ocf-data-sampler 0.3.0__tar.gz → 0.3.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ocf-data-sampler might be problematic. Click here for more details.

Files changed (69) hide show
  1. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/PKG-INFO +1 -1
  2. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/config/model.py +33 -4
  3. ocf_data_sampler-0.3.1/ocf_data_sampler/select/dropout.py +61 -0
  4. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler.egg-info/PKG-INFO +1 -1
  5. ocf_data_sampler-0.3.0/ocf_data_sampler/select/dropout.py +0 -47
  6. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/LICENSE +0 -0
  7. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/README.md +0 -0
  8. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/__init__.py +0 -0
  9. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/config/__init__.py +0 -0
  10. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/config/load.py +0 -0
  11. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/config/save.py +0 -0
  12. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/data/uk_gsp_locations_20220314.csv +0 -0
  13. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/data/uk_gsp_locations_20250109.csv +0 -0
  14. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/__init__.py +0 -0
  15. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/gsp.py +0 -0
  16. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/load_dataset.py +0 -0
  17. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/nwp/__init__.py +0 -0
  18. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/nwp/nwp.py +0 -0
  19. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/nwp/providers/__init__.py +0 -0
  20. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/nwp/providers/cloudcasting.py +0 -0
  21. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/nwp/providers/ecmwf.py +0 -0
  22. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/nwp/providers/gfs.py +0 -0
  23. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/nwp/providers/icon.py +0 -0
  24. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/nwp/providers/ukv.py +0 -0
  25. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/nwp/providers/utils.py +0 -0
  26. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/open_tensorstore_zarrs.py +0 -0
  27. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/satellite.py +0 -0
  28. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/site.py +0 -0
  29. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/load/utils.py +0 -0
  30. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/numpy_sample/__init__.py +0 -0
  31. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/numpy_sample/collate.py +0 -0
  32. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/numpy_sample/common_types.py +0 -0
  33. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/numpy_sample/datetime_features.py +0 -0
  34. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/numpy_sample/gsp.py +0 -0
  35. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/numpy_sample/nwp.py +0 -0
  36. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/numpy_sample/satellite.py +0 -0
  37. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/numpy_sample/site.py +0 -0
  38. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/numpy_sample/sun_position.py +0 -0
  39. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/select/__init__.py +0 -0
  40. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/select/fill_time_periods.py +0 -0
  41. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/select/find_contiguous_time_periods.py +0 -0
  42. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/select/geospatial.py +0 -0
  43. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/select/location.py +0 -0
  44. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/select/select_spatial_slice.py +0 -0
  45. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/select/select_time_slice.py +0 -0
  46. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/datasets/__init__.py +0 -0
  47. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/datasets/pvnet_uk.py +0 -0
  48. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/datasets/site.py +0 -0
  49. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/sample/__init__.py +0 -0
  50. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/sample/base.py +0 -0
  51. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/sample/site.py +0 -0
  52. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/sample/uk_regional.py +0 -0
  53. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/utils/__init__.py +0 -0
  54. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/utils/channel_dict_to_dataarray.py +0 -0
  55. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/utils/merge_and_fill_utils.py +0 -0
  56. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/utils/spatial_slice_for_dataset.py +0 -0
  57. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/utils/time_slice_for_dataset.py +0 -0
  58. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/utils/valid_time_periods.py +0 -0
  59. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/torch_datasets/utils/validation_utils.py +0 -0
  60. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler/utils.py +0 -0
  61. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler.egg-info/SOURCES.txt +0 -0
  62. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler.egg-info/dependency_links.txt +0 -0
  63. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler.egg-info/requires.txt +0 -0
  64. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/ocf_data_sampler.egg-info/top_level.txt +0 -0
  65. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/pyproject.toml +0 -0
  66. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/scripts/download_gsp_location_data.py +0 -0
  67. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/scripts/refactor_site.py +0 -0
  68. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/setup.cfg +0 -0
  69. {ocf_data_sampler-0.3.0 → ocf_data_sampler-0.3.1}/utils/compute_icon_mean_stddev.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ocf-data-sampler
3
- Version: 0.3.0
3
+ Version: 0.3.1
4
4
  Author: James Fulton, Peter Dudfield
5
5
  Author-email: Open Climate Fix team <info@openclimatefix.org>
6
6
  License: MIT License
@@ -90,11 +90,10 @@ class DropoutMixin(Base):
90
90
  "negative or zero.",
91
91
  )
92
92
 
93
- dropout_fraction: float = Field(
93
+ dropout_fraction: float|list[float] = Field(
94
94
  default=0,
95
- description="Chance of dropout being applied to each sample",
96
- ge=0,
97
- le=1,
95
+ description="Either a float(Chance of dropout being applied to each sample) or a list of "
96
+ "floats (probability that dropout of the corresponding timedelta is applied)",
98
97
  )
99
98
 
100
99
  @field_validator("dropout_timedeltas_minutes")
@@ -105,6 +104,36 @@ class DropoutMixin(Base):
105
104
  raise ValueError("Dropout timedeltas must be negative")
106
105
  return v
107
106
 
107
+
108
+ @field_validator("dropout_fraction")
109
+ def dropout_fractions(cls, dropout_frac: float|list[float]) -> float|list[float]:
110
+ """Validate 'dropout_frac'."""
111
+ from math import isclose
112
+ if isinstance(dropout_frac, float):
113
+ if not (dropout_frac <= 1):
114
+ raise ValueError("Input should be less than or equal to 1")
115
+ elif not (dropout_frac >= 0):
116
+ raise ValueError("Input should be greater than or equal to 0")
117
+
118
+ elif isinstance(dropout_frac, list):
119
+ if not dropout_frac:
120
+ raise ValueError("List cannot be empty")
121
+
122
+ if not all(isinstance(i, float) for i in dropout_frac):
123
+ raise ValueError("All elements in the list must be floats")
124
+
125
+ if not all(0 <= i <= 1 for i in dropout_frac):
126
+ raise ValueError("Each float in the list must be between 0 and 1")
127
+
128
+ if not isclose(sum(dropout_frac), 1.0, rel_tol=1e-9):
129
+ raise ValueError("Sum of all floats in the list must be 1.0")
130
+
131
+
132
+ else:
133
+ raise TypeError("Must be either a float or a list of floats")
134
+ return dropout_frac
135
+
136
+
108
137
  @model_validator(mode="after")
109
138
  def dropout_instructions_consistent(self) -> "DropoutMixin":
110
139
  """Validator for dropout instructions."""
@@ -0,0 +1,61 @@
1
+ """Functions for simulating dropout in time series data.
2
+
3
+ This is used for the following types of data: GSP, Satellite and Site
4
+ This is not used for NWP
5
+ """
6
+
7
+ import numpy as np
8
+ import pandas as pd
9
+ import xarray as xr
10
+
11
+
12
+ def apply_sampled_dropout_time(
13
+ t0: pd.Timestamp,
14
+ dropout_timedeltas: list[pd.Timedelta],
15
+ dropout_frac: float|list[float],
16
+ da: xr.DataArray,
17
+ ) -> xr.DataArray:
18
+ """Randomly pick a dropout time from a list of timedeltas and apply dropout time to the data.
19
+
20
+ Args:
21
+ t0: The forecast init-time
22
+ dropout_timedeltas: List of timedeltas relative to t0 to pick from
23
+ dropout_frac: Either a probability that dropout will be applied.
24
+ This should be between 0 and 1 inclusive.
25
+ Or a list of probabilities for each of the corresponding timedeltas
26
+ da: Xarray DataArray with 'time_utc' coordinate
27
+ """
28
+ if isinstance(dropout_frac, list):
29
+ # checking if len match
30
+ if len(dropout_frac) != len(dropout_timedeltas):
31
+ raise ValueError("Lengths of dropout_frac and dropout_timedeltas should match")
32
+
33
+
34
+
35
+
36
+ dropout_time = t0 + np.random.choice(dropout_timedeltas,p=dropout_frac)
37
+
38
+ return da.where(da.time_utc <= dropout_time)
39
+
40
+
41
+
42
+ # old logic
43
+ else:
44
+ # sample dropout time
45
+ if dropout_frac > 0 and len(dropout_timedeltas) == 0:
46
+ raise ValueError("To apply dropout, dropout_timedeltas must be provided")
47
+
48
+
49
+ if not (0 <= dropout_frac <= 1):
50
+ raise ValueError("dropout_frac must be between 0 and 1 inclusive")
51
+
52
+ if (len(dropout_timedeltas) == 0) or (np.random.uniform() >= dropout_frac):
53
+ dropout_time = None
54
+ else:
55
+ dropout_time = t0 + np.random.choice(dropout_timedeltas)
56
+
57
+ # apply dropout time
58
+ if dropout_time is None:
59
+ return da
60
+ # This replaces the times after the dropout with NaNs
61
+ return da.where(da.time_utc <= dropout_time)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ocf-data-sampler
3
- Version: 0.3.0
3
+ Version: 0.3.1
4
4
  Author: James Fulton, Peter Dudfield
5
5
  Author-email: Open Climate Fix team <info@openclimatefix.org>
6
6
  License: MIT License
@@ -1,47 +0,0 @@
1
- """Functions for simulating dropout in time series data.
2
-
3
- This is used for the following types of data: GSP, Satellite and Site
4
- This is not used for NWP
5
- """
6
-
7
- import numpy as np
8
- import pandas as pd
9
- import xarray as xr
10
-
11
-
12
- def apply_sampled_dropout_time(
13
- t0: pd.Timestamp,
14
- dropout_timedeltas: list[pd.Timedelta],
15
- dropout_frac: float,
16
- da: xr.DataArray,
17
- ) -> xr.DataArray:
18
- """Randomly pick a dropout time from a list of timedeltas and apply dropout time to the data.
19
-
20
- Args:
21
- t0: The forecast init-time
22
- dropout_timedeltas: List of timedeltas relative to t0 to pick from
23
- dropout_frac: Probability that dropout will be applied.
24
- This should be between 0 and 1 inclusive
25
- da: Xarray DataArray with 'time_utc' coordinate
26
- """
27
- # sample dropout time
28
- if dropout_frac > 0 and len(dropout_timedeltas) == 0:
29
- raise ValueError("To apply dropout, dropout_timedeltas must be provided")
30
-
31
- for t in dropout_timedeltas:
32
- if t > pd.Timedelta("0min"):
33
- raise ValueError("Dropout timedeltas must be negative")
34
-
35
- if not (0 <= dropout_frac <= 1):
36
- raise ValueError("dropout_frac must be between 0 and 1 inclusive")
37
-
38
- if (len(dropout_timedeltas) == 0) or (np.random.uniform() >= dropout_frac):
39
- dropout_time = None
40
- else:
41
- dropout_time = t0 + np.random.choice(dropout_timedeltas)
42
-
43
- # apply dropout time
44
- if dropout_time is None:
45
- return da
46
- # This replaces the times after the dropout with NaNs
47
- return da.where(da.time_utc <= dropout_time)