oikan 0.0.1.11__tar.gz → 0.0.2.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- oikan-0.0.2.2/PKG-INFO +223 -0
- oikan-0.0.2.2/README.md +206 -0
- oikan-0.0.2.2/oikan/exceptions.py +15 -0
- oikan-0.0.2.2/oikan/model.py +438 -0
- oikan-0.0.2.2/oikan/symbolic.py +28 -0
- oikan-0.0.2.2/oikan/utils.py +47 -0
- oikan-0.0.2.2/oikan.egg-info/PKG-INFO +223 -0
- {oikan-0.0.1.11 → oikan-0.0.2.2}/oikan.egg-info/SOURCES.txt +1 -4
- oikan-0.0.2.2/oikan.egg-info/requires.txt +3 -0
- {oikan-0.0.1.11 → oikan-0.0.2.2}/pyproject.toml +2 -4
- {oikan-0.0.1.11 → oikan-0.0.2.2}/setup.py +1 -3
- oikan-0.0.1.11/PKG-INFO +0 -105
- oikan-0.0.1.11/README.md +0 -87
- oikan-0.0.1.11/oikan/metrics.py +0 -48
- oikan-0.0.1.11/oikan/model.py +0 -99
- oikan-0.0.1.11/oikan/regularization.py +0 -30
- oikan-0.0.1.11/oikan/symbolic.py +0 -129
- oikan-0.0.1.11/oikan/trainer.py +0 -49
- oikan-0.0.1.11/oikan/utils.py +0 -44
- oikan-0.0.1.11/oikan/visualize.py +0 -69
- oikan-0.0.1.11/oikan.egg-info/PKG-INFO +0 -105
- oikan-0.0.1.11/oikan.egg-info/requires.txt +0 -5
- {oikan-0.0.1.11 → oikan-0.0.2.2}/LICENSE +0 -0
- {oikan-0.0.1.11 → oikan-0.0.2.2}/oikan/__init__.py +0 -0
- {oikan-0.0.1.11 → oikan-0.0.2.2}/oikan.egg-info/dependency_links.txt +0 -0
- {oikan-0.0.1.11 → oikan-0.0.2.2}/oikan.egg-info/top_level.txt +0 -0
- {oikan-0.0.1.11 → oikan-0.0.2.2}/setup.cfg +0 -0
oikan-0.0.2.2/PKG-INFO
ADDED
@@ -0,0 +1,223 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: oikan
|
3
|
+
Version: 0.0.2.2
|
4
|
+
Summary: OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks
|
5
|
+
Author: Arman Zhalgasbayev
|
6
|
+
License: MIT
|
7
|
+
Classifier: Programming Language :: Python :: 3
|
8
|
+
Classifier: License :: OSI Approved :: MIT License
|
9
|
+
Classifier: Operating System :: OS Independent
|
10
|
+
Requires-Python: >=3.7
|
11
|
+
Description-Content-Type: text/markdown
|
12
|
+
License-File: LICENSE
|
13
|
+
Requires-Dist: torch
|
14
|
+
Requires-Dist: numpy
|
15
|
+
Requires-Dist: scikit-learn
|
16
|
+
Dynamic: license-file
|
17
|
+
|
18
|
+
<!-- logo in the center -->
|
19
|
+
<div align="center">
|
20
|
+
<img src="docs/media/oikan_logo.png" alt="OIKAN Logo" width="200"/>
|
21
|
+
|
22
|
+
<h1>OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks</h1>
|
23
|
+
</div>
|
24
|
+
|
25
|
+
## Overview
|
26
|
+
OIKAN (Optimized Interpretable Kolmogorov-Arnold Networks) is a neuro-symbolic ML framework that combines modern neural networks with classical Kolmogorov-Arnold representation theory. It provides interpretable machine learning solutions through automatic extraction of symbolic mathematical formulas from trained models.
|
27
|
+
|
28
|
+
[](https://badge.fury.io/py/oikan)
|
29
|
+
[](https://pypistats.org/packages/oikan)
|
30
|
+
[](https://pepy.tech/projects/oikan)
|
31
|
+
[](https://opensource.org/licenses/MIT)
|
32
|
+
[](https://github.com/silvermete0r/oikan/issues)
|
33
|
+
[](https://silvermete0r.github.io/oikan/)
|
34
|
+
|
35
|
+
## Key Features
|
36
|
+
- 🧠 **Neuro-Symbolic ML**: Combines neural network learning with symbolic mathematics
|
37
|
+
- 📊 **Automatic Formula Extraction**: Generates human-readable mathematical expressions
|
38
|
+
- 🎯 **Scikit-learn Compatible**: Familiar `.fit()` and `.predict()` interface
|
39
|
+
- 🚀 **Production-Ready**: Export symbolic formulas for lightweight deployment
|
40
|
+
- 📈 **Multi-Task**: Supports both regression and classification problems
|
41
|
+
|
42
|
+
## Scientific Foundation
|
43
|
+
|
44
|
+
OIKAN is based on Kolmogorov's superposition theorem, which states that any multivariate continuous function can be represented as a composition of single-variable functions. We leverage this theory by:
|
45
|
+
|
46
|
+
1. Using neural networks to learn optimal basis functions through interpretable edge transformations
|
47
|
+
2. Combining transformed features using learnable weights
|
48
|
+
3. Automatically extracting human-readable symbolic formulas
|
49
|
+
|
50
|
+
## Quick Start
|
51
|
+
|
52
|
+
### Installation
|
53
|
+
|
54
|
+
#### Method 1: Via PyPI (Recommended)
|
55
|
+
```bash
|
56
|
+
pip install -qU oikan
|
57
|
+
```
|
58
|
+
|
59
|
+
#### Method 2: Local Development
|
60
|
+
```bash
|
61
|
+
git clone https://github.com/silvermete0r/OIKAN.git
|
62
|
+
cd OIKAN
|
63
|
+
pip install -e . # Install in development mode
|
64
|
+
```
|
65
|
+
|
66
|
+
### Regression Example
|
67
|
+
```python
|
68
|
+
from oikan.model import OIKANRegressor
|
69
|
+
from sklearn.model_selection import train_test_split
|
70
|
+
|
71
|
+
# Initialize model with optimal architecture
|
72
|
+
model = OIKANRegressor(
|
73
|
+
hidden_dims=[16, 8], # Network architecture
|
74
|
+
num_basis=10, # Number of basis functions
|
75
|
+
degree=3, # Polynomial degree
|
76
|
+
dropout=0.1 # Regularization
|
77
|
+
)
|
78
|
+
|
79
|
+
# Fit model (sklearn-style)
|
80
|
+
model.fit(X_train, y_train, epochs=200, lr=0.01)
|
81
|
+
|
82
|
+
# Get predictions
|
83
|
+
y_pred = model.predict(X_test)
|
84
|
+
|
85
|
+
# Save interpretable formula to file with auto-generated guidelines
|
86
|
+
# The output file will contain:
|
87
|
+
# - Detailed symbolic formulas for each feature
|
88
|
+
# - Instructions for practical implementation
|
89
|
+
# - Recommendations for production deployment
|
90
|
+
model.save_symbolic_formula("regression_formula.txt")
|
91
|
+
```
|
92
|
+
|
93
|
+
*Example of the saved symbolic formula instructions: [outputs/regression_symbolic_formula.txt](outputs/regression_symbolic_formula.txt)*
|
94
|
+
|
95
|
+
|
96
|
+
### Classification Example
|
97
|
+
```python
|
98
|
+
from oikan.model import OIKANClassifier
|
99
|
+
|
100
|
+
# Similar sklearn-style interface for classification
|
101
|
+
model = OIKANClassifier(hidden_dims=[16, 8])
|
102
|
+
model.fit(X_train, y_train)
|
103
|
+
probas = model.predict_proba(X_test)
|
104
|
+
|
105
|
+
# Save classification formulas with implementation guidelines
|
106
|
+
# The output file will contain:
|
107
|
+
# - Decision boundary formulas for each class
|
108
|
+
# - Softmax application instructions
|
109
|
+
# - Production deployment recommendations
|
110
|
+
model.save_symbolic_formula("classification_formula.txt")
|
111
|
+
```
|
112
|
+
|
113
|
+
*Example of the saved symbolic formula instructions: [outputs/classification_symbolic_formula.txt](outputs/classification_symbolic_formula.txt)*
|
114
|
+
|
115
|
+
## Architecture Details
|
116
|
+
|
117
|
+
OIKAN implements a novel neuro-symbolic architecture based on Kolmogorov-Arnold representation theory through three specialized components:
|
118
|
+
|
119
|
+
1. **Edge Symbolic Layer**: Learns interpretable single-variable transformations
|
120
|
+
- Adaptive basis function composition using 9 core functions:
|
121
|
+
```python
|
122
|
+
ADVANCED_LIB = {
|
123
|
+
'x': ('x', lambda x: x),
|
124
|
+
'x^2': ('x^2', lambda x: x**2),
|
125
|
+
'x^3': ('x^3', lambda x: x**3),
|
126
|
+
'exp': ('exp(x)', lambda x: np.exp(x)),
|
127
|
+
'log': ('log(x)', lambda x: np.log(abs(x) + 1)),
|
128
|
+
'sqrt': ('sqrt(x)', lambda x: np.sqrt(abs(x))),
|
129
|
+
'tanh': ('tanh(x)', lambda x: np.tanh(x)),
|
130
|
+
'sin': ('sin(x)', lambda x: np.sin(x)),
|
131
|
+
'abs': ('abs(x)', lambda x: np.abs(x))
|
132
|
+
}
|
133
|
+
```
|
134
|
+
- Each input feature is transformed through these basis functions
|
135
|
+
- Learnable weights determine the optimal combination
|
136
|
+
|
137
|
+
2. **Neural Composition Layer**: Multi-layer feature aggregation
|
138
|
+
- Direct feature-to-feature connections through KAN layers
|
139
|
+
- Dropout regularization (p=0.1 default) for robust learning
|
140
|
+
- Gradient clipping (max_norm=1.0) for stable training
|
141
|
+
- User-configurable hidden layer dimensions
|
142
|
+
|
143
|
+
3. **Symbolic Extraction Layer**: Generates production-ready formulas
|
144
|
+
- Weight-based term pruning (threshold=1e-4)
|
145
|
+
- Automatic coefficient optimization
|
146
|
+
- Human-readable mathematical expressions
|
147
|
+
- Exportable to lightweight production code
|
148
|
+
|
149
|
+
### Architecture Diagram
|
150
|
+
|
151
|
+

|
152
|
+
|
153
|
+
### Key Design Principles
|
154
|
+
|
155
|
+
1. **Interpretability First**: All transformations maintain clear mathematical meaning
|
156
|
+
2. **Scikit-learn Compatibility**: Familiar `.fit()` and `.predict()` interface
|
157
|
+
3. **Production Ready**: Export formulas as lightweight mathematical expressions
|
158
|
+
4. **Automatic Simplification**: Remove insignificant terms (|w| < 1e-4)
|
159
|
+
|
160
|
+
## Model Components
|
161
|
+
|
162
|
+
1. **Symbolic Edge Functions**
|
163
|
+
```python
|
164
|
+
class EdgeActivation(nn.Module):
|
165
|
+
"""Learnable edge activation with basis functions"""
|
166
|
+
def forward(self, x):
|
167
|
+
return sum(self.weights[i] * basis[i](x) for i in range(self.num_basis))
|
168
|
+
```
|
169
|
+
|
170
|
+
2. **KAN Layer Implementation**
|
171
|
+
```python
|
172
|
+
class KANLayer(nn.Module):
|
173
|
+
"""Kolmogorov-Arnold Network layer"""
|
174
|
+
def forward(self, x):
|
175
|
+
edge_outputs = [self.edges[i](x[:,i]) for i in range(self.input_dim)]
|
176
|
+
return self.combine(edge_outputs)
|
177
|
+
```
|
178
|
+
|
179
|
+
3. **Formula Extraction**
|
180
|
+
```python
|
181
|
+
def get_symbolic_formula(self):
|
182
|
+
"""Extract interpretable mathematical expression"""
|
183
|
+
terms = []
|
184
|
+
for i, edge in enumerate(self.edges):
|
185
|
+
if abs(self.weights[i]) > threshold:
|
186
|
+
terms.append(f"{self.weights[i]:.4f} * {edge.formula}")
|
187
|
+
return " + ".join(terms)
|
188
|
+
```
|
189
|
+
|
190
|
+
### Key Design Principles
|
191
|
+
|
192
|
+
- **Modular Architecture**: Each component is independent and replaceable
|
193
|
+
- **Interpretability First**: All transformations maintain symbolic representations
|
194
|
+
- **Automatic Simplification**: Removes insignificant terms and combines similar expressions
|
195
|
+
- **Production Ready**: Export formulas for lightweight deployment
|
196
|
+
|
197
|
+
## Contributing
|
198
|
+
|
199
|
+
We welcome contributions! Key areas of interest:
|
200
|
+
|
201
|
+
- Model architecture improvements
|
202
|
+
- Novel basis function implementations
|
203
|
+
- Improved symbolic extraction algorithms
|
204
|
+
- Real-world case studies and applications
|
205
|
+
- Performance optimizations
|
206
|
+
|
207
|
+
Please see [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.
|
208
|
+
|
209
|
+
## Citation
|
210
|
+
|
211
|
+
If you use OIKAN in your research, please cite:
|
212
|
+
|
213
|
+
```bibtex
|
214
|
+
@software{oikan2025,
|
215
|
+
title = {OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks},
|
216
|
+
author = {Zhalgasbayev, Arman},
|
217
|
+
year = {2025},
|
218
|
+
url = {https://github.com/silvermete0r/OIKAN}
|
219
|
+
}
|
220
|
+
```
|
221
|
+
|
222
|
+
## License
|
223
|
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
oikan-0.0.2.2/README.md
ADDED
@@ -0,0 +1,206 @@
|
|
1
|
+
<!-- logo in the center -->
|
2
|
+
<div align="center">
|
3
|
+
<img src="docs/media/oikan_logo.png" alt="OIKAN Logo" width="200"/>
|
4
|
+
|
5
|
+
<h1>OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks</h1>
|
6
|
+
</div>
|
7
|
+
|
8
|
+
## Overview
|
9
|
+
OIKAN (Optimized Interpretable Kolmogorov-Arnold Networks) is a neuro-symbolic ML framework that combines modern neural networks with classical Kolmogorov-Arnold representation theory. It provides interpretable machine learning solutions through automatic extraction of symbolic mathematical formulas from trained models.
|
10
|
+
|
11
|
+
[](https://badge.fury.io/py/oikan)
|
12
|
+
[](https://pypistats.org/packages/oikan)
|
13
|
+
[](https://pepy.tech/projects/oikan)
|
14
|
+
[](https://opensource.org/licenses/MIT)
|
15
|
+
[](https://github.com/silvermete0r/oikan/issues)
|
16
|
+
[](https://silvermete0r.github.io/oikan/)
|
17
|
+
|
18
|
+
## Key Features
|
19
|
+
- 🧠 **Neuro-Symbolic ML**: Combines neural network learning with symbolic mathematics
|
20
|
+
- 📊 **Automatic Formula Extraction**: Generates human-readable mathematical expressions
|
21
|
+
- 🎯 **Scikit-learn Compatible**: Familiar `.fit()` and `.predict()` interface
|
22
|
+
- 🚀 **Production-Ready**: Export symbolic formulas for lightweight deployment
|
23
|
+
- 📈 **Multi-Task**: Supports both regression and classification problems
|
24
|
+
|
25
|
+
## Scientific Foundation
|
26
|
+
|
27
|
+
OIKAN is based on Kolmogorov's superposition theorem, which states that any multivariate continuous function can be represented as a composition of single-variable functions. We leverage this theory by:
|
28
|
+
|
29
|
+
1. Using neural networks to learn optimal basis functions through interpretable edge transformations
|
30
|
+
2. Combining transformed features using learnable weights
|
31
|
+
3. Automatically extracting human-readable symbolic formulas
|
32
|
+
|
33
|
+
## Quick Start
|
34
|
+
|
35
|
+
### Installation
|
36
|
+
|
37
|
+
#### Method 1: Via PyPI (Recommended)
|
38
|
+
```bash
|
39
|
+
pip install -qU oikan
|
40
|
+
```
|
41
|
+
|
42
|
+
#### Method 2: Local Development
|
43
|
+
```bash
|
44
|
+
git clone https://github.com/silvermete0r/OIKAN.git
|
45
|
+
cd OIKAN
|
46
|
+
pip install -e . # Install in development mode
|
47
|
+
```
|
48
|
+
|
49
|
+
### Regression Example
|
50
|
+
```python
|
51
|
+
from oikan.model import OIKANRegressor
|
52
|
+
from sklearn.model_selection import train_test_split
|
53
|
+
|
54
|
+
# Initialize model with optimal architecture
|
55
|
+
model = OIKANRegressor(
|
56
|
+
hidden_dims=[16, 8], # Network architecture
|
57
|
+
num_basis=10, # Number of basis functions
|
58
|
+
degree=3, # Polynomial degree
|
59
|
+
dropout=0.1 # Regularization
|
60
|
+
)
|
61
|
+
|
62
|
+
# Fit model (sklearn-style)
|
63
|
+
model.fit(X_train, y_train, epochs=200, lr=0.01)
|
64
|
+
|
65
|
+
# Get predictions
|
66
|
+
y_pred = model.predict(X_test)
|
67
|
+
|
68
|
+
# Save interpretable formula to file with auto-generated guidelines
|
69
|
+
# The output file will contain:
|
70
|
+
# - Detailed symbolic formulas for each feature
|
71
|
+
# - Instructions for practical implementation
|
72
|
+
# - Recommendations for production deployment
|
73
|
+
model.save_symbolic_formula("regression_formula.txt")
|
74
|
+
```
|
75
|
+
|
76
|
+
*Example of the saved symbolic formula instructions: [outputs/regression_symbolic_formula.txt](outputs/regression_symbolic_formula.txt)*
|
77
|
+
|
78
|
+
|
79
|
+
### Classification Example
|
80
|
+
```python
|
81
|
+
from oikan.model import OIKANClassifier
|
82
|
+
|
83
|
+
# Similar sklearn-style interface for classification
|
84
|
+
model = OIKANClassifier(hidden_dims=[16, 8])
|
85
|
+
model.fit(X_train, y_train)
|
86
|
+
probas = model.predict_proba(X_test)
|
87
|
+
|
88
|
+
# Save classification formulas with implementation guidelines
|
89
|
+
# The output file will contain:
|
90
|
+
# - Decision boundary formulas for each class
|
91
|
+
# - Softmax application instructions
|
92
|
+
# - Production deployment recommendations
|
93
|
+
model.save_symbolic_formula("classification_formula.txt")
|
94
|
+
```
|
95
|
+
|
96
|
+
*Example of the saved symbolic formula instructions: [outputs/classification_symbolic_formula.txt](outputs/classification_symbolic_formula.txt)*
|
97
|
+
|
98
|
+
## Architecture Details
|
99
|
+
|
100
|
+
OIKAN implements a novel neuro-symbolic architecture based on Kolmogorov-Arnold representation theory through three specialized components:
|
101
|
+
|
102
|
+
1. **Edge Symbolic Layer**: Learns interpretable single-variable transformations
|
103
|
+
- Adaptive basis function composition using 9 core functions:
|
104
|
+
```python
|
105
|
+
ADVANCED_LIB = {
|
106
|
+
'x': ('x', lambda x: x),
|
107
|
+
'x^2': ('x^2', lambda x: x**2),
|
108
|
+
'x^3': ('x^3', lambda x: x**3),
|
109
|
+
'exp': ('exp(x)', lambda x: np.exp(x)),
|
110
|
+
'log': ('log(x)', lambda x: np.log(abs(x) + 1)),
|
111
|
+
'sqrt': ('sqrt(x)', lambda x: np.sqrt(abs(x))),
|
112
|
+
'tanh': ('tanh(x)', lambda x: np.tanh(x)),
|
113
|
+
'sin': ('sin(x)', lambda x: np.sin(x)),
|
114
|
+
'abs': ('abs(x)', lambda x: np.abs(x))
|
115
|
+
}
|
116
|
+
```
|
117
|
+
- Each input feature is transformed through these basis functions
|
118
|
+
- Learnable weights determine the optimal combination
|
119
|
+
|
120
|
+
2. **Neural Composition Layer**: Multi-layer feature aggregation
|
121
|
+
- Direct feature-to-feature connections through KAN layers
|
122
|
+
- Dropout regularization (p=0.1 default) for robust learning
|
123
|
+
- Gradient clipping (max_norm=1.0) for stable training
|
124
|
+
- User-configurable hidden layer dimensions
|
125
|
+
|
126
|
+
3. **Symbolic Extraction Layer**: Generates production-ready formulas
|
127
|
+
- Weight-based term pruning (threshold=1e-4)
|
128
|
+
- Automatic coefficient optimization
|
129
|
+
- Human-readable mathematical expressions
|
130
|
+
- Exportable to lightweight production code
|
131
|
+
|
132
|
+
### Architecture Diagram
|
133
|
+
|
134
|
+

|
135
|
+
|
136
|
+
### Key Design Principles
|
137
|
+
|
138
|
+
1. **Interpretability First**: All transformations maintain clear mathematical meaning
|
139
|
+
2. **Scikit-learn Compatibility**: Familiar `.fit()` and `.predict()` interface
|
140
|
+
3. **Production Ready**: Export formulas as lightweight mathematical expressions
|
141
|
+
4. **Automatic Simplification**: Remove insignificant terms (|w| < 1e-4)
|
142
|
+
|
143
|
+
## Model Components
|
144
|
+
|
145
|
+
1. **Symbolic Edge Functions**
|
146
|
+
```python
|
147
|
+
class EdgeActivation(nn.Module):
|
148
|
+
"""Learnable edge activation with basis functions"""
|
149
|
+
def forward(self, x):
|
150
|
+
return sum(self.weights[i] * basis[i](x) for i in range(self.num_basis))
|
151
|
+
```
|
152
|
+
|
153
|
+
2. **KAN Layer Implementation**
|
154
|
+
```python
|
155
|
+
class KANLayer(nn.Module):
|
156
|
+
"""Kolmogorov-Arnold Network layer"""
|
157
|
+
def forward(self, x):
|
158
|
+
edge_outputs = [self.edges[i](x[:,i]) for i in range(self.input_dim)]
|
159
|
+
return self.combine(edge_outputs)
|
160
|
+
```
|
161
|
+
|
162
|
+
3. **Formula Extraction**
|
163
|
+
```python
|
164
|
+
def get_symbolic_formula(self):
|
165
|
+
"""Extract interpretable mathematical expression"""
|
166
|
+
terms = []
|
167
|
+
for i, edge in enumerate(self.edges):
|
168
|
+
if abs(self.weights[i]) > threshold:
|
169
|
+
terms.append(f"{self.weights[i]:.4f} * {edge.formula}")
|
170
|
+
return " + ".join(terms)
|
171
|
+
```
|
172
|
+
|
173
|
+
### Key Design Principles
|
174
|
+
|
175
|
+
- **Modular Architecture**: Each component is independent and replaceable
|
176
|
+
- **Interpretability First**: All transformations maintain symbolic representations
|
177
|
+
- **Automatic Simplification**: Removes insignificant terms and combines similar expressions
|
178
|
+
- **Production Ready**: Export formulas for lightweight deployment
|
179
|
+
|
180
|
+
## Contributing
|
181
|
+
|
182
|
+
We welcome contributions! Key areas of interest:
|
183
|
+
|
184
|
+
- Model architecture improvements
|
185
|
+
- Novel basis function implementations
|
186
|
+
- Improved symbolic extraction algorithms
|
187
|
+
- Real-world case studies and applications
|
188
|
+
- Performance optimizations
|
189
|
+
|
190
|
+
Please see [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.
|
191
|
+
|
192
|
+
## Citation
|
193
|
+
|
194
|
+
If you use OIKAN in your research, please cite:
|
195
|
+
|
196
|
+
```bibtex
|
197
|
+
@software{oikan2025,
|
198
|
+
title = {OIKAN: Optimized Interpretable Kolmogorov-Arnold Networks},
|
199
|
+
author = {Zhalgasbayev, Arman},
|
200
|
+
year = {2025},
|
201
|
+
url = {https://github.com/silvermete0r/OIKAN}
|
202
|
+
}
|
203
|
+
```
|
204
|
+
|
205
|
+
## License
|
206
|
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
@@ -0,0 +1,15 @@
|
|
1
|
+
class OikanError(Exception):
|
2
|
+
"""Base exception class for OIKAN"""
|
3
|
+
pass
|
4
|
+
|
5
|
+
class NotFittedError(OikanError):
|
6
|
+
"""Raised when prediction is attempted on unfitted model"""
|
7
|
+
pass
|
8
|
+
|
9
|
+
class DataError(OikanError):
|
10
|
+
"""Raised when there are issues with input data"""
|
11
|
+
pass
|
12
|
+
|
13
|
+
class InitializationError(OikanError):
|
14
|
+
"""Raised when model initialization fails"""
|
15
|
+
pass
|