oafuncs 0.0.97.2__tar.gz → 0.0.97.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. {oafuncs-0.0.97.2/oafuncs.egg-info → oafuncs-0.0.97.3}/PKG-INFO +1 -1
  2. oafuncs-0.0.97.3/oafuncs/_nc_script/plot_dataset.py +299 -0
  3. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_nc.py +1 -1
  4. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3/oafuncs.egg-info}/PKG-INFO +1 -1
  5. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs.egg-info/SOURCES.txt +1 -0
  6. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/setup.py +4 -1
  7. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/LICENSE.txt +0 -0
  8. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/MANIFEST.in +0 -0
  9. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/README.md +0 -0
  10. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/__init__.py +0 -0
  11. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/data_store/OAFuncs.png +0 -0
  12. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/data_store/hycom_3hourly.png +0 -0
  13. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_cmap.py +0 -0
  14. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_data.py +0 -0
  15. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_down/User_Agent-list.txt +0 -0
  16. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_down/__init__.py +0 -0
  17. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_down/hycom_3hourly.py +0 -0
  18. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_down/hycom_3hourly_20250129.py +0 -0
  19. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_down/idm.py +0 -0
  20. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_down/literature.py +0 -0
  21. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_down/test_ua.py +0 -0
  22. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_down/user_agent.py +0 -0
  23. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_draw.py +0 -0
  24. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_file.py +0 -0
  25. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_help.py +0 -0
  26. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_model/__init__.py +0 -0
  27. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_model/roms/__init__.py +0 -0
  28. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_model/roms/test.py +0 -0
  29. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_model/wrf/__init__.py +0 -0
  30. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_model/wrf/little_r.py +0 -0
  31. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_python.py +0 -0
  32. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_sign/__init__.py +0 -0
  33. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_sign/meteorological.py +0 -0
  34. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_sign/ocean.py +0 -0
  35. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_sign/scientific.py +0 -0
  36. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_tool/__init__.py +0 -0
  37. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_tool/email.py +0 -0
  38. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_tool/parallel.py +0 -0
  39. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs/oa_tool/time.py +0 -0
  40. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs.egg-info/dependency_links.txt +0 -0
  41. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs.egg-info/requires.txt +0 -0
  42. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/oafuncs.egg-info/top_level.txt +0 -0
  43. {oafuncs-0.0.97.2 → oafuncs-0.0.97.3}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: oafuncs
3
- Version: 0.0.97.2
3
+ Version: 0.0.97.3
4
4
  Summary: Oceanic and Atmospheric Functions
5
5
  Home-page: https://github.com/Industry-Pays/OAFuncs
6
6
  Author: Kun Liu
@@ -0,0 +1,299 @@
1
+ import os
2
+ from typing import Optional, Tuple
3
+
4
+ import matplotlib as mpl
5
+
6
+ mpl.use("Agg") # Use non-interactive backend
7
+
8
+ import cftime
9
+ import matplotlib.pyplot as plt
10
+ import numpy as np
11
+ from rich import print
12
+ import cartopy.crs as ccrs
13
+ import xarray as xr
14
+
15
+ import oafuncs
16
+
17
+
18
+ def plot_1d(data: xr.DataArray, output_path: str, x_dim: str, y_dim: str, z_dim: str, t_dim: str) -> None:
19
+ """Plot 1D data."""
20
+ plt.figure(figsize=(10, 6))
21
+
22
+ # Handle time dimension
23
+ if t_dim in data.dims and isinstance(data[t_dim].values[0], cftime.datetime):
24
+ try:
25
+ data[t_dim] = data.indexes[t_dim].to_datetimeindex()
26
+ except (AttributeError, ValueError, TypeError) as e:
27
+ print(f"Warning: Could not convert {t_dim} to datetime index: {e}")
28
+
29
+ # Determine X axis data
30
+ x, x_label = determine_x_axis(data, x_dim, y_dim, z_dim, t_dim)
31
+
32
+ y = data.values
33
+ plt.plot(x, y, linewidth=2)
34
+
35
+ # Add chart info
36
+ long_name = getattr(data, "long_name", "No long_name")
37
+ units = getattr(data, "units", "")
38
+ plt.title(f"{data.name} | {long_name}", fontsize=12)
39
+ plt.xlabel(x_label)
40
+ plt.ylabel(f"{data.name} ({units})" if units else data.name)
41
+
42
+ plt.grid(True, linestyle="--", alpha=0.7)
43
+ plt.tight_layout()
44
+
45
+ # Save image
46
+ os.makedirs(os.path.dirname(output_path), exist_ok=True)
47
+ plt.savefig(output_path, bbox_inches="tight", dpi=600)
48
+ plt.clf()
49
+ plt.close()
50
+
51
+
52
+ def determine_x_axis(data: xr.DataArray, x_dim: str, y_dim: str, z_dim: str, t_dim: str) -> Tuple[np.ndarray, str]:
53
+ """Determine the X axis data and label."""
54
+ if x_dim in data.dims:
55
+ return data[x_dim].values, x_dim
56
+ elif y_dim in data.dims:
57
+ return data[y_dim].values, y_dim
58
+ elif z_dim in data.dims:
59
+ return data[z_dim].values, z_dim
60
+ elif t_dim in data.dims:
61
+ return data[t_dim].values, t_dim
62
+ else:
63
+ return np.arange(len(data)), "Index"
64
+
65
+
66
+ def plot_2d(data: xr.DataArray, output_path: str, data_range: Optional[Tuple[float, float]], x_dim: str, y_dim: str, t_dim: str, plot_type: str) -> bool:
67
+ """Plot 2D data."""
68
+ if x_dim in data.dims and y_dim in data.dims and x_dim.lower() in ["lon", "longitude"] and y_dim.lower() in ["lat", "latitude"]:
69
+ lon_range = data[x_dim].values
70
+ lat_range = data[y_dim].values
71
+ lon_lat_ratio = np.abs(np.max(lon_range) - np.min(lon_range)) / (np.max(lat_range) - np.min(lat_range))
72
+ figsize = (10, 10 / lon_lat_ratio)
73
+ fig, ax = plt.subplots(figsize=figsize, subplot_kw={"projection": ccrs.PlateCarree()})
74
+ oafuncs.oa_draw.add_cartopy(ax, lon_range, lat_range)
75
+ else:
76
+ fig, ax = plt.subplots(figsize=(10, 8))
77
+
78
+ # Handle time dimension
79
+ if t_dim in data.dims and isinstance(data[t_dim].values[0], cftime.datetime):
80
+ try:
81
+ data[t_dim] = data.indexes[t_dim].to_datetimeindex()
82
+ except (AttributeError, ValueError, TypeError) as e:
83
+ print(f"Warning: Could not convert {t_dim} to datetime index: {e}")
84
+
85
+ # Check for valid data
86
+ if np.all(np.isnan(data.values)) or data.size == 0:
87
+ print(f"Skipping {data.name}: All values are NaN or empty")
88
+ plt.close()
89
+ return False
90
+
91
+ data_range = calculate_data_range(data, data_range)
92
+
93
+ if data_range is None:
94
+ print(f"Skipping {data.name} due to all NaN values")
95
+ plt.close()
96
+ return False
97
+
98
+ # Select appropriate colormap and levels
99
+ cmap, norm, levels = select_colormap_and_levels(data_range, plot_type)
100
+
101
+ mappable = None
102
+ try:
103
+ if plot_type == "contourf":
104
+ if np.ptp(data.values) < 1e-10 and not np.all(np.isnan(data.values)):
105
+ print(f"Warning: {data.name} has very little variation. Using imshow instead.")
106
+ mappable = ax.imshow(data.values, cmap=cmap, aspect="auto", interpolation="none")
107
+ colorbar = plt.colorbar(mappable, ax=ax)
108
+ else:
109
+ mappable = ax.contourf(data[x_dim], data[y_dim], data.values, levels=levels, cmap=cmap, norm=norm)
110
+ colorbar = plt.colorbar(mappable, ax=ax)
111
+ elif plot_type == "contour":
112
+ if np.ptp(data.values) < 1e-10 and not np.all(np.isnan(data.values)):
113
+ print(f"Warning: {data.name} has very little variation. Using imshow instead.")
114
+ mappable = ax.imshow(data.values, cmap=cmap, aspect="auto", interpolation="none")
115
+ colorbar = plt.colorbar(mappable, ax=ax)
116
+ else:
117
+ mappable = ax.contour(data[x_dim], data[y_dim], data.values, levels=levels, cmap=cmap, norm=norm)
118
+ ax.clabel(mappable, inline=True, fontsize=8, fmt="%1.1f")
119
+ colorbar = plt.colorbar(mappable, ax=ax)
120
+ except (ValueError, TypeError) as e:
121
+ print(f"Warning: Could not plot with specified parameters: {e}. Trying simplified parameters.")
122
+ try:
123
+ mappable = data.plot(ax=ax, cmap=cmap, add_colorbar=False)
124
+ colorbar = plt.colorbar(mappable, ax=ax)
125
+ except Exception as e2:
126
+ print(f"Error plotting {data.name}: {e2}")
127
+ plt.figure(figsize=(10, 8))
128
+ mappable = ax.imshow(data.values, cmap="viridis", aspect="auto")
129
+ colorbar = plt.colorbar(mappable, ax=ax, label=getattr(data, "units", ""))
130
+ plt.title(f"{data.name} | {getattr(data, 'long_name', 'No long_name')} (basic plot)", fontsize=12)
131
+ plt.tight_layout()
132
+ os.makedirs(os.path.dirname(output_path), exist_ok=True)
133
+ plt.savefig(output_path, bbox_inches="tight", dpi=600)
134
+ plt.close()
135
+ return True
136
+
137
+ plt.title(f"{data.name} | {getattr(data, 'long_name', 'No long_name')}", fontsize=12)
138
+ units = getattr(data, "units", "")
139
+ if units and colorbar:
140
+ colorbar.set_label(units)
141
+
142
+ plt.tight_layout()
143
+ os.makedirs(os.path.dirname(output_path), exist_ok=True)
144
+ plt.savefig(output_path, bbox_inches="tight", dpi=600)
145
+ plt.close()
146
+ return True
147
+
148
+
149
+ def calculate_data_range(data: xr.DataArray, data_range: Optional[Tuple[float, float]]) -> Optional[Tuple[float, float]]:
150
+ """Calculate the data range, ignoring extreme outliers."""
151
+ if data_range is None:
152
+ flat_data = data.values.flatten()
153
+ if flat_data.size == 0:
154
+ return None
155
+ valid_data = flat_data[~np.isnan(flat_data)]
156
+ if len(valid_data) == 0:
157
+ return None
158
+ low, high = np.percentile(valid_data, [0.5, 99.5])
159
+ filtered_data = valid_data[(valid_data >= low) & (valid_data <= high)]
160
+ if len(filtered_data) > 0:
161
+ data_range = (np.min(filtered_data), np.max(filtered_data))
162
+ else:
163
+ data_range = (np.nanmin(valid_data), np.nanmax(valid_data))
164
+ if abs(data_range[1] - data_range[0]) < 1e-10:
165
+ mean = (data_range[0] + data_range[1]) / 2
166
+ data_range = (mean - 1e-10 if mean != 0 else -1e-10, mean + 1e-10 if mean != 0 else 1e-10)
167
+ return data_range
168
+
169
+
170
+ def select_colormap_and_levels(data_range: Tuple[float, float], plot_type: str) -> Tuple[mpl.colors.Colormap, mpl.colors.Normalize, np.ndarray]:
171
+ """Select colormap and levels based on data range."""
172
+ if plot_type == "contour":
173
+ # For contour plots, use fewer levels
174
+ num_levels = 10
175
+ else:
176
+ # For filled contour plots, use more levels
177
+ num_levels = 128
178
+
179
+ if data_range[0] * data_range[1] < 0:
180
+ cmap = oafuncs.oa_cmap.get("diverging_1")
181
+ bdy = max(abs(data_range[0]), abs(data_range[1]))
182
+ norm = mpl.colors.TwoSlopeNorm(vmin=-bdy, vcenter=0, vmax=bdy)
183
+ levels = np.linspace(-bdy, bdy, num_levels)
184
+ else:
185
+ cmap = oafuncs.oa_cmap.get("cool_1") if data_range[0] < 0 else oafuncs.oa_cmap.get("warm_1")
186
+ norm = mpl.colors.Normalize(vmin=data_range[0], vmax=data_range[1])
187
+ levels = np.linspace(data_range[0], data_range[1], num_levels)
188
+
189
+ if np.any(np.diff(levels) <= 0):
190
+ levels = np.linspace(data_range[0], data_range[1], 10)
191
+ return cmap, norm, levels
192
+
193
+
194
+ def process_variable(var: str, data: xr.DataArray, dims: int, dims_name: Tuple[str, ...], output_dir: str, x_dim: str, y_dim: str, z_dim: str, t_dim: str, fixed_colorscale: bool, plot_type: str) -> None:
195
+ """Process a single variable."""
196
+ valid_dims = {x_dim, y_dim, z_dim, t_dim}
197
+ if not set(dims_name).issubset(valid_dims):
198
+ print(f"Skipping {var} due to unsupported dimensions: {dims_name}")
199
+ return
200
+
201
+ # Process 1D data
202
+ if dims == 1:
203
+ if np.issubdtype(data.dtype, np.character):
204
+ print(f"Skipping {var} due to character data type")
205
+ return
206
+ plot_1d(data, os.path.join(output_dir, f"{var}.png"), x_dim, y_dim, z_dim, t_dim)
207
+ print(f"{var}.png")
208
+ return
209
+
210
+ # Compute global data range for fixed colorscale
211
+ global_data_range = None
212
+ if dims >= 2 and fixed_colorscale:
213
+ global_data_range = calculate_data_range(data, None)
214
+ if global_data_range is None:
215
+ print(f"Skipping {var} due to no valid data")
216
+ return
217
+ print(f"Fixed colorscale range: {global_data_range}")
218
+
219
+ # Process 2D data
220
+ if dims == 2:
221
+ success = plot_2d(data, os.path.join(output_dir, f"{var}.png"), global_data_range, x_dim, y_dim, t_dim, plot_type)
222
+ if success:
223
+ print(f"{var}.png")
224
+
225
+ # Process 3D data
226
+ if dims == 3:
227
+ for i in range(data.shape[0]):
228
+ for attempt in range(10):
229
+ try:
230
+ if data[i].values.size == 0:
231
+ print(f"Skipped {var}_{dims_name[0]}-{i} (empty data)")
232
+ break
233
+ success = plot_2d(data[i], os.path.join(output_dir, f"{var}_{dims_name[0]}-{i}.png"), global_data_range, x_dim, y_dim, t_dim, plot_type)
234
+ if success:
235
+ print(f"{var}_{dims_name[0]}-{i}.png")
236
+ else:
237
+ print(f"Skipped {var}_{dims_name[0]}-{i} (invalid data)")
238
+ break
239
+ except Exception as e:
240
+ if attempt < 9:
241
+ print(f"Retrying {var}_{dims_name[0]}-{i} (attempt {attempt + 1})")
242
+ else:
243
+ print(f"Error processing {var}_{dims_name[0]}-{i}: {e}")
244
+
245
+ # Process 4D data
246
+ if dims == 4:
247
+ for i in range(data.shape[0]):
248
+ for j in range(data.shape[1]):
249
+ for attempt in range(3):
250
+ try:
251
+ if data[i, j].values.size == 0:
252
+ print(f"Skipped {var}_{dims_name[0]}-{i}_{dims_name[1]}-{j} (empty data)")
253
+ break
254
+ success = plot_2d(data[i, j], os.path.join(output_dir, f"{var}_{dims_name[0]}-{i}_{dims_name[1]}-{j}.png"), global_data_range, x_dim, y_dim, t_dim, plot_type)
255
+ if success:
256
+ print(f"{var}_{dims_name[0]}-{i}_{dims_name[1]}-{j}.png")
257
+ else:
258
+ print(f"Skipped {var}_{dims_name[0]}-{i}_{dims_name[1]}-{j} (invalid data)")
259
+ break
260
+ except Exception as e:
261
+ if attempt < 2:
262
+ print(f"Retrying {var}_{dims_name[0]}-{i}_{dims_name[1]}-{j} (attempt {attempt + 1})")
263
+ else:
264
+ print(f"Error processing {var}_{dims_name[0]}-{i}_{dims_name[1]}-{j}: {e}")
265
+
266
+
267
+ def func_plot_dataset(ds_in: xr.Dataset, output_dir: str, xyzt_dims: Tuple[str, str, str, str] = ("longitude", "latitude", "level", "time"), plot_type: str = "contourf", fixed_colorscale: bool = False) -> None:
268
+ """Plot variables from a NetCDF file and save the plots to the specified directory."""
269
+ os.makedirs(output_dir, exist_ok=True)
270
+ x_dim, y_dim, z_dim, t_dim = xyzt_dims
271
+
272
+ # Main processing function
273
+ try:
274
+ ds = ds_in
275
+ varlist = list(ds.data_vars)
276
+ print(f"Found {len(varlist)} variables in dataset")
277
+
278
+ for var in varlist:
279
+ print("=" * 120)
280
+ print(f"Processing: {var}")
281
+ data = ds[var]
282
+ dims = len(data.shape)
283
+ dims_name = data.dims
284
+ try:
285
+ process_variable(var, data, dims, dims_name, output_dir, x_dim, y_dim, z_dim, t_dim, fixed_colorscale, plot_type)
286
+ except Exception as e:
287
+ print(f"Error processing variable {var}: {e}")
288
+
289
+ except Exception as e:
290
+ print(f"Error processing dataset: {e}")
291
+ finally:
292
+ if "ds" in locals():
293
+ ds.close()
294
+ print("Dataset closed")
295
+
296
+
297
+ if __name__ == "__main__":
298
+ pass
299
+ # func_plot_dataset(ds, output_dir, xyzt_dims=("longitude", "latitude", "level", "time"), plot_type="contourf", fixed_colorscale=False)
@@ -20,7 +20,7 @@ import numpy as np
20
20
  import xarray as xr
21
21
  from rich import print
22
22
 
23
- from ._script.plot_dataset import func_plot_dataset
23
+ from ._nc_script.plot_dataset import func_plot_dataset
24
24
 
25
25
  __all__ = ["get_var", "extract", "save", "merge", "modify", "rename", "check", "convert_longitude", "isel", "draw"]
26
26
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: oafuncs
3
- Version: 0.0.97.2
3
+ Version: 0.0.97.3
4
4
  Summary: Oceanic and Atmospheric Functions
5
5
  Home-page: https://github.com/Industry-Pays/OAFuncs
6
6
  Author: Kun Liu
@@ -15,6 +15,7 @@ oafuncs.egg-info/SOURCES.txt
15
15
  oafuncs.egg-info/dependency_links.txt
16
16
  oafuncs.egg-info/requires.txt
17
17
  oafuncs.egg-info/top_level.txt
18
+ oafuncs/_nc_script/plot_dataset.py
18
19
  oafuncs/data_store/OAFuncs.png
19
20
  oafuncs/data_store/hycom_3hourly.png
20
21
  oafuncs/oa_down/User_Agent-list.txt
@@ -18,7 +18,7 @@ URL = "https://github.com/Industry-Pays/OAFuncs"
18
18
  EMAIL = "liukun0312@stu.ouc.edu.cn"
19
19
  AUTHOR = "Kun Liu"
20
20
  REQUIRES_PYTHON = ">=3.9.0" # 2025/03/13
21
- VERSION = "0.0.97.2" # 下次用98.0,98.1已经被用过了
21
+ VERSION = "0.0.97.3" # 下次用98.0,98.1已经被用过了
22
22
 
23
23
  # What packages are required for this module to be executed?
24
24
  REQUIRED = [
@@ -120,6 +120,9 @@ packages = find_packages(exclude=["tests", "*.tests", "*.tests.*", "tests.*"])
120
120
  if "oafuncs.data_store" not in packages:
121
121
  packages.append("oafuncs.data_store")
122
122
 
123
+ if "oafuncs._nc_script" not in packages:
124
+ packages.append("oafuncs._nc_script")
125
+
123
126
  # Where the magic happens:
124
127
  setup(
125
128
  name=NAME,
File without changes
File without changes
File without changes
File without changes