oikan 0.0.1.1__tar.gz → 0.0.1.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: oikan
3
- Version: 0.0.1.1
3
+ Version: 0.0.1.2
4
4
  Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
5
5
  Author: Arman Zhalgasbayev
6
6
  License: MIT
@@ -0,0 +1,65 @@
1
+ import torch
2
+ import torch.nn as nn
3
+ from .utils import BSplineBasis, FourierBasis
4
+
5
+ class AdaptiveBasisLayer(nn.Module):
6
+ def __init__(self, input_dim, hidden_dim):
7
+ super().__init__()
8
+ self.weights = nn.Parameter(torch.randn(input_dim, hidden_dim))
9
+ self.bias = nn.Parameter(torch.zeros(hidden_dim))
10
+
11
+ def forward(self, x):
12
+ return torch.matmul(x, self.weights) + self.bias
13
+
14
+ class EfficientKAN(nn.Module):
15
+ def __init__(self, input_dim, hidden_units=10, basis_type='bspline'):
16
+ super().__init__()
17
+ self.input_dim = input_dim
18
+ self.hidden_units = hidden_units
19
+ self.basis_type = basis_type
20
+
21
+ if basis_type == 'bspline':
22
+ self.basis_functions = nn.ModuleList([BSplineBasis(hidden_units) for _ in range(input_dim)])
23
+ self.basis_output_dim = input_dim * (hidden_units - 4) # Adjusted for BSpline output
24
+ elif basis_type == 'fourier':
25
+ self.basis_functions = nn.ModuleList([FourierBasis(hidden_units//2) for _ in range(input_dim)])
26
+ self.basis_output_dim = input_dim * hidden_units
27
+
28
+ # Grid-based interaction layer
29
+ self.interaction_weights = nn.Parameter(torch.randn(input_dim, input_dim))
30
+
31
+ def forward(self, x):
32
+ # Transform each feature using basis functions
33
+ transformed_features = [bf(x[:, i].unsqueeze(1)) for i, bf in enumerate(self.basis_functions)]
34
+ basis_output = torch.cat(transformed_features, dim=1)
35
+
36
+ # Compute feature interactions - fixed matrix multiplication
37
+ batch_size = x.size(0)
38
+ x_reshaped = x.view(batch_size, self.input_dim, 1) # [batch_size, input_dim, 1]
39
+ interaction_matrix = torch.sigmoid(self.interaction_weights) # [input_dim, input_dim]
40
+ interaction_features = torch.bmm(x_reshaped.transpose(1, 2),
41
+ x_reshaped * interaction_matrix.unsqueeze(0)) # [batch_size, 1, 1]
42
+ interaction_features = interaction_features.view(batch_size, -1) # [batch_size, 1]
43
+
44
+ return torch.cat([basis_output, interaction_features], dim=1)
45
+
46
+ def get_output_dim(self):
47
+ return self.basis_output_dim + self.input_dim
48
+
49
+ class OIKAN(nn.Module):
50
+ def __init__(self, input_dim, output_dim, hidden_units=10):
51
+ super().__init__()
52
+ self.efficientkan = EfficientKAN(input_dim, hidden_units)
53
+
54
+ # Get actual feature dimension after transformation
55
+ feature_dim = self.efficientkan.get_output_dim()
56
+
57
+ self.interpretable_layers = nn.Sequential(
58
+ AdaptiveBasisLayer(feature_dim, 32),
59
+ nn.ReLU(),
60
+ AdaptiveBasisLayer(32, output_dim)
61
+ )
62
+
63
+ def forward(self, x):
64
+ transformed_x = self.efficientkan(x)
65
+ return self.interpretable_layers(transformed_x)
@@ -0,0 +1,30 @@
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ class RegularizedLoss:
5
+ def __init__(self, base_criterion, model, l1_lambda=0.01, gradient_lambda=0.01):
6
+ self.base_criterion = base_criterion
7
+ self.model = model
8
+ self.l1_lambda = l1_lambda
9
+ self.gradient_lambda = gradient_lambda
10
+
11
+ def __call__(self, pred, target, inputs):
12
+ base_loss = self.base_criterion(pred, target)
13
+
14
+ # L1 regularization
15
+ l1_loss = 0
16
+ for param in self.model.parameters():
17
+ l1_loss += torch.norm(param, p=1)
18
+
19
+ # Gradient penalty
20
+ grad_penalty = 0
21
+ inputs.requires_grad_(True)
22
+ outputs = self.model(inputs)
23
+ gradients = torch.autograd.grad(
24
+ outputs=outputs.sum(),
25
+ inputs=inputs,
26
+ create_graph=True
27
+ )[0]
28
+ grad_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
29
+
30
+ return base_loss + self.l1_lambda * l1_loss + self.gradient_lambda * grad_penalty
@@ -0,0 +1,21 @@
1
+ import torch
2
+ import numpy as np
3
+
4
+ def extract_symbolic_formula_regression(model, X):
5
+ """Simple coefficient-based formula extraction"""
6
+ model.eval()
7
+ with torch.no_grad():
8
+ # Get weights from the first adaptive layer
9
+ weights = model.interpretable_layers[0].weights.numpy()
10
+ # Simplified representation
11
+ terms = []
12
+ for i in range(X.shape[1]):
13
+ coef = np.abs(weights[i]).mean()
14
+ if coef > 0.1: # threshold for significance
15
+ terms.append(f"{coef:.2f}*x{i+1}")
16
+
17
+ return " + ".join(terms) if terms else "0"
18
+
19
+ def extract_symbolic_formula_classification(model, X):
20
+ """Extract classification boundary formula"""
21
+ return extract_symbolic_formula_regression(model, X) + " = 0"
@@ -0,0 +1,37 @@
1
+ import torch
2
+ import torch.nn as nn
3
+ from .regularization import RegularizedLoss
4
+
5
+ def train(model, train_data, epochs=100, lr=0.01):
6
+ X_train, y_train = train_data
7
+ optimizer = torch.optim.Adam(model.parameters(), lr=lr)
8
+ criterion = nn.MSELoss()
9
+ reg_loss = RegularizedLoss(criterion, model)
10
+
11
+ model.train()
12
+ for epoch in range(epochs):
13
+ optimizer.zero_grad()
14
+ outputs = model(X_train)
15
+ loss = reg_loss(outputs, y_train, X_train)
16
+ loss.backward()
17
+ optimizer.step()
18
+
19
+ if (epoch + 1) % 10 == 0:
20
+ print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
21
+
22
+ def train_classification(model, train_data, epochs=100, lr=0.01):
23
+ X_train, y_train = train_data
24
+ optimizer = torch.optim.Adam(model.parameters(), lr=lr)
25
+ criterion = nn.CrossEntropyLoss()
26
+ reg_loss = RegularizedLoss(criterion, model)
27
+
28
+ model.train()
29
+ for epoch in range(epochs):
30
+ optimizer.zero_grad()
31
+ outputs = model(X_train)
32
+ loss = reg_loss(outputs, y_train, X_train)
33
+ loss.backward()
34
+ optimizer.step()
35
+
36
+ if (epoch + 1) % 10 == 0:
37
+ print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
@@ -0,0 +1,43 @@
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+ from scipy.interpolate import BSpline
5
+
6
+ class BSplineBasis(nn.Module):
7
+ def __init__(self, num_knots=10, degree=3):
8
+ super().__init__()
9
+ self.num_knots = max(num_knots, degree + 5) # Ensure minimum number of knots
10
+ self.degree = degree
11
+
12
+ # Create knot vector with proper padding
13
+ inner_knots = np.linspace(0, 1, self.num_knots - 2 * degree)
14
+ left_pad = np.zeros(degree)
15
+ right_pad = np.ones(degree)
16
+ knots = np.concatenate([left_pad, inner_knots, right_pad])
17
+
18
+ self.register_buffer('knots', torch.FloatTensor(knots))
19
+
20
+ def forward(self, x):
21
+ x_np = x.detach().cpu().numpy()
22
+ basis_values = np.zeros((x_np.shape[0], self.num_knots - self.degree - 1))
23
+
24
+ # Normalize input to [0,1] range
25
+ x_normalized = (x_np - x_np.min()) / (x_np.max() - x_np.min() + 1e-8)
26
+
27
+ for i in range(self.num_knots - self.degree - 1):
28
+ spl = BSpline.basis_element(self.knots[i:i+self.degree+2])
29
+ basis_values[:, i] = spl(x_normalized.squeeze())
30
+
31
+ # Replace NaN values with 0
32
+ basis_values = np.nan_to_num(basis_values, 0)
33
+ return torch.FloatTensor(basis_values).to(x.device)
34
+
35
+ class FourierBasis(nn.Module):
36
+ def __init__(self, num_frequencies=5):
37
+ super().__init__()
38
+ self.num_frequencies = num_frequencies
39
+
40
+ def forward(self, x):
41
+ frequencies = torch.arange(1, self.num_frequencies + 1, device=x.device).float()
42
+ x_expanded = x * frequencies.view(1, -1) * 2 * np.pi
43
+ return torch.cat([torch.sin(x_expanded), torch.cos(x_expanded)], dim=1)
@@ -0,0 +1,37 @@
1
+ import numpy as np
2
+ import matplotlib.pyplot as plt
3
+ import torch
4
+
5
+ def visualize_regression(model, X, y):
6
+ model.eval()
7
+ with torch.no_grad():
8
+ X_tensor = torch.FloatTensor(X)
9
+ y_pred = model(X_tensor).numpy()
10
+
11
+ plt.figure(figsize=(10, 6))
12
+ plt.scatter(X[:, 0], y, color='blue', label='True')
13
+ plt.scatter(X[:, 0], y_pred, color='red', label='Predicted')
14
+ plt.legend()
15
+ plt.show()
16
+
17
+ def visualize_classification(model, X, y):
18
+ model.eval()
19
+
20
+ # Create a mesh grid
21
+ x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
22
+ y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
23
+ xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
24
+ np.linspace(y_min, y_max, 100))
25
+
26
+ # Make predictions
27
+ with torch.no_grad():
28
+ X_grid = torch.FloatTensor(np.c_[xx.ravel(), yy.ravel()])
29
+ Z = model(X_grid)
30
+ Z = torch.argmax(Z, dim=1).numpy()
31
+ Z = Z.reshape(xx.shape)
32
+
33
+ # Plot
34
+ plt.figure(figsize=(10, 8))
35
+ plt.contourf(xx, yy, Z, alpha=0.4)
36
+ plt.scatter(X[:, 0], X[:, 1], c=y, alpha=0.8)
37
+ plt.show()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: oikan
3
- Version: 0.0.1.1
3
+ Version: 0.0.1.2
4
4
  Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
5
5
  Author: Arman Zhalgasbayev
6
6
  License: MIT
@@ -3,8 +3,10 @@ pyproject.toml
3
3
  setup.py
4
4
  oikan/__init__.py
5
5
  oikan/model.py
6
+ oikan/regularization.py
6
7
  oikan/symbolic.py
7
8
  oikan/trainer.py
9
+ oikan/utils.py
8
10
  oikan/visualize.py
9
11
  oikan.egg-info/PKG-INFO
10
12
  oikan.egg-info/SOURCES.txt
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "oikan"
7
- version = "0.0.1.1"
7
+ version = "0.0.1.2"
8
8
  description = "OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks"
9
9
  authors = [{name = "Arman Zhalgasbayev"}]
10
10
  dependencies = [
@@ -1,28 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- # EfficientKAN Layer
5
- class EfficientKAN(nn.Module):
6
- def __init__(self, input_dim, hidden_units=10):
7
- super(EfficientKAN, self).__init__()
8
- self.basis_functions = nn.ModuleList([nn.Linear(1, hidden_units) for _ in range(input_dim)])
9
- self.activations = nn.ReLU()
10
-
11
- def forward(self, x):
12
- transformed_features = [self.activations(bf(x[:, i].unsqueeze(1))) for i, bf in enumerate(self.basis_functions)]
13
- return torch.cat(transformed_features, dim=1)
14
-
15
- # OIKAN Model
16
- class OIKAN(nn.Module):
17
- def __init__(self, input_dim, output_dim, hidden_units=10):
18
- super(OIKAN, self).__init__()
19
- self.efficientkan = EfficientKAN(input_dim, hidden_units)
20
- self.mlp = nn.Sequential(
21
- nn.Linear(input_dim * hidden_units, 32),
22
- nn.ReLU(),
23
- nn.Linear(32, output_dim)
24
- )
25
-
26
- def forward(self, x):
27
- transformed_x = self.efficientkan(x)
28
- return self.mlp(transformed_x)
@@ -1,36 +0,0 @@
1
- import torch
2
- from sympy import symbols, simplify, Add
3
-
4
- # Regression symbolic extraction
5
- def extract_symbolic_formula_regression(model, input_data):
6
- symbolic_vars = symbols([f'x{i}' for i in range(input_data.shape[1])])
7
-
8
- with torch.no_grad():
9
- weights = model.mlp[0].weight.cpu().numpy()
10
- if weights.size == 0:
11
- print("Warning: Extracted weights are empty.")
12
- return "NaN"
13
-
14
- formula = sum(weights[0, i] * symbolic_vars[i] for i in range(len(symbolic_vars)))
15
- return simplify(formula)
16
-
17
- # Classification symbolic extraction
18
- def extract_symbolic_formula_classification(model, input_data):
19
- """
20
- Extracts a symbolic decision boundary for a two-class classifier.
21
- Approximates:
22
- decision = (w[0] - w[1]) · x + (b[0] - b[1])
23
- where w and b are from the model's final linear layer.
24
- """
25
- symbolic_vars = symbols([f'x{i}' for i in range(input_data.shape[1])])
26
- with torch.no_grad():
27
- final_layer = model.mlp[-1]
28
- w = final_layer.weight.cpu().numpy()
29
- b = final_layer.bias.cpu().numpy()
30
- if w.shape[0] < 2:
31
- print("Classification symbolic extraction requires at least 2 classes.")
32
- return "NaN"
33
- w_diff = w[0] - w[1]
34
- b_diff = b[0] - b[1]
35
- formula = sum(w_diff[i] * symbolic_vars[i] for i in range(len(symbolic_vars))) + b_diff
36
- return simplify(formula)
@@ -1,32 +0,0 @@
1
- import torch.optim as optim
2
- import torch.nn as nn
3
-
4
- # Regression training
5
- def train(model, train_loader, epochs=100, lr=0.01):
6
- criterion = nn.MSELoss()
7
- optimizer = optim.LBFGS(model.parameters(), lr=lr)
8
-
9
- def closure():
10
- optimizer.zero_grad()
11
- outputs = model(train_loader[0])
12
- loss = criterion(outputs, train_loader[1])
13
- loss.backward()
14
- print(f"Loss: {loss.item()}")
15
- return loss
16
-
17
- for epoch in range(epochs):
18
- optimizer.step(closure)
19
- print(f"Epoch {epoch+1}/{epochs}")
20
-
21
- # Classification training
22
- def train_classification(model, train_loader, epochs=100, lr=0.01):
23
- criterion = nn.CrossEntropyLoss()
24
- optimizer = optim.Adam(model.parameters(), lr=lr)
25
-
26
- for epoch in range(epochs):
27
- optimizer.zero_grad()
28
- outputs = model(train_loader[0])
29
- loss = criterion(outputs, train_loader[1])
30
- loss.backward()
31
- optimizer.step()
32
- print(f"Epoch {epoch+1}/{epochs}, Loss: {loss.item()}")
@@ -1,20 +0,0 @@
1
- import matplotlib.pyplot as plt
2
- import torch
3
-
4
- # Regression Visualization Function
5
- def visualize_regression(model, X, y):
6
- with torch.no_grad():
7
- y_pred = model(torch.tensor(X, dtype=torch.float32)).numpy()
8
- plt.scatter(X[:, 0], y, label='True Data')
9
- plt.scatter(X[:, 0], y_pred, label='OIKAN Predictions', color='r')
10
- plt.legend()
11
- plt.show()
12
-
13
- # Classification visualization
14
- def visualize_classification(model, X, y):
15
- with torch.no_grad():
16
- outputs = model(torch.tensor(X, dtype=torch.float32))
17
- preds = torch.argmax(outputs, dim=1).numpy()
18
- plt.scatter(X[:, 0], X[:, 1], c=preds, cmap='viridis', edgecolor='k')
19
- plt.title("Classification Results")
20
- plt.show()
File without changes
File without changes
File without changes
File without changes