ocf-data-sampler 0.5.15__tar.gz → 0.5.16__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ocf-data-sampler might be problematic. Click here for more details.

Files changed (72) hide show
  1. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/PKG-INFO +1 -1
  2. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/numpy_sample/nwp.py +1 -1
  3. ocf_data_sampler-0.5.16/ocf_data_sampler/select/diff_channels.py +25 -0
  4. ocf_data_sampler-0.5.16/ocf_data_sampler/select/select_time_slice.py +107 -0
  5. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/datasets/pvnet_uk.py +3 -1
  6. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/datasets/site.py +4 -3
  7. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/utils/__init__.py +2 -1
  8. ocf_data_sampler-0.5.16/ocf_data_sampler/torch_datasets/utils/diff_nwp_data.py +20 -0
  9. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/utils/time_slice_for_dataset.py +10 -2
  10. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler.egg-info/PKG-INFO +1 -1
  11. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler.egg-info/SOURCES.txt +2 -0
  12. ocf_data_sampler-0.5.15/ocf_data_sampler/select/select_time_slice.py +0 -143
  13. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/LICENSE +0 -0
  14. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/README.md +0 -0
  15. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/__init__.py +0 -0
  16. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/config/__init__.py +0 -0
  17. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/config/load.py +0 -0
  18. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/config/model.py +0 -0
  19. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/config/save.py +0 -0
  20. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/data/uk_gsp_locations_20220314.csv +0 -0
  21. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/data/uk_gsp_locations_20250109.csv +0 -0
  22. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/__init__.py +0 -0
  23. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/gsp.py +0 -0
  24. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/load_dataset.py +0 -0
  25. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/nwp/__init__.py +0 -0
  26. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/nwp/nwp.py +0 -0
  27. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/nwp/providers/__init__.py +0 -0
  28. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/nwp/providers/cloudcasting.py +0 -0
  29. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/nwp/providers/ecmwf.py +0 -0
  30. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/nwp/providers/gfs.py +0 -0
  31. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/nwp/providers/icon.py +0 -0
  32. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/nwp/providers/ukv.py +0 -0
  33. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/nwp/providers/utils.py +0 -0
  34. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/open_xarray_tensorstore.py +0 -0
  35. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/satellite.py +0 -0
  36. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/site.py +0 -0
  37. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/load/utils.py +0 -0
  38. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/numpy_sample/__init__.py +0 -0
  39. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/numpy_sample/collate.py +0 -0
  40. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/numpy_sample/common_types.py +0 -0
  41. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/numpy_sample/datetime_features.py +0 -0
  42. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/numpy_sample/gsp.py +0 -0
  43. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/numpy_sample/satellite.py +0 -0
  44. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/numpy_sample/site.py +0 -0
  45. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/numpy_sample/sun_position.py +0 -0
  46. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/select/__init__.py +0 -0
  47. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/select/dropout.py +0 -0
  48. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/select/fill_time_periods.py +0 -0
  49. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/select/find_contiguous_time_periods.py +0 -0
  50. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/select/geospatial.py +0 -0
  51. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/select/location.py +0 -0
  52. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/select/select_spatial_slice.py +0 -0
  53. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/datasets/__init__.py +0 -0
  54. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/sample/__init__.py +0 -0
  55. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/sample/base.py +0 -0
  56. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/sample/site.py +0 -0
  57. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/sample/uk_regional.py +0 -0
  58. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/utils/add_alterate_coordinate_projections.py +0 -0
  59. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/utils/config_normalization_values_to_dicts.py +0 -0
  60. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/utils/merge_and_fill_utils.py +0 -0
  61. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/utils/spatial_slice_for_dataset.py +0 -0
  62. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/utils/valid_time_periods.py +0 -0
  63. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/torch_datasets/utils/validation_utils.py +0 -0
  64. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler/utils.py +0 -0
  65. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler.egg-info/dependency_links.txt +0 -0
  66. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler.egg-info/requires.txt +0 -0
  67. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/ocf_data_sampler.egg-info/top_level.txt +0 -0
  68. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/pyproject.toml +0 -0
  69. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/scripts/download_gsp_location_data.py +0 -0
  70. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/scripts/refactor_site.py +0 -0
  71. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/setup.cfg +0 -0
  72. {ocf_data_sampler-0.5.15 → ocf_data_sampler-0.5.16}/tests/test_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ocf-data-sampler
3
- Version: 0.5.15
3
+ Version: 0.5.16
4
4
  Author: James Fulton, Peter Dudfield
5
5
  Author-email: Open Climate Fix team <info@openclimatefix.org>
6
6
  License: MIT License
@@ -28,7 +28,7 @@ def convert_nwp_to_numpy_sample(da: xr.DataArray, t0_idx: int | None = None) ->
28
28
  NWPSampleKey.channel_names: da.channel.values,
29
29
  NWPSampleKey.init_time_utc: da.init_time_utc.values.astype(float),
30
30
  NWPSampleKey.step: (da.step.values / 3600).astype(int),
31
- NWPSampleKey.target_time_utc: da.target_time_utc.values.astype(float),
31
+ NWPSampleKey.target_time_utc: (da.init_time_utc.values + da.step.values).astype(float),
32
32
  }
33
33
 
34
34
  if t0_idx is not None:
@@ -0,0 +1,25 @@
1
+ """Takes the diff along the step axis for a given set of channels."""
2
+
3
+ import numpy as np
4
+ import xarray as xr
5
+
6
+
7
+ def diff_channels(da: xr.DataArray, accum_channels: list[str]) -> xr.DataArray:
8
+ """Perform in-place diff of the given channels of the DataArray in the steps dimension.
9
+
10
+ Args:
11
+ da: The DataArray to slice from
12
+ accum_channels: Channels which are accumulated and need to be differenced
13
+ """
14
+ if da.dims[:2] != ("step", "channel"):
15
+ raise ValueError("This function assumes the first two dimensions are step then channel")
16
+
17
+ all_channels = da.channel.values
18
+ accum_channel_inds = [i for i, c in enumerate(all_channels) if c in accum_channels]
19
+
20
+ # Make a copy of the values to avoid changing the underlying numpy array
21
+ vals = da.values.copy()
22
+ vals[:-1, accum_channel_inds] = np.diff(vals[:, accum_channel_inds], axis=0)
23
+ da.values = vals
24
+
25
+ return da.isel(step=slice(0, -1))
@@ -0,0 +1,107 @@
1
+ """Select a time slice from a Dataset or DataArray."""
2
+
3
+ import numpy as np
4
+ import pandas as pd
5
+ import xarray as xr
6
+
7
+
8
+ def select_time_slice(
9
+ da: xr.DataArray,
10
+ t0: pd.Timestamp,
11
+ interval_start: pd.Timedelta,
12
+ interval_end: pd.Timedelta,
13
+ time_resolution: pd.Timedelta,
14
+ ) -> xr.DataArray:
15
+ """Select a time slice from a DataArray.
16
+
17
+ Args:
18
+ da: The DataArray to slice from
19
+ t0: The init-time
20
+ interval_start: The start of the interval with respect to t0
21
+ interval_end: The end of the interval with respect to t0
22
+ time_resolution: Distance between neighbouring timestamps
23
+ """
24
+ start_dt = t0 + interval_start
25
+ end_dt = t0 + interval_end
26
+
27
+ start_dt = start_dt.ceil(time_resolution)
28
+ end_dt = end_dt.ceil(time_resolution)
29
+
30
+ return da.sel(time_utc=slice(start_dt, end_dt))
31
+
32
+
33
+ def select_time_slice_nwp(
34
+ da: xr.DataArray,
35
+ t0: pd.Timestamp,
36
+ interval_start: pd.Timedelta,
37
+ interval_end: pd.Timedelta,
38
+ time_resolution: pd.Timedelta,
39
+ dropout_timedeltas: list[pd.Timedelta] | None = None,
40
+ dropout_frac: float | None = 0,
41
+ ) -> xr.DataArray:
42
+ """Select a time slice from an NWP DataArray.
43
+
44
+ Args:
45
+ da: The DataArray to slice from
46
+ t0: The init-time
47
+ interval_start: The start of the interval with respect to t0
48
+ interval_end: The end of the interval with respect to t0
49
+ time_resolution: Distance between neighbouring timestamps
50
+ dropout_timedeltas: List of possible timedeltas before t0 where data availability may start
51
+ dropout_frac: Probability to apply dropout
52
+ """
53
+ # Input checking
54
+ if dropout_timedeltas is None:
55
+ dropout_timedeltas = []
56
+
57
+ if len(dropout_timedeltas)>0:
58
+ if not all(t < pd.Timedelta(0) for t in dropout_timedeltas):
59
+ raise ValueError("dropout timedeltas must be negative")
60
+ if len(dropout_timedeltas) < 1:
61
+ raise ValueError("dropout timedeltas must have at least one element")
62
+
63
+ if not (0 <= dropout_frac <= 1):
64
+ raise ValueError("dropout_frac must be between 0 and 1")
65
+
66
+ consider_dropout = len(dropout_timedeltas) > 0 and dropout_frac > 0
67
+
68
+ start_dt = (t0 + interval_start).ceil(time_resolution)
69
+ end_dt = (t0 + interval_end).ceil(time_resolution)
70
+ target_times = pd.date_range(start_dt, end_dt, freq=time_resolution)
71
+
72
+ # Potentially apply NWP dropout
73
+ if consider_dropout and (np.random.uniform() < dropout_frac):
74
+ t0_available = t0 + np.random.choice(dropout_timedeltas)
75
+ else:
76
+ t0_available = t0
77
+
78
+ # Get the available and relevant init-times
79
+ t_min = target_times[0] - da.step.values[-1]
80
+ init_times = da.init_time_utc.values
81
+ available_init_times = init_times[(t_min<=init_times) & (init_times<=t0_available)]
82
+
83
+ # Find the most recent available init-times for all target-times
84
+ selected_init_times = np.array(
85
+ [available_init_times[available_init_times<=t][-1] for t in target_times],
86
+ )
87
+
88
+ # Find the required steps for all target-times
89
+ steps = target_times - selected_init_times
90
+
91
+ # If we are only selecting from one init-time we can construct the slice so its faster
92
+ if len(np.unique(selected_init_times))==1:
93
+ da_sel = da.sel(init_time_utc=selected_init_times[0], step=slice(steps[0], steps[-1]))
94
+
95
+ # If we are selecting from multiple init times this more complex and slower
96
+ else:
97
+ # We want one timestep for each target_time_hourly (obviously!) If we simply do
98
+ # nwp.sel(init_time=init_times, step=steps) then we'll get the *product* of
99
+ # init_times and steps, which is not what we want! Instead, we use xarray's
100
+ # vectorised-indexing mode via using a DataArray indexer. See the last example here:
101
+ # https://docs.xarray.dev/en/latest/user-guide/indexing.html#more-advanced-indexing
102
+ coords = {"step": steps}
103
+ init_time_indexer = xr.DataArray(selected_init_times, coords=coords)
104
+ step_indexer = xr.DataArray(steps, coords=coords)
105
+ da_sel = da.sel(init_time_utc=init_time_indexer, step=step_indexer)
106
+
107
+ return da_sel
@@ -22,6 +22,7 @@ from ocf_data_sampler.select import Location, fill_time_periods
22
22
  from ocf_data_sampler.torch_datasets.utils import (
23
23
  add_alterate_coordinate_projections,
24
24
  config_normalization_values_to_dicts,
25
+ diff_nwp_data,
25
26
  fill_nans_in_arrays,
26
27
  find_valid_time_periods,
27
28
  merge_dicts,
@@ -259,7 +260,7 @@ class PVNetUKRegionalDataset(AbstractPVNetUKDataset):
259
260
  sample_dict = slice_datasets_by_space(self.datasets_dict, location, self.config)
260
261
  sample_dict = slice_datasets_by_time(sample_dict, t0, self.config)
261
262
  sample_dict = tensorstore_compute(sample_dict)
262
-
263
+ sample_dict = diff_nwp_data(sample_dict, self.config)
263
264
  return self.process_and_combine_datasets(sample_dict, t0, location)
264
265
 
265
266
  @override
@@ -318,6 +319,7 @@ class PVNetUKConcurrentDataset(AbstractPVNetUKDataset):
318
319
  # Slice by time then load to avoid loading the data multiple times from disk
319
320
  sample_dict = slice_datasets_by_time(self.datasets_dict, t0, self.config)
320
321
  sample_dict = tensorstore_compute(sample_dict)
322
+ sample_dict = diff_nwp_data(sample_dict, self.config)
321
323
 
322
324
  gsp_samples = []
323
325
 
@@ -27,6 +27,7 @@ from ocf_data_sampler.select import (
27
27
  from ocf_data_sampler.torch_datasets.utils import (
28
28
  add_alterate_coordinate_projections,
29
29
  config_normalization_values_to_dicts,
30
+ diff_nwp_data,
30
31
  fill_nans_in_arrays,
31
32
  find_valid_time_periods,
32
33
  merge_dicts,
@@ -57,6 +58,7 @@ def get_locations(site_xr: xr.Dataset) -> list[Location]:
57
58
 
58
59
  return locations
59
60
 
61
+
60
62
  def process_and_combine_datasets(
61
63
  dataset_dict: dict,
62
64
  config: Configuration,
@@ -80,8 +82,6 @@ def process_and_combine_datasets(
80
82
 
81
83
  for nwp_key, da_nwp in dataset_dict["nwp"].items():
82
84
 
83
- # Standardise and convert to NumpyBatch
84
-
85
85
  channel_means = means_dict["nwp"][nwp_key]
86
86
  channel_stds = stds_dict["nwp"][nwp_key]
87
87
 
@@ -276,8 +276,8 @@ class SitesDataset(Dataset):
276
276
  """
277
277
  sample_dict = slice_datasets_by_space(self.datasets_dict, location, self.config)
278
278
  sample_dict = slice_datasets_by_time(sample_dict, t0, self.config)
279
-
280
279
  sample_dict = tensorstore_compute(sample_dict)
280
+ sample_dict = diff_nwp_data(sample_dict, self.config)
281
281
 
282
282
  return process_and_combine_datasets(
283
283
  sample_dict,
@@ -414,6 +414,7 @@ class SitesDatasetConcurrent(Dataset):
414
414
  # slice by time first as we want to keep all site id info
415
415
  sample_dict = slice_datasets_by_time(self.datasets_dict, t0, self.config)
416
416
  sample_dict = tensorstore_compute(sample_dict)
417
+ sample_dict = diff_nwp_data(sample_dict, self.config)
417
418
 
418
419
  site_samples = []
419
420
 
@@ -3,4 +3,5 @@ from .merge_and_fill_utils import fill_nans_in_arrays, merge_dicts
3
3
  from .valid_time_periods import find_valid_time_periods
4
4
  from .spatial_slice_for_dataset import slice_datasets_by_space
5
5
  from .time_slice_for_dataset import slice_datasets_by_time
6
- from .add_alterate_coordinate_projections import add_alterate_coordinate_projections
6
+ from .add_alterate_coordinate_projections import add_alterate_coordinate_projections
7
+ from .diff_nwp_data import diff_nwp_data
@@ -0,0 +1,20 @@
1
+ """Take the in-place diff of some channels of the NWP data."""
2
+
3
+ from ocf_data_sampler.config import Configuration
4
+ from ocf_data_sampler.select.diff_channels import diff_channels
5
+
6
+
7
+ def diff_nwp_data(dataset_dict: dict, config: Configuration) -> dict:
8
+ """Take the in-place diff of some channels of the NWP data.
9
+
10
+ Args:
11
+ dataset_dict: Dictionary of xarray datasets
12
+ config: Configuration object
13
+ """
14
+ if "nwp" in dataset_dict:
15
+ for nwp_key, da_nwp in dataset_dict["nwp"].items():
16
+ accum_channels = config.input_data.nwp[nwp_key].accum_channels
17
+ if len(accum_channels)>0:
18
+ # diff_channels() is an in-place operation and modifies the input
19
+ dataset_dict["nwp"][nwp_key] = diff_channels(da_nwp, accum_channels)
20
+ return dataset_dict
@@ -28,15 +28,23 @@ def slice_datasets_by_time(
28
28
  for nwp_key, da_nwp in datasets_dict["nwp"].items():
29
29
  nwp_config = config.input_data.nwp[nwp_key]
30
30
 
31
+ # Add a buffer if we need to diff some of the channels in time
32
+ if len(nwp_config.accum_channels)>0:
33
+ interval_end_mins = (
34
+ nwp_config.interval_end_minutes
35
+ + nwp_config.time_resolution_minutes
36
+ )
37
+ else:
38
+ interval_end_mins = nwp_config.interval_end_minutes
39
+
31
40
  sliced_datasets_dict["nwp"][nwp_key] = select_time_slice_nwp(
32
41
  da_nwp,
33
42
  t0,
34
43
  time_resolution=minutes(nwp_config.time_resolution_minutes),
35
44
  interval_start=minutes(nwp_config.interval_start_minutes),
36
- interval_end=minutes(nwp_config.interval_end_minutes),
45
+ interval_end=minutes(interval_end_mins),
37
46
  dropout_timedeltas=minutes(nwp_config.dropout_timedeltas_minutes),
38
47
  dropout_frac=nwp_config.dropout_fraction,
39
- accum_channels=nwp_config.accum_channels,
40
48
  )
41
49
 
42
50
  if "sat" in datasets_dict:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ocf-data-sampler
3
- Version: 0.5.15
3
+ Version: 0.5.16
4
4
  Author: James Fulton, Peter Dudfield
5
5
  Author-email: Open Climate Fix team <info@openclimatefix.org>
6
6
  License: MIT License
@@ -40,6 +40,7 @@ ocf_data_sampler/numpy_sample/satellite.py
40
40
  ocf_data_sampler/numpy_sample/site.py
41
41
  ocf_data_sampler/numpy_sample/sun_position.py
42
42
  ocf_data_sampler/select/__init__.py
43
+ ocf_data_sampler/select/diff_channels.py
43
44
  ocf_data_sampler/select/dropout.py
44
45
  ocf_data_sampler/select/fill_time_periods.py
45
46
  ocf_data_sampler/select/find_contiguous_time_periods.py
@@ -57,6 +58,7 @@ ocf_data_sampler/torch_datasets/sample/uk_regional.py
57
58
  ocf_data_sampler/torch_datasets/utils/__init__.py
58
59
  ocf_data_sampler/torch_datasets/utils/add_alterate_coordinate_projections.py
59
60
  ocf_data_sampler/torch_datasets/utils/config_normalization_values_to_dicts.py
61
+ ocf_data_sampler/torch_datasets/utils/diff_nwp_data.py
60
62
  ocf_data_sampler/torch_datasets/utils/merge_and_fill_utils.py
61
63
  ocf_data_sampler/torch_datasets/utils/spatial_slice_for_dataset.py
62
64
  ocf_data_sampler/torch_datasets/utils/time_slice_for_dataset.py
@@ -1,143 +0,0 @@
1
- """Select a time slice from a Dataset or DataArray."""
2
-
3
- import numpy as np
4
- import pandas as pd
5
- import xarray as xr
6
-
7
-
8
- def select_time_slice(
9
- da: xr.DataArray,
10
- t0: pd.Timestamp,
11
- interval_start: pd.Timedelta,
12
- interval_end: pd.Timedelta,
13
- time_resolution: pd.Timedelta,
14
- ) -> xr.DataArray:
15
- """Select a time slice from a DataArray.
16
-
17
- Args:
18
- da: The DataArray to slice from
19
- t0: The init-time
20
- interval_start: The start of the interval with respect to t0
21
- interval_end: The end of the interval with respect to t0
22
- time_resolution: Distance between neighbouring timestamps
23
- """
24
- start_dt = t0 + interval_start
25
- end_dt = t0 + interval_end
26
-
27
- start_dt = start_dt.ceil(time_resolution)
28
- end_dt = end_dt.ceil(time_resolution)
29
-
30
- return da.sel(time_utc=slice(start_dt, end_dt))
31
-
32
-
33
- def select_time_slice_nwp(
34
- da: xr.DataArray,
35
- t0: pd.Timestamp,
36
- interval_start: pd.Timedelta,
37
- interval_end: pd.Timedelta,
38
- time_resolution: pd.Timedelta,
39
- dropout_timedeltas: list[pd.Timedelta] | None = None,
40
- dropout_frac: float | None = 0,
41
- accum_channels: list[str] | None = None,
42
- ) -> xr.DataArray:
43
- """Select a time slice from an NWP DataArray.
44
-
45
- Args:
46
- da: The DataArray to slice from
47
- t0: The init-time
48
- interval_start: The start of the interval with respect to t0
49
- interval_end: The end of the interval with respect to t0
50
- time_resolution: Distance between neighbouring timestamps
51
- dropout_timedeltas: List of possible timedeltas before t0 where data availability may start
52
- dropout_frac: Probability to apply dropout
53
- accum_channels: Channels which are accumulated and need to be differenced
54
- """
55
- if accum_channels is None:
56
- accum_channels = []
57
-
58
- if dropout_timedeltas is None:
59
- dropout_timedeltas = []
60
-
61
- if len(dropout_timedeltas)>0:
62
- if not all(t < pd.Timedelta(0) for t in dropout_timedeltas):
63
- raise ValueError("dropout timedeltas must be negative")
64
- if len(dropout_timedeltas) < 1:
65
- raise ValueError("dropout timedeltas must have at least one element")
66
-
67
- if not (0 <= dropout_frac <= 1):
68
- raise ValueError("dropout_frac must be between 0 and 1")
69
-
70
- consider_dropout = len(dropout_timedeltas) > 0 and dropout_frac > 0
71
-
72
- # The accumatated and non-accumulated channels
73
- accum_channels = np.intersect1d(da.channel.values, accum_channels)
74
- non_accum_channels = np.setdiff1d(da.channel.values, accum_channels)
75
-
76
- start_dt = (t0 + interval_start).ceil(time_resolution)
77
- end_dt = (t0 + interval_end).ceil(time_resolution)
78
- target_times = pd.date_range(start_dt, end_dt, freq=time_resolution)
79
-
80
- # Potentially apply NWP dropout
81
- if consider_dropout and (np.random.uniform() < dropout_frac):
82
- dt = np.random.choice(dropout_timedeltas)
83
- t0_available = t0 + dt
84
- else:
85
- t0_available = t0
86
-
87
- # Forecasts made up to and including t0
88
- available_init_times = da.init_time_utc.sel(init_time_utc=slice(None, t0_available))
89
-
90
- # Find the most recent available init times for all target times
91
- selected_init_times = available_init_times.sel(
92
- init_time_utc=target_times,
93
- method="ffill", # forward fill from init times to target times
94
- ).values
95
-
96
- # Find the required steps for all target times
97
- steps = target_times - selected_init_times
98
-
99
- # We want one timestep for each target_time_hourly (obviously!) If we simply do
100
- # nwp.sel(init_time=init_times, step=steps) then we'll get the *product* of
101
- # init_times and steps, which is not what we want! Instead, we use xarray's
102
- # vectorised-indexing mode via using a DataArray indexer. See the last example here:
103
- # https://docs.xarray.dev/en/latest/user-guide/indexing.html#more-advanced-indexing
104
-
105
- coords = {"target_time_utc": target_times}
106
- init_time_indexer = xr.DataArray(selected_init_times, coords=coords)
107
- step_indexer = xr.DataArray(steps, coords=coords)
108
-
109
- if len(accum_channels) == 0:
110
- da_sel = da.sel(step=step_indexer, init_time_utc=init_time_indexer)
111
- else:
112
- # First minimise the size of the dataset we are diffing
113
- # - find the init times we are slicing from
114
- unique_init_times = np.unique(selected_init_times)
115
- # - find the min and max steps we slice over. Max is extended due to diff
116
- min_step = min(steps)
117
- max_step = max(steps) + time_resolution
118
-
119
- da_min = da.sel(init_time_utc=unique_init_times, step=slice(min_step, max_step))
120
-
121
- # Slice out the data which does not need to be diffed
122
- da_non_accum = da_min.sel(channel=non_accum_channels)
123
- da_sel_non_accum = da_non_accum.sel(step=step_indexer, init_time_utc=init_time_indexer)
124
-
125
- # Slice out the channels which need to be diffed
126
- da_accum = da_min.sel(channel=accum_channels)
127
-
128
- # Take the diff and slice requested data
129
- da_accum = da_accum.diff(dim="step", label="lower")
130
- da_sel_accum = da_accum.sel(step=step_indexer, init_time_utc=init_time_indexer)
131
-
132
- # Join diffed and non-diffed variables
133
- da_sel = xr.concat([da_sel_non_accum, da_sel_accum], dim="channel")
134
-
135
- # Reorder the variable back to the original order
136
- da_sel = da_sel.sel(channel=da.channel.values)
137
-
138
- # Rename the diffed channels
139
- da_sel["channel"] = [
140
- f"diff_{v}" if v in accum_channels else v for v in da_sel.channel.values
141
- ]
142
-
143
- return da_sel