://pypistats.org/packages/oikan)
|
26
|
+
|
27
|
+
## Key Features
|
28
|
+
- EfficientKAN layer implementation
|
29
|
+
- Built-in visualization tools
|
30
|
+
- Support for both regression and classification tasks
|
31
|
+
- Symbolic formula extraction
|
32
|
+
- Easy-to-use training interface
|
33
|
+
- LaTeX-formatted formula extraction
|
34
|
+
|
35
|
+
## Installation
|
36
|
+
|
37
|
+
```bash
|
38
|
+
git clone https://github.com/silvermete0r/OIKAN.git
|
39
|
+
cd OIKAN
|
40
|
+
pip install -e . # Install in development mode
|
41
|
+
```
|
42
|
+
|
43
|
+
## Quick Start
|
44
|
+
|
45
|
+
### Regression Example
|
46
|
+
```python
|
47
|
+
from oikan.model import OIKAN
|
48
|
+
from oikan.trainer import train
|
49
|
+
from oikan.symbolic import extract_symbolic_formula
|
50
|
+
|
51
|
+
model = OIKAN(input_dim=2, output_dim=1)
|
52
|
+
train(model, (X_train, y_train))
|
53
|
+
|
54
|
+
visualize_regression(model, X, y)
|
55
|
+
|
56
|
+
formula = extract_symbolic_formula(model, X_test, mode='regression')
|
57
|
+
print("Extracted formula:", formula)
|
58
|
+
|
59
|
+
plot_symbolic_formula(model, X_test, mode='regression')
|
60
|
+
|
61
|
+
latex_formula = extract_latex_formula(model, X_test, mode='regression')
|
62
|
+
print("LaTeX:", latex_formula)
|
63
|
+
```
|
64
|
+
|
65
|
+
### Classification Example
|
66
|
+
```python
|
67
|
+
from oikan.model import OIKAN
|
68
|
+
from oikan.trainer import train_classification
|
69
|
+
from oikan.visualize import visualize_classification
|
70
|
+
from oikan.symbolic import extract_symbolic_formula, plot_symbolic_formula, extract_latex_formula
|
71
|
+
|
72
|
+
model = OIKAN(input_dim=2, output_dim=2)
|
73
|
+
train_classification(model, (X_train, y_train))
|
74
|
+
|
75
|
+
visualize_classification(model, X_test, y_test)
|
76
|
+
|
77
|
+
formula = extract_symbolic_formula(model, X_test, mode='classification')
|
78
|
+
print("Extracted formula:", formula)
|
79
|
+
|
80
|
+
plot_symbolic_formula(model, X_test, mode='classification')
|
81
|
+
|
82
|
+
latex_formula = extract_latex_formula(model, X_test, mode='classification')
|
83
|
+
print("LaTeX:", latex_formula)
|
84
|
+
```
|
85
|
+
|
86
|
+
## Usage
|
87
|
+
- Explore the `oikan/` folder for model architectures, training routines, and symbolic extraction.
|
88
|
+
- Check the `examples/` directory for complete usage examples for both regression and classification.
|
89
|
+
|
90
|
+
## Contributing
|
91
|
+
Contributions are welcome! Submit a Pull Request with your improvements.
|
92
|
+
|
93
|
+
## License
|
94
|
+
This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
|
oikan-0.0.1.3/PKG-INFO
DELETED
@@ -1,65 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.2
|
2
|
-
Name: oikan
|
3
|
-
Version: 0.0.1.3
|
4
|
-
Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
|
5
|
-
Author: Arman Zhalgasbayev
|
6
|
-
License: MIT
|
7
|
-
Classifier: Programming Language :: Python :: 3
|
8
|
-
Classifier: License :: OSI Approved :: MIT License
|
9
|
-
Classifier: Operating System :: OS Independent
|
10
|
-
Requires-Python: >=3.7
|
11
|
-
Description-Content-Type: text/markdown
|
12
|
-
Requires-Dist: torch
|
13
|
-
Requires-Dist: numpy
|
14
|
-
Requires-Dist: sympy
|
15
|
-
Requires-Dist: scipy
|
16
|
-
Requires-Dist: matplotlib
|
17
|
-
|
18
|
-
# OIKAN Library
|
19
|
-
|
20
|
-
[](https://badge.fury.io/py/oikan)
|
21
|
-
[](https://pypistats.org/packages/oikan)
|
22
|
-
|
23
|
-
OIKAN (Optimized Implementation of Kolmogorov-Arnold Networks) is a PyTorch-based library for creating interpretable neural networks. It implements the KAN architecture to provide both accurate predictions and interpretable results.
|
24
|
-
|
25
|
-
## Key Features
|
26
|
-
|
27
|
-
- EfficientKAN layer implementation
|
28
|
-
- Built-in visualization tools
|
29
|
-
- Support for both regression and classification tasks
|
30
|
-
- Symbolic formula extraction
|
31
|
-
- Easy-to-use training interface
|
32
|
-
|
33
|
-
## Installation
|
34
|
-
|
35
|
-
```bash
|
36
|
-
git clone https://github.com/silvermete0r/OIKAN.git
|
37
|
-
cd OIKAN
|
38
|
-
pip install -e . # Install in development mode
|
39
|
-
```
|
40
|
-
|
41
|
-
## Quick Start
|
42
|
-
|
43
|
-
### Regression Example
|
44
|
-
```python
|
45
|
-
from oikan.model import OIKAN
|
46
|
-
from oikan.trainer import train
|
47
|
-
|
48
|
-
# Create and train model
|
49
|
-
model = OIKAN(input_dim=2, output_dim=1)
|
50
|
-
train(model, train_loader)
|
51
|
-
|
52
|
-
# Extract interpretable formula
|
53
|
-
formula = extract_symbolic_formula_regression(model, X)
|
54
|
-
```
|
55
|
-
|
56
|
-
### Classification Example
|
57
|
-
```python
|
58
|
-
model = OIKAN(input_dim=2, output_dim=2)
|
59
|
-
train_classification(model, train_loader)
|
60
|
-
visualize_classification(model, X, y)
|
61
|
-
```
|
62
|
-
|
63
|
-
## Contributing
|
64
|
-
|
65
|
-
Contributions are welcome! Please feel free to submit a Pull Request.
|
oikan-0.0.1.3/README.md
DELETED
@@ -1,48 +0,0 @@
|
|
1
|
-
# OIKAN Library
|
2
|
-
|
3
|
-
[](https://badge.fury.io/py/oikan)
|
4
|
-
[](https://pypistats.org/packages/oikan)
|
5
|
-
|
6
|
-
OIKAN (Optimized Implementation of Kolmogorov-Arnold Networks) is a PyTorch-based library for creating interpretable neural networks. It implements the KAN architecture to provide both accurate predictions and interpretable results.
|
7
|
-
|
8
|
-
## Key Features
|
9
|
-
|
10
|
-
- EfficientKAN layer implementation
|
11
|
-
- Built-in visualization tools
|
12
|
-
- Support for both regression and classification tasks
|
13
|
-
- Symbolic formula extraction
|
14
|
-
- Easy-to-use training interface
|
15
|
-
|
16
|
-
## Installation
|
17
|
-
|
18
|
-
```bash
|
19
|
-
git clone https://github.com/silvermete0r/OIKAN.git
|
20
|
-
cd OIKAN
|
21
|
-
pip install -e . # Install in development mode
|
22
|
-
```
|
23
|
-
|
24
|
-
## Quick Start
|
25
|
-
|
26
|
-
### Regression Example
|
27
|
-
```python
|
28
|
-
from oikan.model import OIKAN
|
29
|
-
from oikan.trainer import train
|
30
|
-
|
31
|
-
# Create and train model
|
32
|
-
model = OIKAN(input_dim=2, output_dim=1)
|
33
|
-
train(model, train_loader)
|
34
|
-
|
35
|
-
# Extract interpretable formula
|
36
|
-
formula = extract_symbolic_formula_regression(model, X)
|
37
|
-
```
|
38
|
-
|
39
|
-
### Classification Example
|
40
|
-
```python
|
41
|
-
model = OIKAN(input_dim=2, output_dim=2)
|
42
|
-
train_classification(model, train_loader)
|
43
|
-
visualize_classification(model, X, y)
|
44
|
-
```
|
45
|
-
|
46
|
-
## Contributing
|
47
|
-
|
48
|
-
Contributions are welcome! Please feel free to submit a Pull Request.
|
@@ -1,65 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.2
|
2
|
-
Name: oikan
|
3
|
-
Version: 0.0.1.3
|
4
|
-
Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
|
5
|
-
Author: Arman Zhalgasbayev
|
6
|
-
License: MIT
|
7
|
-
Classifier: Programming Language :: Python :: 3
|
8
|
-
Classifier: License :: OSI Approved :: MIT License
|
9
|
-
Classifier: Operating System :: OS Independent
|
10
|
-
Requires-Python: >=3.7
|
11
|
-
Description-Content-Type: text/markdown
|
12
|
-
Requires-Dist: torch
|
13
|
-
Requires-Dist: numpy
|
14
|
-
Requires-Dist: sympy
|
15
|
-
Requires-Dist: scipy
|
16
|
-
Requires-Dist: matplotlib
|
17
|
-
|
18
|
-
# OIKAN Library
|
19
|
-
|
20
|
-
[](https://badge.fury.io/py/oikan)
|
21
|
-
[](https://pypistats.org/packages/oikan)
|
22
|
-
|
23
|
-
OIKAN (Optimized Implementation of Kolmogorov-Arnold Networks) is a PyTorch-based library for creating interpretable neural networks. It implements the KAN architecture to provide both accurate predictions and interpretable results.
|
24
|
-
|
25
|
-
## Key Features
|
26
|
-
|
27
|
-
- EfficientKAN layer implementation
|
28
|
-
- Built-in visualization tools
|
29
|
-
- Support for both regression and classification tasks
|
30
|
-
- Symbolic formula extraction
|
31
|
-
- Easy-to-use training interface
|
32
|
-
|
33
|
-
## Installation
|
34
|
-
|
35
|
-
```bash
|
36
|
-
git clone https://github.com/silvermete0r/OIKAN.git
|
37
|
-
cd OIKAN
|
38
|
-
pip install -e . # Install in development mode
|
39
|
-
```
|
40
|
-
|
41
|
-
## Quick Start
|
42
|
-
|
43
|
-
### Regression Example
|
44
|
-
```python
|
45
|
-
from oikan.model import OIKAN
|
46
|
-
from oikan.trainer import train
|
47
|
-
|
48
|
-
# Create and train model
|
49
|
-
model = OIKAN(input_dim=2, output_dim=1)
|
50
|
-
train(model, train_loader)
|
51
|
-
|
52
|
-
# Extract interpretable formula
|
53
|
-
formula = extract_symbolic_formula_regression(model, X)
|
54
|
-
```
|
55
|
-
|
56
|
-
### Classification Example
|
57
|
-
```python
|
58
|
-
model = OIKAN(input_dim=2, output_dim=2)
|
59
|
-
train_classification(model, train_loader)
|
60
|
-
visualize_classification(model, X, y)
|
61
|
-
```
|
62
|
-
|
63
|
-
## Contributing
|
64
|
-
|
65
|
-
Contributions are welcome! Please feel free to submit a Pull Request.
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|