ob-metaflow-stubs 6.0.3.158__py2.py3-none-any.whl → 6.0.3.160__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metaflow-stubs/__init__.pyi +734 -732
- metaflow-stubs/cards.pyi +1 -1
- metaflow-stubs/cli.pyi +1 -1
- metaflow-stubs/cli_components/__init__.pyi +1 -1
- metaflow-stubs/cli_components/utils.pyi +1 -1
- metaflow-stubs/client/__init__.pyi +1 -1
- metaflow-stubs/client/core.pyi +4 -4
- metaflow-stubs/client/filecache.pyi +2 -2
- metaflow-stubs/events.pyi +2 -2
- metaflow-stubs/exception.pyi +1 -1
- metaflow-stubs/flowspec.pyi +4 -4
- metaflow-stubs/generated_for.txt +1 -1
- metaflow-stubs/includefile.pyi +2 -2
- metaflow-stubs/info_file.pyi +1 -1
- metaflow-stubs/metadata_provider/__init__.pyi +1 -1
- metaflow-stubs/metadata_provider/heartbeat.pyi +1 -1
- metaflow-stubs/metadata_provider/metadata.pyi +1 -1
- metaflow-stubs/metadata_provider/util.pyi +1 -1
- metaflow-stubs/metaflow_config.pyi +1 -1
- metaflow-stubs/metaflow_current.pyi +117 -117
- metaflow-stubs/mf_extensions/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/async_cards.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/deco_injection_mixin.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/card_utils/extra_components.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/checkpoint_lister.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/cards/lineage_card.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/checkpoint_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/constructors.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/decorator.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/final_api.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/checkpoints/lineage.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/context.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/decorator.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/task_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastore/utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/datastructures.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/hf_hub/decorator.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/core.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/exceptions.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/modeling_utils/model_storage.pyi +3 -3
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/flowspec_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/general.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/identity_utils.pyi +2 -2
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/base.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/serialization_handler/tar.pyi +1 -1
- metaflow-stubs/mf_extensions/obcheckpoint/plugins/machine_learning_utilities/utils/tar_utils.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/card_utilities/injector.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/__init__.pyi +6 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/coreweave.pyi +58 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/checkpoint_datastores/nebius.pyi +64 -0
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/ollama/ollama.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/plugins/snowflake/snowflake.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/profilers/gpu.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/remote_config.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/__init__.pyi +1 -1
- metaflow-stubs/mf_extensions/outerbounds/toplevel/global_aliases_for_metaflow_package.pyi +3 -1
- metaflow-stubs/multicore_utils.pyi +1 -1
- metaflow-stubs/parameters.pyi +2 -2
- metaflow-stubs/plugins/__init__.pyi +13 -13
- metaflow-stubs/plugins/airflow/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/airflow_utils.pyi +1 -1
- metaflow-stubs/plugins/airflow/exception.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/__init__.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/base_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/external_task_sensor.pyi +1 -1
- metaflow-stubs/plugins/airflow/sensors/s3_sensor.pyi +1 -1
- metaflow-stubs/plugins/argo/__init__.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_client.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_events.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_decorator.pyi +2 -2
- metaflow-stubs/plugins/argo/argo_workflows_deployer.pyi +1 -1
- metaflow-stubs/plugins/argo/argo_workflows_deployer_objects.pyi +1 -1
- metaflow-stubs/plugins/aws/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_client.pyi +1 -1
- metaflow-stubs/plugins/aws/aws_utils.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_client.pyi +1 -1
- metaflow-stubs/plugins/aws/batch/batch_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/secrets_manager/aws_secrets_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/aws/step_functions/__init__.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/event_bridge_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/schedule_decorator.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_client.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer.pyi +1 -1
- metaflow-stubs/plugins/aws/step_functions/step_functions_deployer_objects.pyi +1 -1
- metaflow-stubs/plugins/azure/__init__.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_credential.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_exceptions.pyi +1 -1
- metaflow-stubs/plugins/azure/azure_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/azure/azure_utils.pyi +1 -1
- metaflow-stubs/plugins/azure/blob_service_client_factory.pyi +1 -1
- metaflow-stubs/plugins/azure/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/cards/__init__.pyi +5 -5
- metaflow-stubs/plugins/cards/card_client.pyi +1 -1
- metaflow-stubs/plugins/cards/card_creator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_datastore.pyi +1 -1
- metaflow-stubs/plugins/cards/card_decorator.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/__init__.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/basic.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/card.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/components.pyi +2 -2
- metaflow-stubs/plugins/cards/card_modules/convert_to_native_type.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/renderer_tools.pyi +1 -1
- metaflow-stubs/plugins/cards/card_modules/test_cards.pyi +1 -1
- metaflow-stubs/plugins/cards/card_resolver.pyi +1 -1
- metaflow-stubs/plugins/cards/component_serializer.pyi +1 -1
- metaflow-stubs/plugins/cards/exception.pyi +1 -1
- metaflow-stubs/plugins/catch_decorator.pyi +2 -2
- metaflow-stubs/plugins/datatools/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/local.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/__init__.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3.pyi +2 -2
- metaflow-stubs/plugins/datatools/s3/s3tail.pyi +1 -1
- metaflow-stubs/plugins/datatools/s3/s3util.pyi +1 -1
- metaflow-stubs/plugins/debug_logger.pyi +1 -1
- metaflow-stubs/plugins/debug_monitor.pyi +1 -1
- metaflow-stubs/plugins/environment_decorator.pyi +1 -1
- metaflow-stubs/plugins/events_decorator.pyi +1 -1
- metaflow-stubs/plugins/frameworks/__init__.pyi +1 -1
- metaflow-stubs/plugins/frameworks/pytorch.pyi +1 -1
- metaflow-stubs/plugins/gcp/__init__.pyi +1 -1
- metaflow-stubs/plugins/gcp/gcp_secret_manager_secrets_provider.pyi +2 -2
- metaflow-stubs/plugins/gcp/gs_exceptions.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_storage_client_factory.pyi +1 -1
- metaflow-stubs/plugins/gcp/gs_utils.pyi +1 -1
- metaflow-stubs/plugins/gcp/includefile_support.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/__init__.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kube_utils.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_client.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_decorator.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/kubernetes_jobsets.pyi +1 -1
- metaflow-stubs/plugins/kubernetes/spot_monitor_sidecar.pyi +1 -1
- metaflow-stubs/plugins/ollama/__init__.pyi +1 -1
- metaflow-stubs/plugins/parallel_decorator.pyi +1 -1
- metaflow-stubs/plugins/perimeters.pyi +1 -1
- metaflow-stubs/plugins/project_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/__init__.pyi +2 -2
- metaflow-stubs/plugins/pypi/conda_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/conda_environment.pyi +4 -4
- metaflow-stubs/plugins/pypi/parsers.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_decorator.pyi +1 -1
- metaflow-stubs/plugins/pypi/pypi_environment.pyi +1 -1
- metaflow-stubs/plugins/pypi/utils.pyi +1 -1
- metaflow-stubs/plugins/resources_decorator.pyi +1 -1
- metaflow-stubs/plugins/retry_decorator.pyi +1 -1
- metaflow-stubs/plugins/secrets/__init__.pyi +2 -2
- metaflow-stubs/plugins/secrets/inline_secrets_provider.pyi +1 -1
- metaflow-stubs/plugins/secrets/secrets_decorator.pyi +1 -1
- metaflow-stubs/plugins/snowflake/__init__.pyi +1 -1
- metaflow-stubs/plugins/storage_executor.pyi +1 -1
- metaflow-stubs/plugins/test_unbounded_foreach_decorator.pyi +2 -2
- metaflow-stubs/plugins/timeout_decorator.pyi +2 -2
- metaflow-stubs/profilers/__init__.pyi +1 -1
- metaflow-stubs/pylint_wrapper.pyi +1 -1
- metaflow-stubs/runner/__init__.pyi +1 -1
- metaflow-stubs/runner/deployer.pyi +3 -3
- metaflow-stubs/runner/deployer_impl.pyi +1 -1
- metaflow-stubs/runner/metaflow_runner.pyi +1 -1
- metaflow-stubs/runner/nbdeploy.pyi +1 -1
- metaflow-stubs/runner/nbrun.pyi +1 -1
- metaflow-stubs/runner/subprocess_manager.pyi +1 -1
- metaflow-stubs/runner/utils.pyi +2 -2
- metaflow-stubs/system/__init__.pyi +1 -1
- metaflow-stubs/system/system_logger.pyi +1 -1
- metaflow-stubs/system/system_monitor.pyi +1 -1
- metaflow-stubs/tagging_util.pyi +1 -1
- metaflow-stubs/tuple_util.pyi +1 -1
- metaflow-stubs/user_configs/__init__.pyi +1 -1
- metaflow-stubs/user_configs/config_decorators.pyi +5 -5
- metaflow-stubs/user_configs/config_options.pyi +1 -1
- metaflow-stubs/user_configs/config_parameters.pyi +3 -3
- {ob_metaflow_stubs-6.0.3.158.dist-info → ob_metaflow_stubs-6.0.3.160.dist-info}/METADATA +1 -1
- ob_metaflow_stubs-6.0.3.160.dist-info/RECORD +203 -0
- ob_metaflow_stubs-6.0.3.158.dist-info/RECORD +0 -200
- {ob_metaflow_stubs-6.0.3.158.dist-info → ob_metaflow_stubs-6.0.3.160.dist-info}/WHEEL +0 -0
- {ob_metaflow_stubs-6.0.3.158.dist-info → ob_metaflow_stubs-6.0.3.160.dist-info}/top_level.txt +0 -0
metaflow-stubs/__init__.pyi
CHANGED
@@ -1,15 +1,15 @@
|
|
1
1
|
######################################################################################################
|
2
2
|
# Auto-generated Metaflow stub file #
|
3
3
|
# MF version: 2.15.7.2+obcheckpoint(0.2.1);ob(v1) #
|
4
|
-
# Generated on 2025-
|
4
|
+
# Generated on 2025-05-01T00:24:18.378249 #
|
5
5
|
######################################################################################################
|
6
6
|
|
7
7
|
from __future__ import annotations
|
8
8
|
|
9
9
|
import typing
|
10
10
|
if typing.TYPE_CHECKING:
|
11
|
-
import typing
|
12
11
|
import datetime
|
12
|
+
import typing
|
13
13
|
FlowSpecDerived = typing.TypeVar("FlowSpecDerived", bound="FlowSpec", contravariant=False, covariant=False)
|
14
14
|
StepFlag = typing.NewType("StepFlag", bool)
|
15
15
|
|
@@ -35,17 +35,17 @@ from .user_configs.config_parameters import ConfigValue as ConfigValue
|
|
35
35
|
from .user_configs.config_parameters import config_expr as config_expr
|
36
36
|
from .user_configs.config_decorators import CustomFlowDecorator as CustomFlowDecorator
|
37
37
|
from .user_configs.config_decorators import CustomStepDecorator as CustomStepDecorator
|
38
|
-
from . import cards as cards
|
39
38
|
from . import tuple_util as tuple_util
|
39
|
+
from . import cards as cards
|
40
40
|
from . import events as events
|
41
41
|
from . import runner as runner
|
42
42
|
from . import plugins as plugins
|
43
43
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import S3 as S3
|
44
44
|
from . import includefile as includefile
|
45
45
|
from .includefile import IncludeFile as IncludeFile
|
46
|
-
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
47
46
|
from .plugins.pypi.parsers import pyproject_toml_parser as pyproject_toml_parser
|
48
47
|
from .plugins.pypi.parsers import conda_environment_yml_parser as conda_environment_yml_parser
|
48
|
+
from .plugins.pypi.parsers import requirements_txt_parser as requirements_txt_parser
|
49
49
|
from . import client as client
|
50
50
|
from .client.core import namespace as namespace
|
51
51
|
from .client.core import get_namespace as get_namespace
|
@@ -69,6 +69,8 @@ from .mf_extensions.obcheckpoint.plugins.machine_learning_utilities.datastructur
|
|
69
69
|
from .mf_extensions.obcheckpoint.plugins.machine_learning_utilities.datastore.context import artifact_store_from as artifact_store_from
|
70
70
|
from .mf_extensions.outerbounds.toplevel.global_aliases_for_metaflow_package import get_aws_client as get_aws_client
|
71
71
|
from .mf_extensions.outerbounds.plugins.snowflake.snowflake import Snowflake as Snowflake
|
72
|
+
from .mf_extensions.outerbounds.plugins.checkpoint_datastores.nebius import nebius_checkpoints as nebius_checkpoints
|
73
|
+
from .mf_extensions.outerbounds.plugins.checkpoint_datastores.coreweave import coreweave_checkpoints as coreweave_checkpoints
|
72
74
|
from . import cli_components as cli_components
|
73
75
|
from . import system as system
|
74
76
|
from . import pylint_wrapper as pylint_wrapper
|
@@ -201,6 +203,177 @@ def catch(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], ty
|
|
201
203
|
"""
|
202
204
|
...
|
203
205
|
|
206
|
+
@typing.overload
|
207
|
+
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
208
|
+
"""
|
209
|
+
Specifies the number of times the task corresponding
|
210
|
+
to a step needs to be retried.
|
211
|
+
|
212
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
213
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
214
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
215
|
+
|
216
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
217
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
218
|
+
ensuring that the flow execution can continue.
|
219
|
+
|
220
|
+
|
221
|
+
Parameters
|
222
|
+
----------
|
223
|
+
times : int, default 3
|
224
|
+
Number of times to retry this task.
|
225
|
+
minutes_between_retries : int, default 2
|
226
|
+
Number of minutes between retries.
|
227
|
+
"""
|
228
|
+
...
|
229
|
+
|
230
|
+
@typing.overload
|
231
|
+
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
232
|
+
...
|
233
|
+
|
234
|
+
@typing.overload
|
235
|
+
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
236
|
+
...
|
237
|
+
|
238
|
+
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
239
|
+
"""
|
240
|
+
Specifies the number of times the task corresponding
|
241
|
+
to a step needs to be retried.
|
242
|
+
|
243
|
+
This decorator is useful for handling transient errors, such as networking issues.
|
244
|
+
If your task contains operations that can't be retried safely, e.g. database updates,
|
245
|
+
it is advisable to annotate it with `@retry(times=0)`.
|
246
|
+
|
247
|
+
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
248
|
+
decorator will execute a no-op task after all retries have been exhausted,
|
249
|
+
ensuring that the flow execution can continue.
|
250
|
+
|
251
|
+
|
252
|
+
Parameters
|
253
|
+
----------
|
254
|
+
times : int, default 3
|
255
|
+
Number of times to retry this task.
|
256
|
+
minutes_between_retries : int, default 2
|
257
|
+
Number of minutes between retries.
|
258
|
+
"""
|
259
|
+
...
|
260
|
+
|
261
|
+
def huggingface_hub(*, temp_dir_root: typing.Optional[str] = None, load: typing.Union[typing.List[str], typing.List[typing.Tuple[typing.Dict, str]], typing.List[typing.Tuple[str, str]], typing.List[typing.Dict], None]) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
262
|
+
"""
|
263
|
+
Decorator that helps cache, version and store models/datasets from huggingface hub.
|
264
|
+
|
265
|
+
|
266
|
+
Parameters
|
267
|
+
----------
|
268
|
+
temp_dir_root : str, optional
|
269
|
+
The root directory that will hold the temporary directory where objects will be downloaded.
|
270
|
+
|
271
|
+
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
272
|
+
The list of repos (models/datasets) to load.
|
273
|
+
|
274
|
+
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
275
|
+
|
276
|
+
- If repo (model/dataset) is not found in the datastore:
|
277
|
+
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
278
|
+
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
279
|
+
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
280
|
+
|
281
|
+
- If repo is found in the datastore:
|
282
|
+
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
283
|
+
"""
|
284
|
+
...
|
285
|
+
|
286
|
+
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
287
|
+
"""
|
288
|
+
Specifies that this step is used to deploy an instance of the app.
|
289
|
+
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
290
|
+
|
291
|
+
|
292
|
+
Parameters
|
293
|
+
----------
|
294
|
+
app_port : int
|
295
|
+
Number of GPUs to use.
|
296
|
+
app_name : str
|
297
|
+
Name of the app to deploy.
|
298
|
+
"""
|
299
|
+
...
|
300
|
+
|
301
|
+
@typing.overload
|
302
|
+
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
303
|
+
"""
|
304
|
+
Specifies a timeout for your step.
|
305
|
+
|
306
|
+
This decorator is useful if this step may hang indefinitely.
|
307
|
+
|
308
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
309
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
310
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
311
|
+
|
312
|
+
Note that all the values specified in parameters are added together so if you specify
|
313
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
314
|
+
|
315
|
+
|
316
|
+
Parameters
|
317
|
+
----------
|
318
|
+
seconds : int, default 0
|
319
|
+
Number of seconds to wait prior to timing out.
|
320
|
+
minutes : int, default 0
|
321
|
+
Number of minutes to wait prior to timing out.
|
322
|
+
hours : int, default 0
|
323
|
+
Number of hours to wait prior to timing out.
|
324
|
+
"""
|
325
|
+
...
|
326
|
+
|
327
|
+
@typing.overload
|
328
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
329
|
+
...
|
330
|
+
|
331
|
+
@typing.overload
|
332
|
+
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
333
|
+
...
|
334
|
+
|
335
|
+
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
336
|
+
"""
|
337
|
+
Specifies a timeout for your step.
|
338
|
+
|
339
|
+
This decorator is useful if this step may hang indefinitely.
|
340
|
+
|
341
|
+
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
342
|
+
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
343
|
+
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
344
|
+
|
345
|
+
Note that all the values specified in parameters are added together so if you specify
|
346
|
+
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
347
|
+
|
348
|
+
|
349
|
+
Parameters
|
350
|
+
----------
|
351
|
+
seconds : int, default 0
|
352
|
+
Number of seconds to wait prior to timing out.
|
353
|
+
minutes : int, default 0
|
354
|
+
Number of minutes to wait prior to timing out.
|
355
|
+
hours : int, default 0
|
356
|
+
Number of hours to wait prior to timing out.
|
357
|
+
"""
|
358
|
+
...
|
359
|
+
|
360
|
+
@typing.overload
|
361
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
362
|
+
"""
|
363
|
+
Internal decorator to support Fast bakery
|
364
|
+
"""
|
365
|
+
...
|
366
|
+
|
367
|
+
@typing.overload
|
368
|
+
def fast_bakery_internal(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
369
|
+
...
|
370
|
+
|
371
|
+
def fast_bakery_internal(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
372
|
+
"""
|
373
|
+
Internal decorator to support Fast bakery
|
374
|
+
"""
|
375
|
+
...
|
376
|
+
|
204
377
|
@typing.overload
|
205
378
|
def card(*, type: str = 'default', id: typing.Optional[str] = None, options: typing.Dict[str, typing.Any] = {}, timeout: int = 45) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
206
379
|
"""
|
@@ -250,146 +423,180 @@ def card(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typ
|
|
250
423
|
"""
|
251
424
|
...
|
252
425
|
|
253
|
-
def
|
426
|
+
def nim(*, models: "list[NIM]", backend: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
254
427
|
"""
|
255
|
-
This decorator is used to run
|
428
|
+
This decorator is used to run NIM containers in Metaflow tasks as sidecars.
|
256
429
|
|
257
430
|
User code call
|
258
431
|
-----------
|
259
|
-
@
|
432
|
+
@nim(
|
260
433
|
models=['meta/llama3-8b-instruct', 'meta/llama3-70b-instruct'],
|
261
|
-
backend='
|
434
|
+
backend='managed'
|
262
435
|
)
|
263
436
|
|
264
437
|
Valid backend options
|
265
438
|
---------------------
|
266
|
-
- '
|
267
|
-
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
268
|
-
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
439
|
+
- 'managed': Outerbounds selects a compute provider based on the model.
|
269
440
|
|
270
441
|
Valid model options
|
271
442
|
----------------
|
272
|
-
- 'llama3
|
273
|
-
- 'llama3
|
274
|
-
- any model here https://
|
443
|
+
- 'meta/llama3-8b-instruct': 8B parameter model
|
444
|
+
- 'meta/llama3-70b-instruct': 70B parameter model
|
445
|
+
- any model here: https://nvcf.ngc.nvidia.com/functions?filter=nvidia-functions
|
275
446
|
|
276
447
|
|
277
448
|
Parameters
|
278
449
|
----------
|
279
|
-
models: list[
|
280
|
-
List of
|
450
|
+
models: list[NIM]
|
451
|
+
List of NIM containers running models in sidecars.
|
281
452
|
backend: str
|
282
|
-
|
453
|
+
Compute provider to run the NIM container.
|
454
|
+
queue_timeout : int
|
455
|
+
Time to keep the job in NVCF's queue.
|
283
456
|
"""
|
284
457
|
...
|
285
458
|
|
286
|
-
|
459
|
+
@typing.overload
|
460
|
+
def conda(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
287
461
|
"""
|
288
|
-
Specifies
|
462
|
+
Specifies the Conda environment for the step.
|
463
|
+
|
464
|
+
Information in this decorator will augment any
|
465
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
466
|
+
you can use `@conda_base` to set packages required by all
|
467
|
+
steps and use `@conda` to specify step-specific overrides.
|
289
468
|
|
290
469
|
|
291
470
|
Parameters
|
292
471
|
----------
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
used.
|
304
|
-
image : str, optional, default None
|
305
|
-
Docker image to use when launching on Kubernetes. If not specified, and
|
306
|
-
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
307
|
-
not, a default Docker image mapping to the current version of Python is used.
|
308
|
-
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
309
|
-
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
310
|
-
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
311
|
-
Kubernetes service account to use when launching pod in Kubernetes.
|
312
|
-
secrets : List[str], optional, default None
|
313
|
-
Kubernetes secrets to use when launching pod in Kubernetes. These
|
314
|
-
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
315
|
-
in Metaflow configuration.
|
316
|
-
node_selector: Union[Dict[str,str], str], optional, default None
|
317
|
-
Kubernetes node selector(s) to apply to the pod running the task.
|
318
|
-
Can be passed in as a comma separated string of values e.g.
|
319
|
-
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
320
|
-
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
321
|
-
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
322
|
-
Kubernetes namespace to use when launching pod in Kubernetes.
|
323
|
-
gpu : int, optional, default None
|
324
|
-
Number of GPUs required for this step. A value of zero implies that
|
325
|
-
the scheduled node should not have GPUs.
|
326
|
-
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
327
|
-
The vendor of the GPUs to be used for this step.
|
328
|
-
tolerations : List[str], default []
|
329
|
-
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
330
|
-
Kubernetes tolerations to use when launching pod in Kubernetes.
|
331
|
-
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
332
|
-
Kubernetes labels to use when launching pod in Kubernetes.
|
333
|
-
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
334
|
-
Kubernetes annotations to use when launching pod in Kubernetes.
|
335
|
-
use_tmpfs : bool, default False
|
336
|
-
This enables an explicit tmpfs mount for this step.
|
337
|
-
tmpfs_tempdir : bool, default True
|
338
|
-
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
339
|
-
tmpfs_size : int, optional, default: None
|
340
|
-
The value for the size (in MiB) of the tmpfs mount for this step.
|
341
|
-
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
342
|
-
memory allocated for this step.
|
343
|
-
tmpfs_path : str, optional, default /metaflow_temp
|
344
|
-
Path to tmpfs mount for this step.
|
345
|
-
persistent_volume_claims : Dict[str, str], optional, default None
|
346
|
-
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
347
|
-
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
348
|
-
shared_memory: int, optional
|
349
|
-
Shared memory size (in MiB) required for this step
|
350
|
-
port: int, optional
|
351
|
-
Port number to specify in the Kubernetes job object
|
352
|
-
compute_pool : str, optional, default None
|
353
|
-
Compute pool to be used for for this step.
|
354
|
-
If not specified, any accessible compute pool within the perimeter is used.
|
355
|
-
hostname_resolution_timeout: int, default 10 * 60
|
356
|
-
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
357
|
-
Only applicable when @parallel is used.
|
358
|
-
qos: str, default: Burstable
|
359
|
-
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
472
|
+
packages : Dict[str, str], default {}
|
473
|
+
Packages to use for this step. The key is the name of the package
|
474
|
+
and the value is the version to use.
|
475
|
+
libraries : Dict[str, str], default {}
|
476
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
477
|
+
python : str, optional, default None
|
478
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
479
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
480
|
+
disabled : bool, default False
|
481
|
+
If set to True, disables @conda.
|
360
482
|
"""
|
361
483
|
...
|
362
484
|
|
363
|
-
|
485
|
+
@typing.overload
|
486
|
+
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
487
|
+
...
|
488
|
+
|
489
|
+
@typing.overload
|
490
|
+
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
491
|
+
...
|
492
|
+
|
493
|
+
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
364
494
|
"""
|
365
|
-
|
495
|
+
Specifies the Conda environment for the step.
|
496
|
+
|
497
|
+
Information in this decorator will augment any
|
498
|
+
attributes set in the `@conda_base` flow-level decorator. Hence,
|
499
|
+
you can use `@conda_base` to set packages required by all
|
500
|
+
steps and use `@conda` to specify step-specific overrides.
|
501
|
+
|
502
|
+
|
503
|
+
Parameters
|
504
|
+
----------
|
505
|
+
packages : Dict[str, str], default {}
|
506
|
+
Packages to use for this step. The key is the name of the package
|
507
|
+
and the value is the version to use.
|
508
|
+
libraries : Dict[str, str], default {}
|
509
|
+
Supported for backward compatibility. When used with packages, packages will take precedence.
|
510
|
+
python : str, optional, default None
|
511
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
512
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
513
|
+
disabled : bool, default False
|
514
|
+
If set to True, disables @conda.
|
515
|
+
"""
|
516
|
+
...
|
517
|
+
|
518
|
+
def ollama(*, models: "list[Ollama]", backend: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
519
|
+
"""
|
520
|
+
This decorator is used to run Ollama APIs as Metaflow task sidecars.
|
366
521
|
|
367
522
|
User code call
|
368
523
|
-----------
|
369
|
-
@
|
524
|
+
@ollama(
|
370
525
|
models=['meta/llama3-8b-instruct', 'meta/llama3-70b-instruct'],
|
371
|
-
backend='
|
526
|
+
backend='local'
|
372
527
|
)
|
373
528
|
|
374
529
|
Valid backend options
|
375
530
|
---------------------
|
376
|
-
- '
|
531
|
+
- 'local': Run as a separate process on the local task machine.
|
532
|
+
- (TODO) 'managed': Outerbounds hosts and selects compute provider.
|
533
|
+
- (TODO) 'remote': Spin up separate instance to serve Ollama models.
|
377
534
|
|
378
535
|
Valid model options
|
379
536
|
----------------
|
380
|
-
- '
|
381
|
-
- '
|
382
|
-
- any model here
|
537
|
+
- 'llama3.2'
|
538
|
+
- 'llama3.3'
|
539
|
+
- any model here https://ollama.com/search
|
383
540
|
|
384
541
|
|
385
542
|
Parameters
|
386
543
|
----------
|
387
|
-
models: list[
|
388
|
-
List of
|
544
|
+
models: list[Ollama]
|
545
|
+
List of Ollama containers running models in sidecars.
|
389
546
|
backend: str
|
390
|
-
|
391
|
-
|
392
|
-
|
547
|
+
Determines where and how to run the Ollama process.
|
548
|
+
"""
|
549
|
+
...
|
550
|
+
|
551
|
+
@typing.overload
|
552
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
553
|
+
"""
|
554
|
+
Decorator prototype for all step decorators. This function gets specialized
|
555
|
+
and imported for all decorators types by _import_plugin_decorators().
|
556
|
+
"""
|
557
|
+
...
|
558
|
+
|
559
|
+
@typing.overload
|
560
|
+
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
561
|
+
...
|
562
|
+
|
563
|
+
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
564
|
+
"""
|
565
|
+
Decorator prototype for all step decorators. This function gets specialized
|
566
|
+
and imported for all decorators types by _import_plugin_decorators().
|
567
|
+
"""
|
568
|
+
...
|
569
|
+
|
570
|
+
@typing.overload
|
571
|
+
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
572
|
+
"""
|
573
|
+
Specifies environment variables to be set prior to the execution of a step.
|
574
|
+
|
575
|
+
|
576
|
+
Parameters
|
577
|
+
----------
|
578
|
+
vars : Dict[str, str], default {}
|
579
|
+
Dictionary of environment variables to set.
|
580
|
+
"""
|
581
|
+
...
|
582
|
+
|
583
|
+
@typing.overload
|
584
|
+
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
585
|
+
...
|
586
|
+
|
587
|
+
@typing.overload
|
588
|
+
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
589
|
+
...
|
590
|
+
|
591
|
+
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
592
|
+
"""
|
593
|
+
Specifies environment variables to be set prior to the execution of a step.
|
594
|
+
|
595
|
+
|
596
|
+
Parameters
|
597
|
+
----------
|
598
|
+
vars : Dict[str, str], default {}
|
599
|
+
Dictionary of environment variables to set.
|
393
600
|
"""
|
394
601
|
...
|
395
602
|
|
@@ -451,294 +658,165 @@ def checkpoint(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None
|
|
451
658
|
...
|
452
659
|
|
453
660
|
@typing.overload
|
454
|
-
def
|
661
|
+
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
455
662
|
"""
|
456
|
-
|
663
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
664
|
+
the execution of a step.
|
665
|
+
|
666
|
+
|
667
|
+
Parameters
|
668
|
+
----------
|
669
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
670
|
+
List of secret specs, defining how the secrets are to be retrieved
|
457
671
|
"""
|
458
672
|
...
|
459
673
|
|
460
674
|
@typing.overload
|
461
|
-
def
|
675
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
462
676
|
...
|
463
677
|
|
464
|
-
|
465
|
-
|
466
|
-
Internal decorator to support Fast bakery
|
467
|
-
"""
|
678
|
+
@typing.overload
|
679
|
+
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
468
680
|
...
|
469
681
|
|
470
|
-
def
|
682
|
+
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []):
|
471
683
|
"""
|
472
|
-
|
684
|
+
Specifies secrets to be retrieved and injected as environment variables prior to
|
685
|
+
the execution of a step.
|
473
686
|
|
474
687
|
|
475
688
|
Parameters
|
476
689
|
----------
|
477
|
-
|
478
|
-
|
479
|
-
|
480
|
-
load: Union[List[str], List[Tuple[Dict, str]], List[Tuple[str, str]], List[Dict], None]
|
481
|
-
The list of repos (models/datasets) to load.
|
482
|
-
|
483
|
-
Loaded repos can be accessed via `current.huggingface_hub.loaded`. If load is set, then the following happens:
|
484
|
-
|
485
|
-
- If repo (model/dataset) is not found in the datastore:
|
486
|
-
- Downloads the repo from Hugging Face Hub to a temporary directory (or uses specified path) for local access
|
487
|
-
- Stores it in Metaflow's datastore (s3/gcs/azure etc.) with a unique name based on repo_type/repo_id
|
488
|
-
- All HF models loaded for a `@step` will be cached separately under flow/step/namespace.
|
489
|
-
|
490
|
-
- If repo is found in the datastore:
|
491
|
-
- Loads it directly from datastore to local path (can be temporary directory or specified path)
|
690
|
+
sources : List[Union[str, Dict[str, Any]]], default: []
|
691
|
+
List of secret specs, defining how the secrets are to be retrieved
|
492
692
|
"""
|
493
693
|
...
|
494
694
|
|
495
695
|
@typing.overload
|
496
|
-
def
|
696
|
+
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
497
697
|
"""
|
498
|
-
|
698
|
+
Specifies the PyPI packages for the step.
|
499
699
|
|
700
|
+
Information in this decorator will augment any
|
701
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
702
|
+
you can use `@pypi_base` to set packages required by all
|
703
|
+
steps and use `@pypi` to specify step-specific overrides.
|
500
704
|
|
501
705
|
|
502
706
|
Parameters
|
503
707
|
----------
|
504
|
-
|
505
|
-
|
506
|
-
|
507
|
-
|
508
|
-
|
509
|
-
|
510
|
-
|
511
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
512
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
513
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
514
|
-
|
515
|
-
temp_dir_root : str, default: None
|
516
|
-
The root directory under which `current.model.loaded` will store loaded models
|
708
|
+
packages : Dict[str, str], default: {}
|
709
|
+
Packages to use for this step. The key is the name of the package
|
710
|
+
and the value is the version to use.
|
711
|
+
python : str, optional, default: None
|
712
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
713
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
517
714
|
"""
|
518
715
|
...
|
519
716
|
|
520
717
|
@typing.overload
|
521
|
-
def
|
718
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
522
719
|
...
|
523
720
|
|
524
721
|
@typing.overload
|
525
|
-
def
|
722
|
+
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
526
723
|
...
|
527
724
|
|
528
|
-
def
|
725
|
+
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
529
726
|
"""
|
530
|
-
|
727
|
+
Specifies the PyPI packages for the step.
|
531
728
|
|
729
|
+
Information in this decorator will augment any
|
730
|
+
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
731
|
+
you can use `@pypi_base` to set packages required by all
|
732
|
+
steps and use `@pypi` to specify step-specific overrides.
|
532
733
|
|
533
734
|
|
534
735
|
Parameters
|
535
736
|
----------
|
536
|
-
|
537
|
-
|
538
|
-
|
539
|
-
|
540
|
-
|
541
|
-
|
542
|
-
|
543
|
-
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
544
|
-
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
545
|
-
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
546
|
-
|
547
|
-
temp_dir_root : str, default: None
|
548
|
-
The root directory under which `current.model.loaded` will store loaded models
|
737
|
+
packages : Dict[str, str], default: {}
|
738
|
+
Packages to use for this step. The key is the name of the package
|
739
|
+
and the value is the version to use.
|
740
|
+
python : str, optional, default: None
|
741
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
742
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
549
743
|
"""
|
550
744
|
...
|
551
745
|
|
552
|
-
|
553
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
554
|
-
"""
|
555
|
-
Decorator prototype for all step decorators. This function gets specialized
|
556
|
-
and imported for all decorators types by _import_plugin_decorators().
|
746
|
+
def kubernetes(*, cpu: int = 1, memory: int = 4096, disk: int = 10240, image: typing.Optional[str] = None, image_pull_policy: str = 'KUBERNETES_IMAGE_PULL_POLICY', service_account: str = 'METAFLOW_KUBERNETES_SERVICE_ACCOUNT', secrets: typing.Optional[typing.List[str]] = None, node_selector: typing.Union[typing.Dict[str, str], str, None] = None, namespace: str = 'METAFLOW_KUBERNETES_NAMESPACE', gpu: typing.Optional[int] = None, gpu_vendor: str = 'KUBERNETES_GPU_VENDOR', tolerations: typing.List[str] = [], labels: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_LABELS', annotations: typing.Dict[str, str] = 'METAFLOW_KUBERNETES_ANNOTATIONS', use_tmpfs: bool = False, tmpfs_tempdir: bool = True, tmpfs_size: typing.Optional[int] = None, tmpfs_path: typing.Optional[str] = '/metaflow_temp', persistent_volume_claims: typing.Optional[typing.Dict[str, str]] = None, shared_memory: typing.Optional[int] = None, port: typing.Optional[int] = None, compute_pool: typing.Optional[str] = None, hostname_resolution_timeout: int = 600, qos: str = 'Burstable') -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
557
747
|
"""
|
558
|
-
|
559
|
-
|
560
|
-
@typing.overload
|
561
|
-
def parallel(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
562
|
-
...
|
563
|
-
|
564
|
-
def parallel(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None):
|
565
|
-
"""
|
566
|
-
Decorator prototype for all step decorators. This function gets specialized
|
567
|
-
and imported for all decorators types by _import_plugin_decorators().
|
568
|
-
"""
|
569
|
-
...
|
570
|
-
|
571
|
-
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
572
|
-
"""
|
573
|
-
Specifies that this step should execute on DGX cloud.
|
574
|
-
|
575
|
-
|
576
|
-
Parameters
|
577
|
-
----------
|
578
|
-
gpu : int
|
579
|
-
Number of GPUs to use.
|
580
|
-
gpu_type : str
|
581
|
-
Type of Nvidia GPU to use.
|
582
|
-
queue_timeout : int
|
583
|
-
Time to keep the job in NVCF's queue.
|
584
|
-
"""
|
585
|
-
...
|
586
|
-
|
587
|
-
@typing.overload
|
588
|
-
def environment(*, vars: typing.Dict[str, str] = {}) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
589
|
-
"""
|
590
|
-
Specifies environment variables to be set prior to the execution of a step.
|
591
|
-
|
592
|
-
|
593
|
-
Parameters
|
594
|
-
----------
|
595
|
-
vars : Dict[str, str], default {}
|
596
|
-
Dictionary of environment variables to set.
|
597
|
-
"""
|
598
|
-
...
|
599
|
-
|
600
|
-
@typing.overload
|
601
|
-
def environment(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
602
|
-
...
|
603
|
-
|
604
|
-
@typing.overload
|
605
|
-
def environment(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
606
|
-
...
|
607
|
-
|
608
|
-
def environment(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, vars: typing.Dict[str, str] = {}):
|
609
|
-
"""
|
610
|
-
Specifies environment variables to be set prior to the execution of a step.
|
611
|
-
|
612
|
-
|
613
|
-
Parameters
|
614
|
-
----------
|
615
|
-
vars : Dict[str, str], default {}
|
616
|
-
Dictionary of environment variables to set.
|
617
|
-
"""
|
618
|
-
...
|
619
|
-
|
620
|
-
@typing.overload
|
621
|
-
def timeout(*, seconds: int = 0, minutes: int = 0, hours: int = 0) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
622
|
-
"""
|
623
|
-
Specifies a timeout for your step.
|
624
|
-
|
625
|
-
This decorator is useful if this step may hang indefinitely.
|
626
|
-
|
627
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
628
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
629
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
630
|
-
|
631
|
-
Note that all the values specified in parameters are added together so if you specify
|
632
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
633
|
-
|
634
|
-
|
635
|
-
Parameters
|
636
|
-
----------
|
637
|
-
seconds : int, default 0
|
638
|
-
Number of seconds to wait prior to timing out.
|
639
|
-
minutes : int, default 0
|
640
|
-
Number of minutes to wait prior to timing out.
|
641
|
-
hours : int, default 0
|
642
|
-
Number of hours to wait prior to timing out.
|
643
|
-
"""
|
644
|
-
...
|
645
|
-
|
646
|
-
@typing.overload
|
647
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
648
|
-
...
|
649
|
-
|
650
|
-
@typing.overload
|
651
|
-
def timeout(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
652
|
-
...
|
653
|
-
|
654
|
-
def timeout(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, seconds: int = 0, minutes: int = 0, hours: int = 0):
|
655
|
-
"""
|
656
|
-
Specifies a timeout for your step.
|
657
|
-
|
658
|
-
This decorator is useful if this step may hang indefinitely.
|
659
|
-
|
660
|
-
This can be used in conjunction with the `@retry` decorator as well as the `@catch` decorator.
|
661
|
-
A timeout is considered to be an exception thrown by the step. It will cause the step to be
|
662
|
-
retried if needed and the exception will be caught by the `@catch` decorator, if present.
|
663
|
-
|
664
|
-
Note that all the values specified in parameters are added together so if you specify
|
665
|
-
60 seconds and 1 hour, the decorator will have an effective timeout of 1 hour and 1 minute.
|
666
|
-
|
667
|
-
|
668
|
-
Parameters
|
669
|
-
----------
|
670
|
-
seconds : int, default 0
|
671
|
-
Number of seconds to wait prior to timing out.
|
672
|
-
minutes : int, default 0
|
673
|
-
Number of minutes to wait prior to timing out.
|
674
|
-
hours : int, default 0
|
675
|
-
Number of hours to wait prior to timing out.
|
676
|
-
"""
|
677
|
-
...
|
678
|
-
|
679
|
-
def app_deploy(*, app_port: int, app_name: str) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
680
|
-
"""
|
681
|
-
Specifies that this step is used to deploy an instance of the app.
|
682
|
-
Requires that self.app_name, self.app_port, self.entrypoint and self.deployDir is set.
|
683
|
-
|
684
|
-
|
685
|
-
Parameters
|
686
|
-
----------
|
687
|
-
app_port : int
|
688
|
-
Number of GPUs to use.
|
689
|
-
app_name : str
|
690
|
-
Name of the app to deploy.
|
691
|
-
"""
|
692
|
-
...
|
693
|
-
|
694
|
-
@typing.overload
|
695
|
-
def pypi(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
696
|
-
"""
|
697
|
-
Specifies the PyPI packages for the step.
|
698
|
-
|
699
|
-
Information in this decorator will augment any
|
700
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
701
|
-
you can use `@pypi_base` to set packages required by all
|
702
|
-
steps and use `@pypi` to specify step-specific overrides.
|
703
|
-
|
704
|
-
|
705
|
-
Parameters
|
706
|
-
----------
|
707
|
-
packages : Dict[str, str], default: {}
|
708
|
-
Packages to use for this step. The key is the name of the package
|
709
|
-
and the value is the version to use.
|
710
|
-
python : str, optional, default: None
|
711
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
712
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
713
|
-
"""
|
714
|
-
...
|
715
|
-
|
716
|
-
@typing.overload
|
717
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
718
|
-
...
|
719
|
-
|
720
|
-
@typing.overload
|
721
|
-
def pypi(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
722
|
-
...
|
723
|
-
|
724
|
-
def pypi(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
725
|
-
"""
|
726
|
-
Specifies the PyPI packages for the step.
|
727
|
-
|
728
|
-
Information in this decorator will augment any
|
729
|
-
attributes set in the `@pyi_base` flow-level decorator. Hence,
|
730
|
-
you can use `@pypi_base` to set packages required by all
|
731
|
-
steps and use `@pypi` to specify step-specific overrides.
|
748
|
+
Specifies that this step should execute on Kubernetes.
|
732
749
|
|
733
750
|
|
734
751
|
Parameters
|
735
752
|
----------
|
736
|
-
|
737
|
-
|
738
|
-
|
739
|
-
|
740
|
-
|
741
|
-
|
753
|
+
cpu : int, default 1
|
754
|
+
Number of CPUs required for this step. If `@resources` is
|
755
|
+
also present, the maximum value from all decorators is used.
|
756
|
+
memory : int, default 4096
|
757
|
+
Memory size (in MB) required for this step. If
|
758
|
+
`@resources` is also present, the maximum value from all decorators is
|
759
|
+
used.
|
760
|
+
disk : int, default 10240
|
761
|
+
Disk size (in MB) required for this step. If
|
762
|
+
`@resources` is also present, the maximum value from all decorators is
|
763
|
+
used.
|
764
|
+
image : str, optional, default None
|
765
|
+
Docker image to use when launching on Kubernetes. If not specified, and
|
766
|
+
METAFLOW_KUBERNETES_CONTAINER_IMAGE is specified, that image is used. If
|
767
|
+
not, a default Docker image mapping to the current version of Python is used.
|
768
|
+
image_pull_policy: str, default KUBERNETES_IMAGE_PULL_POLICY
|
769
|
+
If given, the imagePullPolicy to be applied to the Docker image of the step.
|
770
|
+
service_account : str, default METAFLOW_KUBERNETES_SERVICE_ACCOUNT
|
771
|
+
Kubernetes service account to use when launching pod in Kubernetes.
|
772
|
+
secrets : List[str], optional, default None
|
773
|
+
Kubernetes secrets to use when launching pod in Kubernetes. These
|
774
|
+
secrets are in addition to the ones defined in `METAFLOW_KUBERNETES_SECRETS`
|
775
|
+
in Metaflow configuration.
|
776
|
+
node_selector: Union[Dict[str,str], str], optional, default None
|
777
|
+
Kubernetes node selector(s) to apply to the pod running the task.
|
778
|
+
Can be passed in as a comma separated string of values e.g.
|
779
|
+
'kubernetes.io/os=linux,kubernetes.io/arch=amd64' or as a dictionary
|
780
|
+
{'kubernetes.io/os': 'linux', 'kubernetes.io/arch': 'amd64'}
|
781
|
+
namespace : str, default METAFLOW_KUBERNETES_NAMESPACE
|
782
|
+
Kubernetes namespace to use when launching pod in Kubernetes.
|
783
|
+
gpu : int, optional, default None
|
784
|
+
Number of GPUs required for this step. A value of zero implies that
|
785
|
+
the scheduled node should not have GPUs.
|
786
|
+
gpu_vendor : str, default KUBERNETES_GPU_VENDOR
|
787
|
+
The vendor of the GPUs to be used for this step.
|
788
|
+
tolerations : List[str], default []
|
789
|
+
The default is extracted from METAFLOW_KUBERNETES_TOLERATIONS.
|
790
|
+
Kubernetes tolerations to use when launching pod in Kubernetes.
|
791
|
+
labels: Dict[str, str], default: METAFLOW_KUBERNETES_LABELS
|
792
|
+
Kubernetes labels to use when launching pod in Kubernetes.
|
793
|
+
annotations: Dict[str, str], default: METAFLOW_KUBERNETES_ANNOTATIONS
|
794
|
+
Kubernetes annotations to use when launching pod in Kubernetes.
|
795
|
+
use_tmpfs : bool, default False
|
796
|
+
This enables an explicit tmpfs mount for this step.
|
797
|
+
tmpfs_tempdir : bool, default True
|
798
|
+
sets METAFLOW_TEMPDIR to tmpfs_path if set for this step.
|
799
|
+
tmpfs_size : int, optional, default: None
|
800
|
+
The value for the size (in MiB) of the tmpfs mount for this step.
|
801
|
+
This parameter maps to the `--tmpfs` option in Docker. Defaults to 50% of the
|
802
|
+
memory allocated for this step.
|
803
|
+
tmpfs_path : str, optional, default /metaflow_temp
|
804
|
+
Path to tmpfs mount for this step.
|
805
|
+
persistent_volume_claims : Dict[str, str], optional, default None
|
806
|
+
A map (dictionary) of persistent volumes to be mounted to the pod for this step. The map is from persistent
|
807
|
+
volumes to the path to which the volume is to be mounted, e.g., `{'pvc-name': '/path/to/mount/on'}`.
|
808
|
+
shared_memory: int, optional
|
809
|
+
Shared memory size (in MiB) required for this step
|
810
|
+
port: int, optional
|
811
|
+
Port number to specify in the Kubernetes job object
|
812
|
+
compute_pool : str, optional, default None
|
813
|
+
Compute pool to be used for for this step.
|
814
|
+
If not specified, any accessible compute pool within the perimeter is used.
|
815
|
+
hostname_resolution_timeout: int, default 10 * 60
|
816
|
+
Timeout in seconds for the workers tasks in the gang scheduled cluster to resolve the hostname of control task.
|
817
|
+
Only applicable when @parallel is used.
|
818
|
+
qos: str, default: Burstable
|
819
|
+
Quality of Service class to assign to the pod. Supported values are: Guaranteed, Burstable, BestEffort
|
742
820
|
"""
|
743
821
|
...
|
744
822
|
|
@@ -822,293 +900,110 @@ def resources(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None]
|
|
822
900
|
...
|
823
901
|
|
824
902
|
@typing.overload
|
825
|
-
def
|
826
|
-
"""
|
827
|
-
Specifies the Conda environment for the step.
|
828
|
-
|
829
|
-
Information in this decorator will augment any
|
830
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
831
|
-
you can use `@conda_base` to set packages required by all
|
832
|
-
steps and use `@conda` to specify step-specific overrides.
|
833
|
-
|
834
|
-
|
835
|
-
Parameters
|
836
|
-
----------
|
837
|
-
packages : Dict[str, str], default {}
|
838
|
-
Packages to use for this step. The key is the name of the package
|
839
|
-
and the value is the version to use.
|
840
|
-
libraries : Dict[str, str], default {}
|
841
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
842
|
-
python : str, optional, default None
|
843
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
844
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
845
|
-
disabled : bool, default False
|
846
|
-
If set to True, disables @conda.
|
847
|
-
"""
|
848
|
-
...
|
849
|
-
|
850
|
-
@typing.overload
|
851
|
-
def conda(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
852
|
-
...
|
853
|
-
|
854
|
-
@typing.overload
|
855
|
-
def conda(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
856
|
-
...
|
857
|
-
|
858
|
-
def conda(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False):
|
859
|
-
"""
|
860
|
-
Specifies the Conda environment for the step.
|
861
|
-
|
862
|
-
Information in this decorator will augment any
|
863
|
-
attributes set in the `@conda_base` flow-level decorator. Hence,
|
864
|
-
you can use `@conda_base` to set packages required by all
|
865
|
-
steps and use `@conda` to specify step-specific overrides.
|
866
|
-
|
867
|
-
|
868
|
-
Parameters
|
869
|
-
----------
|
870
|
-
packages : Dict[str, str], default {}
|
871
|
-
Packages to use for this step. The key is the name of the package
|
872
|
-
and the value is the version to use.
|
873
|
-
libraries : Dict[str, str], default {}
|
874
|
-
Supported for backward compatibility. When used with packages, packages will take precedence.
|
875
|
-
python : str, optional, default None
|
876
|
-
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
877
|
-
that the version used will correspond to the version of the Python interpreter used to start the run.
|
878
|
-
disabled : bool, default False
|
879
|
-
If set to True, disables @conda.
|
880
|
-
"""
|
881
|
-
...
|
882
|
-
|
883
|
-
@typing.overload
|
884
|
-
def secrets(*, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
885
|
-
"""
|
886
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
887
|
-
the execution of a step.
|
888
|
-
|
889
|
-
|
890
|
-
Parameters
|
891
|
-
----------
|
892
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
893
|
-
List of secret specs, defining how the secrets are to be retrieved
|
894
|
-
"""
|
895
|
-
...
|
896
|
-
|
897
|
-
@typing.overload
|
898
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
899
|
-
...
|
900
|
-
|
901
|
-
@typing.overload
|
902
|
-
def secrets(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
903
|
-
...
|
904
|
-
|
905
|
-
def secrets(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, sources: typing.List[typing.Union[str, typing.Dict[str, typing.Any]]] = []):
|
906
|
-
"""
|
907
|
-
Specifies secrets to be retrieved and injected as environment variables prior to
|
908
|
-
the execution of a step.
|
909
|
-
|
910
|
-
|
911
|
-
Parameters
|
912
|
-
----------
|
913
|
-
sources : List[Union[str, Dict[str, Any]]], default: []
|
914
|
-
List of secret specs, defining how the secrets are to be retrieved
|
915
|
-
"""
|
916
|
-
...
|
917
|
-
|
918
|
-
@typing.overload
|
919
|
-
def retry(*, times: int = 3, minutes_between_retries: int = 2) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
920
|
-
"""
|
921
|
-
Specifies the number of times the task corresponding
|
922
|
-
to a step needs to be retried.
|
923
|
-
|
924
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
925
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
926
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
927
|
-
|
928
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
929
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
930
|
-
ensuring that the flow execution can continue.
|
931
|
-
|
932
|
-
|
933
|
-
Parameters
|
934
|
-
----------
|
935
|
-
times : int, default 3
|
936
|
-
Number of times to retry this task.
|
937
|
-
minutes_between_retries : int, default 2
|
938
|
-
Number of minutes between retries.
|
939
|
-
"""
|
940
|
-
...
|
941
|
-
|
942
|
-
@typing.overload
|
943
|
-
def retry(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
944
|
-
...
|
945
|
-
|
946
|
-
@typing.overload
|
947
|
-
def retry(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
948
|
-
...
|
949
|
-
|
950
|
-
def retry(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, times: int = 3, minutes_between_retries: int = 2):
|
903
|
+
def model(*, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
951
904
|
"""
|
952
|
-
|
953
|
-
to a step needs to be retried.
|
905
|
+
Enables loading / saving of models within a step.
|
954
906
|
|
955
|
-
This decorator is useful for handling transient errors, such as networking issues.
|
956
|
-
If your task contains operations that can't be retried safely, e.g. database updates,
|
957
|
-
it is advisable to annotate it with `@retry(times=0)`.
|
958
|
-
|
959
|
-
This can be used in conjunction with the `@catch` decorator. The `@catch`
|
960
|
-
decorator will execute a no-op task after all retries have been exhausted,
|
961
|
-
ensuring that the flow execution can continue.
|
962
907
|
|
963
908
|
|
964
909
|
Parameters
|
965
910
|
----------
|
966
|
-
|
967
|
-
|
968
|
-
|
969
|
-
|
970
|
-
|
971
|
-
|
972
|
-
|
973
|
-
@typing.overload
|
974
|
-
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
975
|
-
"""
|
976
|
-
Specifies the flow(s) that this flow depends on.
|
977
|
-
|
978
|
-
```
|
979
|
-
@trigger_on_finish(flow='FooFlow')
|
980
|
-
```
|
981
|
-
or
|
982
|
-
```
|
983
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
984
|
-
```
|
985
|
-
This decorator respects the @project decorator and triggers the flow
|
986
|
-
when upstream runs within the same namespace complete successfully
|
987
|
-
|
988
|
-
Additionally, you can specify project aware upstream flow dependencies
|
989
|
-
by specifying the fully qualified project_flow_name.
|
990
|
-
```
|
991
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
992
|
-
```
|
993
|
-
or
|
994
|
-
```
|
995
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
996
|
-
```
|
997
|
-
|
998
|
-
You can also specify just the project or project branch (other values will be
|
999
|
-
inferred from the current project or project branch):
|
1000
|
-
```
|
1001
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1002
|
-
```
|
1003
|
-
|
1004
|
-
Note that `branch` is typically one of:
|
1005
|
-
- `prod`
|
1006
|
-
- `user.bob`
|
1007
|
-
- `test.my_experiment`
|
1008
|
-
- `prod.staging`
|
1009
|
-
|
911
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
912
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
913
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
914
|
+
- `current.checkpoint`
|
915
|
+
- `current.model`
|
916
|
+
- `current.huggingface_hub`
|
1010
917
|
|
1011
|
-
|
1012
|
-
|
1013
|
-
|
1014
|
-
|
1015
|
-
|
1016
|
-
|
1017
|
-
options : Dict[str, Any], default {}
|
1018
|
-
Backend-specific configuration for tuning eventing behavior.
|
918
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
919
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
920
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
921
|
+
|
922
|
+
temp_dir_root : str, default: None
|
923
|
+
The root directory under which `current.model.loaded` will store loaded models
|
1019
924
|
"""
|
1020
925
|
...
|
1021
926
|
|
1022
927
|
@typing.overload
|
1023
|
-
def
|
928
|
+
def model(f: typing.Callable[[FlowSpecDerived, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, StepFlag], None]:
|
1024
929
|
...
|
1025
930
|
|
1026
|
-
|
931
|
+
@typing.overload
|
932
|
+
def model(f: typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]) -> typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]:
|
933
|
+
...
|
934
|
+
|
935
|
+
def model(f: typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None], None] = None, *, load: typing.Union[typing.List[str], str, typing.List[typing.Tuple[str, typing.Optional[str]]]] = None, temp_dir_root: str = None):
|
1027
936
|
"""
|
1028
|
-
|
1029
|
-
|
1030
|
-
```
|
1031
|
-
@trigger_on_finish(flow='FooFlow')
|
1032
|
-
```
|
1033
|
-
or
|
1034
|
-
```
|
1035
|
-
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1036
|
-
```
|
1037
|
-
This decorator respects the @project decorator and triggers the flow
|
1038
|
-
when upstream runs within the same namespace complete successfully
|
1039
|
-
|
1040
|
-
Additionally, you can specify project aware upstream flow dependencies
|
1041
|
-
by specifying the fully qualified project_flow_name.
|
1042
|
-
```
|
1043
|
-
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1044
|
-
```
|
1045
|
-
or
|
1046
|
-
```
|
1047
|
-
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1048
|
-
```
|
1049
|
-
|
1050
|
-
You can also specify just the project or project branch (other values will be
|
1051
|
-
inferred from the current project or project branch):
|
1052
|
-
```
|
1053
|
-
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1054
|
-
```
|
937
|
+
Enables loading / saving of models within a step.
|
1055
938
|
|
1056
|
-
Note that `branch` is typically one of:
|
1057
|
-
- `prod`
|
1058
|
-
- `user.bob`
|
1059
|
-
- `test.my_experiment`
|
1060
|
-
- `prod.staging`
|
1061
939
|
|
1062
940
|
|
1063
941
|
Parameters
|
1064
942
|
----------
|
1065
|
-
|
1066
|
-
|
1067
|
-
|
1068
|
-
|
1069
|
-
|
1070
|
-
|
943
|
+
load : Union[List[str],str,List[Tuple[str,Union[str,None]]]], default: None
|
944
|
+
Artifact name/s referencing the models/checkpoints to load. Artifact names refer to the names of the instance variables set to `self`.
|
945
|
+
These artifact names give to `load` be reference objects or reference `key` string's from objects created by:
|
946
|
+
- `current.checkpoint`
|
947
|
+
- `current.model`
|
948
|
+
- `current.huggingface_hub`
|
949
|
+
|
950
|
+
If a list of tuples is provided, the first element is the artifact name and the second element is the path the artifact needs be unpacked on
|
951
|
+
the local filesystem. If the second element is None, the artifact will be unpacked in the current working directory.
|
952
|
+
If a string is provided, then the artifact corresponding to that name will be loaded in the current working directory.
|
953
|
+
|
954
|
+
temp_dir_root : str, default: None
|
955
|
+
The root directory under which `current.model.loaded` will store loaded models
|
1071
956
|
"""
|
1072
957
|
...
|
1073
958
|
|
1074
|
-
|
1075
|
-
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
959
|
+
def nvidia(*, gpu: int, gpu_type: str, queue_timeout: int) -> typing.Callable[[typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]], typing.Union[typing.Callable[[FlowSpecDerived, StepFlag], None], typing.Callable[[FlowSpecDerived, typing.Any, StepFlag], None]]]:
|
1076
960
|
"""
|
1077
|
-
Specifies
|
961
|
+
Specifies that this step should execute on DGX cloud.
|
1078
962
|
|
1079
|
-
Use `@pypi_base` to set common packages required by all
|
1080
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1081
963
|
|
1082
964
|
Parameters
|
1083
965
|
----------
|
1084
|
-
|
1085
|
-
|
1086
|
-
|
1087
|
-
|
1088
|
-
|
1089
|
-
|
966
|
+
gpu : int
|
967
|
+
Number of GPUs to use.
|
968
|
+
gpu_type : str
|
969
|
+
Type of Nvidia GPU to use.
|
970
|
+
queue_timeout : int
|
971
|
+
Time to keep the job in NVCF's queue.
|
1090
972
|
"""
|
1091
973
|
...
|
1092
974
|
|
1093
|
-
|
1094
|
-
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1095
|
-
...
|
1096
|
-
|
1097
|
-
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
975
|
+
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1098
976
|
"""
|
1099
|
-
Specifies
|
977
|
+
Specifies what flows belong to the same project.
|
978
|
+
|
979
|
+
A project-specific namespace is created for all flows that
|
980
|
+
use the same `@project(name)`.
|
1100
981
|
|
1101
|
-
Use `@pypi_base` to set common packages required by all
|
1102
|
-
steps and use `@pypi` to specify step-specific overrides.
|
1103
982
|
|
1104
983
|
Parameters
|
1105
984
|
----------
|
1106
|
-
|
1107
|
-
|
1108
|
-
|
1109
|
-
|
1110
|
-
|
1111
|
-
|
985
|
+
name : str
|
986
|
+
Project name. Make sure that the name is unique amongst all
|
987
|
+
projects that use the same production scheduler. The name may
|
988
|
+
contain only lowercase alphanumeric characters and underscores.
|
989
|
+
|
990
|
+
branch : Optional[str], default None
|
991
|
+
The branch to use. If not specified, the branch is set to
|
992
|
+
`user.<username>` unless `production` is set to `True`. This can
|
993
|
+
also be set on the command line using `--branch` as a top-level option.
|
994
|
+
It is an error to specify `branch` in the decorator and on the command line.
|
995
|
+
|
996
|
+
production : bool, default False
|
997
|
+
Whether or not the branch is the production branch. This can also be set on the
|
998
|
+
command line using `--production` as a top-level option. It is an error to specify
|
999
|
+
`production` in the decorator and on the command line.
|
1000
|
+
The project branch name will be:
|
1001
|
+
- if `branch` is specified:
|
1002
|
+
- if `production` is True: `prod.<branch>`
|
1003
|
+
- if `production` is False: `test.<branch>`
|
1004
|
+
- if `branch` is not specified:
|
1005
|
+
- if `production` is True: `prod`
|
1006
|
+
- if `production` is False: `user.<username>`
|
1112
1007
|
"""
|
1113
1008
|
...
|
1114
1009
|
|
@@ -1155,6 +1050,49 @@ def airflow_s3_key_sensor(*, timeout: int, poke_interval: int, mode: str, expone
|
|
1155
1050
|
"""
|
1156
1051
|
...
|
1157
1052
|
|
1053
|
+
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1054
|
+
"""
|
1055
|
+
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1056
|
+
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1057
|
+
|
1058
|
+
|
1059
|
+
Parameters
|
1060
|
+
----------
|
1061
|
+
timeout : int
|
1062
|
+
Time, in seconds before the task times out and fails. (Default: 3600)
|
1063
|
+
poke_interval : int
|
1064
|
+
Time in seconds that the job should wait in between each try. (Default: 60)
|
1065
|
+
mode : str
|
1066
|
+
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1067
|
+
exponential_backoff : bool
|
1068
|
+
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1069
|
+
pool : str
|
1070
|
+
the slot pool this task should run in,
|
1071
|
+
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1072
|
+
soft_fail : bool
|
1073
|
+
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1074
|
+
name : str
|
1075
|
+
Name of the sensor on Airflow
|
1076
|
+
description : str
|
1077
|
+
Description of sensor in the Airflow UI
|
1078
|
+
external_dag_id : str
|
1079
|
+
The dag_id that contains the task you want to wait for.
|
1080
|
+
external_task_ids : List[str]
|
1081
|
+
The list of task_ids that you want to wait for.
|
1082
|
+
If None (default value) the sensor waits for the DAG. (Default: None)
|
1083
|
+
allowed_states : List[str]
|
1084
|
+
Iterable of allowed states, (Default: ['success'])
|
1085
|
+
failed_states : List[str]
|
1086
|
+
Iterable of failed or dis-allowed states. (Default: None)
|
1087
|
+
execution_delta : datetime.timedelta
|
1088
|
+
time difference with the previous execution to look at,
|
1089
|
+
the default is the same logical date as the current task or DAG. (Default: None)
|
1090
|
+
check_existence: bool
|
1091
|
+
Set to True to check if the external task exists or check if
|
1092
|
+
the DAG to wait for exists. (Default: True)
|
1093
|
+
"""
|
1094
|
+
...
|
1095
|
+
|
1158
1096
|
def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None):
|
1159
1097
|
"""
|
1160
1098
|
Allows setting external datastores to save data for the
|
@@ -1231,170 +1169,82 @@ def with_artifact_store(f: typing.Optional[typing.Type[FlowSpecDerived]] = None)
|
|
1231
1169
|
}):
|
1232
1170
|
with Checkpoint() as cp:
|
1233
1171
|
latest = cp.list(
|
1234
|
-
task=run["start"].task
|
1235
|
-
)[0]
|
1236
|
-
print(latest)
|
1237
|
-
cp.load(
|
1238
|
-
latest,
|
1239
|
-
"test-checkpoints"
|
1240
|
-
)
|
1241
|
-
|
1242
|
-
task = Task("TorchTuneFlow/8484/train/53673")
|
1243
|
-
with artifact_store_from(run=run, config={
|
1244
|
-
"client_params": {
|
1245
|
-
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1246
|
-
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1247
|
-
},
|
1248
|
-
}):
|
1249
|
-
load_model(
|
1250
|
-
task.data.model_ref,
|
1251
|
-
"test-models"
|
1252
|
-
)
|
1253
|
-
```
|
1254
|
-
Parameters:
|
1255
|
-
----------
|
1256
|
-
|
1257
|
-
type: str
|
1258
|
-
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1259
|
-
|
1260
|
-
config: dict or Callable
|
1261
|
-
Dictionary of configuration options for the datastore. The following keys are required:
|
1262
|
-
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1263
|
-
- example: 's3://bucket-name/path/to/root'
|
1264
|
-
- example: 'gs://bucket-name/path/to/root'
|
1265
|
-
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1266
|
-
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1267
|
-
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1268
|
-
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1269
|
-
"""
|
1270
|
-
...
|
1271
|
-
|
1272
|
-
def airflow_external_task_sensor(*, timeout: int, poke_interval: int, mode: str, exponential_backoff: bool, pool: str, soft_fail: bool, name: str, description: str, external_dag_id: str, external_task_ids: typing.List[str], allowed_states: typing.List[str], failed_states: typing.List[str], execution_delta: "datetime.timedelta", check_existence: bool) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1273
|
-
"""
|
1274
|
-
The `@airflow_external_task_sensor` decorator attaches a Airflow [ExternalTaskSensor](https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/external_task/index.html#airflow.sensors.external_task.ExternalTaskSensor) before the start step of the flow.
|
1275
|
-
This decorator only works when a flow is scheduled on Airflow and is compiled using `airflow create`. More than one `@airflow_external_task_sensor` can be added as a flow decorators. Adding more than one decorator will ensure that `start` step starts only after all sensors finish.
|
1276
|
-
|
1277
|
-
|
1278
|
-
Parameters
|
1279
|
-
----------
|
1280
|
-
timeout : int
|
1281
|
-
Time, in seconds before the task times out and fails. (Default: 3600)
|
1282
|
-
poke_interval : int
|
1283
|
-
Time in seconds that the job should wait in between each try. (Default: 60)
|
1284
|
-
mode : str
|
1285
|
-
How the sensor operates. Options are: { poke | reschedule }. (Default: "poke")
|
1286
|
-
exponential_backoff : bool
|
1287
|
-
allow progressive longer waits between pokes by using exponential backoff algorithm. (Default: True)
|
1288
|
-
pool : str
|
1289
|
-
the slot pool this task should run in,
|
1290
|
-
slot pools are a way to limit concurrency for certain tasks. (Default:None)
|
1291
|
-
soft_fail : bool
|
1292
|
-
Set to true to mark the task as SKIPPED on failure. (Default: False)
|
1293
|
-
name : str
|
1294
|
-
Name of the sensor on Airflow
|
1295
|
-
description : str
|
1296
|
-
Description of sensor in the Airflow UI
|
1297
|
-
external_dag_id : str
|
1298
|
-
The dag_id that contains the task you want to wait for.
|
1299
|
-
external_task_ids : List[str]
|
1300
|
-
The list of task_ids that you want to wait for.
|
1301
|
-
If None (default value) the sensor waits for the DAG. (Default: None)
|
1302
|
-
allowed_states : List[str]
|
1303
|
-
Iterable of allowed states, (Default: ['success'])
|
1304
|
-
failed_states : List[str]
|
1305
|
-
Iterable of failed or dis-allowed states. (Default: None)
|
1306
|
-
execution_delta : datetime.timedelta
|
1307
|
-
time difference with the previous execution to look at,
|
1308
|
-
the default is the same logical date as the current task or DAG. (Default: None)
|
1309
|
-
check_existence: bool
|
1310
|
-
Set to True to check if the external task exists or check if
|
1311
|
-
the DAG to wait for exists. (Default: True)
|
1312
|
-
"""
|
1313
|
-
...
|
1314
|
-
|
1315
|
-
def project(*, name: str, branch: typing.Optional[str] = None, production: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1316
|
-
"""
|
1317
|
-
Specifies what flows belong to the same project.
|
1318
|
-
|
1319
|
-
A project-specific namespace is created for all flows that
|
1320
|
-
use the same `@project(name)`.
|
1321
|
-
|
1172
|
+
task=run["start"].task
|
1173
|
+
)[0]
|
1174
|
+
print(latest)
|
1175
|
+
cp.load(
|
1176
|
+
latest,
|
1177
|
+
"test-checkpoints"
|
1178
|
+
)
|
1322
1179
|
|
1323
|
-
|
1180
|
+
task = Task("TorchTuneFlow/8484/train/53673")
|
1181
|
+
with artifact_store_from(run=run, config={
|
1182
|
+
"client_params": {
|
1183
|
+
"aws_access_key_id": os.environ.get("MY_CUSTOM_ACCESS_KEY"),
|
1184
|
+
"aws_secret_access_key": os.environ.get("MY_CUSTOM_SECRET_KEY"),
|
1185
|
+
},
|
1186
|
+
}):
|
1187
|
+
load_model(
|
1188
|
+
task.data.model_ref,
|
1189
|
+
"test-models"
|
1190
|
+
)
|
1191
|
+
```
|
1192
|
+
Parameters:
|
1324
1193
|
----------
|
1325
|
-
name : str
|
1326
|
-
Project name. Make sure that the name is unique amongst all
|
1327
|
-
projects that use the same production scheduler. The name may
|
1328
|
-
contain only lowercase alphanumeric characters and underscores.
|
1329
1194
|
|
1330
|
-
|
1331
|
-
The
|
1332
|
-
`user.<username>` unless `production` is set to `True`. This can
|
1333
|
-
also be set on the command line using `--branch` as a top-level option.
|
1334
|
-
It is an error to specify `branch` in the decorator and on the command line.
|
1195
|
+
type: str
|
1196
|
+
The type of the datastore. Can be one of 's3', 'gcs', 'azure' or any other supported metaflow Datastore.
|
1335
1197
|
|
1336
|
-
|
1337
|
-
|
1338
|
-
|
1339
|
-
|
1340
|
-
|
1341
|
-
|
1342
|
-
|
1343
|
-
|
1344
|
-
|
1345
|
-
- if `production` is True: `prod`
|
1346
|
-
- if `production` is False: `user.<username>`
|
1198
|
+
config: dict or Callable
|
1199
|
+
Dictionary of configuration options for the datastore. The following keys are required:
|
1200
|
+
- root: The root path in the datastore where the data will be saved. (needs to be in the format expected by the datastore)
|
1201
|
+
- example: 's3://bucket-name/path/to/root'
|
1202
|
+
- example: 'gs://bucket-name/path/to/root'
|
1203
|
+
- example: 'https://myblockacc.blob.core.windows.net/metaflow/'
|
1204
|
+
- role_arn (optional): AWS IAM role to access s3 bucket (only when `type` is 's3')
|
1205
|
+
- session_vars (optional): AWS session variables to access s3 bucket (only when `type` is 's3')
|
1206
|
+
- client_params (optional): AWS client parameters to access s3 bucket (only when `type` is 's3')
|
1347
1207
|
"""
|
1348
1208
|
...
|
1349
1209
|
|
1350
1210
|
@typing.overload
|
1351
|
-
def
|
1211
|
+
def pypi_base(*, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1352
1212
|
"""
|
1353
|
-
Specifies the
|
1354
|
-
production scheduler.
|
1213
|
+
Specifies the PyPI packages for all steps of the flow.
|
1355
1214
|
|
1215
|
+
Use `@pypi_base` to set common packages required by all
|
1216
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1356
1217
|
|
1357
1218
|
Parameters
|
1358
1219
|
----------
|
1359
|
-
|
1360
|
-
|
1361
|
-
|
1362
|
-
|
1363
|
-
|
1364
|
-
|
1365
|
-
cron : str, optional, default None
|
1366
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1367
|
-
specified by this expression.
|
1368
|
-
timezone : str, optional, default None
|
1369
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1370
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1220
|
+
packages : Dict[str, str], default: {}
|
1221
|
+
Packages to use for this flow. The key is the name of the package
|
1222
|
+
and the value is the version to use.
|
1223
|
+
python : str, optional, default: None
|
1224
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1225
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1371
1226
|
"""
|
1372
1227
|
...
|
1373
1228
|
|
1374
1229
|
@typing.overload
|
1375
|
-
def
|
1230
|
+
def pypi_base(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1376
1231
|
...
|
1377
1232
|
|
1378
|
-
def
|
1233
|
+
def pypi_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packages: typing.Dict[str, str] = {}, python: typing.Optional[str] = None):
|
1379
1234
|
"""
|
1380
|
-
Specifies the
|
1381
|
-
production scheduler.
|
1235
|
+
Specifies the PyPI packages for all steps of the flow.
|
1382
1236
|
|
1237
|
+
Use `@pypi_base` to set common packages required by all
|
1238
|
+
steps and use `@pypi` to specify step-specific overrides.
|
1383
1239
|
|
1384
1240
|
Parameters
|
1385
1241
|
----------
|
1386
|
-
|
1387
|
-
|
1388
|
-
|
1389
|
-
|
1390
|
-
|
1391
|
-
|
1392
|
-
cron : str, optional, default None
|
1393
|
-
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1394
|
-
specified by this expression.
|
1395
|
-
timezone : str, optional, default None
|
1396
|
-
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1397
|
-
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1242
|
+
packages : Dict[str, str], default: {}
|
1243
|
+
Packages to use for this flow. The key is the name of the package
|
1244
|
+
and the value is the version to use.
|
1245
|
+
python : str, optional, default: None
|
1246
|
+
Version of Python to use, e.g. '3.7.4'. A default value of None implies
|
1247
|
+
that the version used will correspond to the version of the Python interpreter used to start the run.
|
1398
1248
|
"""
|
1399
1249
|
...
|
1400
1250
|
|
@@ -1491,6 +1341,107 @@ def trigger(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, event: t
|
|
1491
1341
|
"""
|
1492
1342
|
...
|
1493
1343
|
|
1344
|
+
@typing.overload
|
1345
|
+
def trigger_on_finish(*, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1346
|
+
"""
|
1347
|
+
Specifies the flow(s) that this flow depends on.
|
1348
|
+
|
1349
|
+
```
|
1350
|
+
@trigger_on_finish(flow='FooFlow')
|
1351
|
+
```
|
1352
|
+
or
|
1353
|
+
```
|
1354
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1355
|
+
```
|
1356
|
+
This decorator respects the @project decorator and triggers the flow
|
1357
|
+
when upstream runs within the same namespace complete successfully
|
1358
|
+
|
1359
|
+
Additionally, you can specify project aware upstream flow dependencies
|
1360
|
+
by specifying the fully qualified project_flow_name.
|
1361
|
+
```
|
1362
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1363
|
+
```
|
1364
|
+
or
|
1365
|
+
```
|
1366
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1367
|
+
```
|
1368
|
+
|
1369
|
+
You can also specify just the project or project branch (other values will be
|
1370
|
+
inferred from the current project or project branch):
|
1371
|
+
```
|
1372
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1373
|
+
```
|
1374
|
+
|
1375
|
+
Note that `branch` is typically one of:
|
1376
|
+
- `prod`
|
1377
|
+
- `user.bob`
|
1378
|
+
- `test.my_experiment`
|
1379
|
+
- `prod.staging`
|
1380
|
+
|
1381
|
+
|
1382
|
+
Parameters
|
1383
|
+
----------
|
1384
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
1385
|
+
Upstream flow dependency for this flow.
|
1386
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
1387
|
+
Upstream flow dependencies for this flow.
|
1388
|
+
options : Dict[str, Any], default {}
|
1389
|
+
Backend-specific configuration for tuning eventing behavior.
|
1390
|
+
"""
|
1391
|
+
...
|
1392
|
+
|
1393
|
+
@typing.overload
|
1394
|
+
def trigger_on_finish(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1395
|
+
...
|
1396
|
+
|
1397
|
+
def trigger_on_finish(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, flow: typing.Union[typing.Dict[str, str], str, None] = None, flows: typing.List[typing.Union[str, typing.Dict[str, str]]] = [], options: typing.Dict[str, typing.Any] = {}):
|
1398
|
+
"""
|
1399
|
+
Specifies the flow(s) that this flow depends on.
|
1400
|
+
|
1401
|
+
```
|
1402
|
+
@trigger_on_finish(flow='FooFlow')
|
1403
|
+
```
|
1404
|
+
or
|
1405
|
+
```
|
1406
|
+
@trigger_on_finish(flows=['FooFlow', 'BarFlow'])
|
1407
|
+
```
|
1408
|
+
This decorator respects the @project decorator and triggers the flow
|
1409
|
+
when upstream runs within the same namespace complete successfully
|
1410
|
+
|
1411
|
+
Additionally, you can specify project aware upstream flow dependencies
|
1412
|
+
by specifying the fully qualified project_flow_name.
|
1413
|
+
```
|
1414
|
+
@trigger_on_finish(flow='my_project.branch.my_branch.FooFlow')
|
1415
|
+
```
|
1416
|
+
or
|
1417
|
+
```
|
1418
|
+
@trigger_on_finish(flows=['my_project.branch.my_branch.FooFlow', 'BarFlow'])
|
1419
|
+
```
|
1420
|
+
|
1421
|
+
You can also specify just the project or project branch (other values will be
|
1422
|
+
inferred from the current project or project branch):
|
1423
|
+
```
|
1424
|
+
@trigger_on_finish(flow={"name": "FooFlow", "project": "my_project", "project_branch": "branch"})
|
1425
|
+
```
|
1426
|
+
|
1427
|
+
Note that `branch` is typically one of:
|
1428
|
+
- `prod`
|
1429
|
+
- `user.bob`
|
1430
|
+
- `test.my_experiment`
|
1431
|
+
- `prod.staging`
|
1432
|
+
|
1433
|
+
|
1434
|
+
Parameters
|
1435
|
+
----------
|
1436
|
+
flow : Union[str, Dict[str, str]], optional, default None
|
1437
|
+
Upstream flow dependency for this flow.
|
1438
|
+
flows : List[Union[str, Dict[str, str]]], default []
|
1439
|
+
Upstream flow dependencies for this flow.
|
1440
|
+
options : Dict[str, Any], default {}
|
1441
|
+
Backend-specific configuration for tuning eventing behavior.
|
1442
|
+
"""
|
1443
|
+
...
|
1444
|
+
|
1494
1445
|
@typing.overload
|
1495
1446
|
def conda_base(*, packages: typing.Dict[str, str] = {}, libraries: typing.Dict[str, str] = {}, python: typing.Optional[str] = None, disabled: bool = False) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1496
1447
|
"""
|
@@ -1542,5 +1493,56 @@ def conda_base(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, packa
|
|
1542
1493
|
"""
|
1543
1494
|
...
|
1544
1495
|
|
1496
|
+
@typing.overload
|
1497
|
+
def schedule(*, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None) -> typing.Callable[[typing.Type[FlowSpecDerived]], typing.Type[FlowSpecDerived]]:
|
1498
|
+
"""
|
1499
|
+
Specifies the times when the flow should be run when running on a
|
1500
|
+
production scheduler.
|
1501
|
+
|
1502
|
+
|
1503
|
+
Parameters
|
1504
|
+
----------
|
1505
|
+
hourly : bool, default False
|
1506
|
+
Run the workflow hourly.
|
1507
|
+
daily : bool, default True
|
1508
|
+
Run the workflow daily.
|
1509
|
+
weekly : bool, default False
|
1510
|
+
Run the workflow weekly.
|
1511
|
+
cron : str, optional, default None
|
1512
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1513
|
+
specified by this expression.
|
1514
|
+
timezone : str, optional, default None
|
1515
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1516
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1517
|
+
"""
|
1518
|
+
...
|
1519
|
+
|
1520
|
+
@typing.overload
|
1521
|
+
def schedule(f: typing.Type[FlowSpecDerived]) -> typing.Type[FlowSpecDerived]:
|
1522
|
+
...
|
1523
|
+
|
1524
|
+
def schedule(f: typing.Optional[typing.Type[FlowSpecDerived]] = None, *, hourly: bool = False, daily: bool = True, weekly: bool = False, cron: typing.Optional[str] = None, timezone: typing.Optional[str] = None):
|
1525
|
+
"""
|
1526
|
+
Specifies the times when the flow should be run when running on a
|
1527
|
+
production scheduler.
|
1528
|
+
|
1529
|
+
|
1530
|
+
Parameters
|
1531
|
+
----------
|
1532
|
+
hourly : bool, default False
|
1533
|
+
Run the workflow hourly.
|
1534
|
+
daily : bool, default True
|
1535
|
+
Run the workflow daily.
|
1536
|
+
weekly : bool, default False
|
1537
|
+
Run the workflow weekly.
|
1538
|
+
cron : str, optional, default None
|
1539
|
+
Run the workflow at [a custom Cron schedule](https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html#cron-expressions)
|
1540
|
+
specified by this expression.
|
1541
|
+
timezone : str, optional, default None
|
1542
|
+
Timezone on which the schedule runs (default: None). Currently supported only for Argo workflows,
|
1543
|
+
which accepts timezones in [IANA format](https://nodatime.org/TimeZones).
|
1544
|
+
"""
|
1545
|
+
...
|
1546
|
+
|
1545
1547
|
pkg_name: str
|
1546
1548
|
|