nvidia-nat 1.4.0a20251010__py3-none-any.whl → 1.4.0a20251011__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -24,6 +24,7 @@ from nat.builder.function_info import FunctionInfo
24
24
  from nat.cli.register_workflow import register_function
25
25
  from nat.data_models.agent import AgentBaseConfig
26
26
  from nat.data_models.api_server import ChatRequest
27
+ from nat.data_models.api_server import ChatRequestOrMessage
27
28
  from nat.data_models.api_server import ChatResponse
28
29
  from nat.data_models.api_server import Usage
29
30
  from nat.data_models.component_ref import FunctionGroupRef
@@ -70,9 +71,6 @@ class ReActAgentWorkflowConfig(AgentBaseConfig, OptimizableMixin, name="react_ag
70
71
  default=None,
71
72
  description="Provides the SYSTEM_PROMPT to use with the agent") # defaults to SYSTEM_PROMPT in prompt.py
72
73
  max_history: int = Field(default=15, description="Maximum number of messages to keep in the conversation history.")
73
- use_openai_api: bool = Field(default=False,
74
- description=("Use OpenAI API for the input/output types to the function. "
75
- "If False, strings will be used."))
76
74
  additional_instructions: str | None = OptimizableField(
77
75
  default=None,
78
76
  description="Additional instructions to provide to the agent in addition to the base prompt.",
@@ -118,21 +116,23 @@ async def react_agent_workflow(config: ReActAgentWorkflowConfig, builder: Builde
118
116
  pass_tool_call_errors_to_agent=config.pass_tool_call_errors_to_agent,
119
117
  normalize_tool_input_quotes=config.normalize_tool_input_quotes).build_graph()
120
118
 
121
- async def _response_fn(input_message: ChatRequest) -> ChatResponse:
119
+ async def _response_fn(chat_request_or_message: ChatRequestOrMessage) -> ChatResponse | str:
122
120
  """
123
121
  Main workflow entry function for the ReAct Agent.
124
122
 
125
123
  This function invokes the ReAct Agent Graph and returns the response.
126
124
 
127
125
  Args:
128
- input_message (ChatRequest): The input message to process
126
+ chat_request_or_message (ChatRequestOrMessage): The input message to process
129
127
 
130
128
  Returns:
131
- ChatResponse: The response from the agent or error message
129
+ ChatResponse | str: The response from the agent or error message
132
130
  """
133
131
  try:
132
+ message = GlobalTypeConverter.get().convert(chat_request_or_message, to_type=ChatRequest)
133
+
134
134
  # initialize the starting state with the user query
135
- messages: list[BaseMessage] = trim_messages(messages=[m.model_dump() for m in input_message.messages],
135
+ messages: list[BaseMessage] = trim_messages(messages=[m.model_dump() for m in message.messages],
136
136
  max_tokens=config.max_history,
137
137
  strategy="last",
138
138
  token_counter=len,
@@ -153,25 +153,16 @@ async def react_agent_workflow(config: ReActAgentWorkflowConfig, builder: Builde
153
153
  content = str(output_message.content)
154
154
 
155
155
  # Create usage statistics for the response
156
- prompt_tokens = sum(len(str(msg.content).split()) for msg in input_message.messages)
156
+ prompt_tokens = sum(len(str(msg.content).split()) for msg in message.messages)
157
157
  completion_tokens = len(content.split()) if content else 0
158
158
  total_tokens = prompt_tokens + completion_tokens
159
159
  usage = Usage(prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=total_tokens)
160
- return ChatResponse.from_string(content, usage=usage)
161
-
160
+ response = ChatResponse.from_string(content, usage=usage)
161
+ if chat_request_or_message.is_string:
162
+ return GlobalTypeConverter.get().convert(response, to_type=str)
163
+ return response
162
164
  except Exception as ex:
163
- logger.exception("%s ReAct Agent failed with exception: %s", AGENT_LOG_PREFIX, str(ex))
164
- raise RuntimeError
165
-
166
- if (config.use_openai_api):
167
- yield FunctionInfo.from_fn(_response_fn, description=config.description)
168
- else:
169
-
170
- async def _str_api_fn(input_message: str) -> str:
171
- oai_input = GlobalTypeConverter.get().try_convert(input_message, to_type=ChatRequest)
172
-
173
- oai_output = await _response_fn(oai_input)
174
-
175
- return GlobalTypeConverter.get().try_convert(oai_output, to_type=str)
165
+ logger.error("%s ReAct Agent failed with exception: %s", AGENT_LOG_PREFIX, str(ex))
166
+ raise
176
167
 
177
- yield FunctionInfo.from_fn(_str_api_fn, description=config.description)
168
+ yield FunctionInfo.from_fn(_response_fn, description=config.description)
@@ -25,6 +25,7 @@ from nat.builder.function_info import FunctionInfo
25
25
  from nat.cli.register_workflow import register_function
26
26
  from nat.data_models.agent import AgentBaseConfig
27
27
  from nat.data_models.api_server import ChatRequest
28
+ from nat.data_models.api_server import ChatRequestOrMessage
28
29
  from nat.data_models.api_server import ChatResponse
29
30
  from nat.data_models.api_server import Usage
30
31
  from nat.data_models.component_ref import FunctionGroupRef
@@ -54,9 +55,6 @@ class ReWOOAgentWorkflowConfig(AgentBaseConfig, name="rewoo_agent"):
54
55
  description="The number of retries before raising a tool call error.",
55
56
  ge=1)
56
57
  max_history: int = Field(default=15, description="Maximum number of messages to keep in the conversation history.")
57
- use_openai_api: bool = Field(default=False,
58
- description=("Use OpenAI API for the input/output types to the function. "
59
- "If False, strings will be used."))
60
58
  additional_planner_instructions: str | None = Field(
61
59
  default=None,
62
60
  validation_alias=AliasChoices("additional_planner_instructions", "additional_instructions"),
@@ -125,21 +123,23 @@ async def rewoo_agent_workflow(config: ReWOOAgentWorkflowConfig, builder: Builde
125
123
  tool_call_max_retries=config.tool_call_max_retries,
126
124
  raise_tool_call_error=config.raise_tool_call_error).build_graph()
127
125
 
128
- async def _response_fn(input_message: ChatRequest) -> ChatResponse:
126
+ async def _response_fn(chat_request_or_message: ChatRequestOrMessage) -> ChatResponse | str:
129
127
  """
130
128
  Main workflow entry function for the ReWOO Agent.
131
129
 
132
130
  This function invokes the ReWOO Agent Graph and returns the response.
133
131
 
134
132
  Args:
135
- input_message (ChatRequest): The input message to process
133
+ chat_request_or_message (ChatRequestOrMessage): The input message to process
136
134
 
137
135
  Returns:
138
- ChatResponse: The response from the agent or error message
136
+ ChatResponse | str: The response from the agent or error message
139
137
  """
140
138
  try:
139
+ message = GlobalTypeConverter.get().convert(chat_request_or_message, to_type=ChatRequest)
140
+
141
141
  # initialize the starting state with the user query
142
- messages: list[BaseMessage] = trim_messages(messages=[m.model_dump() for m in input_message.messages],
142
+ messages: list[BaseMessage] = trim_messages(messages=[m.model_dump() for m in message.messages],
143
143
  max_tokens=config.max_history,
144
144
  strategy="last",
145
145
  token_counter=len,
@@ -160,25 +160,16 @@ async def rewoo_agent_workflow(config: ReWOOAgentWorkflowConfig, builder: Builde
160
160
  output_message = str(output_message)
161
161
 
162
162
  # Create usage statistics for the response
163
- prompt_tokens = sum(len(str(msg.content).split()) for msg in input_message.messages)
163
+ prompt_tokens = sum(len(str(msg.content).split()) for msg in message.messages)
164
164
  completion_tokens = len(output_message.split()) if output_message else 0
165
165
  total_tokens = prompt_tokens + completion_tokens
166
166
  usage = Usage(prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=total_tokens)
167
- return ChatResponse.from_string(output_message, usage=usage)
168
-
167
+ response = ChatResponse.from_string(output_message, usage=usage)
168
+ if chat_request_or_message.is_string:
169
+ return GlobalTypeConverter.get().convert(response, to_type=str)
170
+ return response
169
171
  except Exception as ex:
170
- logger.exception("ReWOO Agent failed with exception: %s", ex)
171
- raise RuntimeError
172
-
173
- if (config.use_openai_api):
174
- yield FunctionInfo.from_fn(_response_fn, description=config.description)
175
-
176
- else:
177
-
178
- async def _str_api_fn(input_message: str) -> str:
179
- oai_input = GlobalTypeConverter.get().try_convert(input_message, to_type=ChatRequest)
180
- oai_output = await _response_fn(oai_input)
181
-
182
- return GlobalTypeConverter.get().try_convert(oai_output, to_type=str)
172
+ logger.error("ReWOO Agent failed with exception: %s", ex)
173
+ raise
183
174
 
184
- yield FunctionInfo.from_fn(_str_api_fn, description=config.description)
175
+ yield FunctionInfo.from_fn(_response_fn, description=config.description)
@@ -23,8 +23,10 @@ from nat.builder.function_info import FunctionInfo
23
23
  from nat.cli.register_workflow import register_function
24
24
  from nat.data_models.agent import AgentBaseConfig
25
25
  from nat.data_models.api_server import ChatRequest
26
+ from nat.data_models.api_server import ChatRequestOrMessage
26
27
  from nat.data_models.component_ref import FunctionGroupRef
27
28
  from nat.data_models.component_ref import FunctionRef
29
+ from nat.utils.type_converter import GlobalTypeConverter
28
30
 
29
31
  logger = logging.getLogger(__name__)
30
32
 
@@ -81,21 +83,23 @@ async def tool_calling_agent_workflow(config: ToolCallAgentWorkflowConfig, build
81
83
  handle_tool_errors=config.handle_tool_errors,
82
84
  return_direct=return_direct_tools).build_graph()
83
85
 
84
- async def _response_fn(input_message: ChatRequest) -> str:
86
+ async def _response_fn(chat_request_or_message: ChatRequestOrMessage) -> str:
85
87
  """
86
88
  Main workflow entry function for the Tool Calling Agent.
87
89
 
88
90
  This function invokes the Tool Calling Agent Graph and returns the response.
89
91
 
90
92
  Args:
91
- input_message (ChatRequest): The input message to process
93
+ chat_request_or_message (ChatRequestOrMessage): The input message to process
92
94
 
93
95
  Returns:
94
96
  str: The response from the agent or error message
95
97
  """
96
98
  try:
99
+ message = GlobalTypeConverter.get().convert(chat_request_or_message, to_type=ChatRequest)
100
+
97
101
  # initialize the starting state with the user query
98
- messages: list[BaseMessage] = trim_messages(messages=[m.model_dump() for m in input_message.messages],
102
+ messages: list[BaseMessage] = trim_messages(messages=[m.model_dump() for m in message.messages],
99
103
  max_tokens=config.max_history,
100
104
  strategy="last",
101
105
  token_counter=len,
@@ -114,8 +118,8 @@ async def tool_calling_agent_workflow(config: ToolCallAgentWorkflowConfig, build
114
118
  output_message = state.messages[-1]
115
119
  return str(output_message.content)
116
120
  except Exception as ex:
117
- logger.exception("%s Tool Calling Agent failed with exception: %s", AGENT_LOG_PREFIX, ex)
118
- raise RuntimeError
121
+ logger.error("%s Tool Calling Agent failed with exception: %s", AGENT_LOG_PREFIX, ex)
122
+ raise
119
123
 
120
124
  try:
121
125
  yield FunctionInfo.from_fn(_response_fn, description=config.description)
nat/builder/function.py CHANGED
@@ -159,8 +159,7 @@ class Function(FunctionBase[InputT, StreamingOutputT, SingleOutputT], ABC):
159
159
 
160
160
  return result
161
161
  except Exception as e:
162
- err_msg = f"Error: {e}" if str(e).strip() else ""
163
- logger.error("Error with ainvoke in function with input: %s. %s", value, err_msg)
162
+ logger.error("Error with ainvoke in function with input: %s. Error: %s", value, e)
164
163
  raise
165
164
 
166
165
  @typing.final
@@ -416,8 +415,9 @@ class FunctionGroup:
416
415
  """
417
416
  if not name.strip():
418
417
  raise ValueError("Function name cannot be empty or blank")
419
- if not re.match(r"^[a-zA-Z0-9_-]+$", name):
420
- raise ValueError(f"Function name can only contain letters, numbers, underscores, and hyphens: {name}")
418
+ if not re.match(r"^[a-zA-Z0-9_.-]+$", name):
419
+ raise ValueError(
420
+ f"Function name can only contain letters, numbers, underscores, periods, and hyphens: {name}")
421
421
  if name in self._functions:
422
422
  raise ValueError(f"Function {name} already exists in function group {self._instance_name}")
423
423
 
@@ -16,6 +16,8 @@
16
16
  import dataclasses
17
17
  import logging
18
18
  import typing
19
+ import weakref
20
+ from typing import ClassVar
19
21
 
20
22
  from nat.data_models.intermediate_step import IntermediateStep
21
23
  from nat.data_models.intermediate_step import IntermediateStepPayload
@@ -46,11 +48,19 @@ class IntermediateStepManager:
46
48
  Manages updates to the NAT Event Stream for intermediate steps
47
49
  """
48
50
 
51
+ # Class-level tracking for debugging and monitoring
52
+ _instance_count: ClassVar[int] = 0
53
+ _active_instances: ClassVar[set[weakref.ref]] = set()
54
+
49
55
  def __init__(self, context_state: "ContextState"): # noqa: F821
50
56
  self._context_state = context_state
51
57
 
52
58
  self._outstanding_start_steps: dict[str, OpenStep] = {}
53
59
 
60
+ # Track instance creation
61
+ IntermediateStepManager._instance_count += 1
62
+ IntermediateStepManager._active_instances.add(weakref.ref(self, self._cleanup_instance_tracking))
63
+
54
64
  def push_intermediate_step(self, payload: IntermediateStepPayload) -> None:
55
65
  """
56
66
  Pushes an intermediate step to the NAT Event Stream
@@ -172,3 +182,25 @@ class IntermediateStepManager:
172
182
  """
173
183
 
174
184
  return self._context_state.event_stream.get().subscribe(on_next, on_error, on_complete)
185
+
186
+ @classmethod
187
+ def _cleanup_instance_tracking(cls, ref: weakref.ref) -> None:
188
+ """Cleanup callback for weakref when instance is garbage collected."""
189
+ cls._active_instances.discard(ref)
190
+
191
+ @classmethod
192
+ def get_active_instance_count(cls) -> int:
193
+ """Get the number of active IntermediateStepManager instances.
194
+
195
+ Returns:
196
+ int: Number of active instances (cleaned up automatically via weakref)
197
+ """
198
+ return len(cls._active_instances)
199
+
200
+ def get_outstanding_step_count(self) -> int:
201
+ """Get the number of outstanding (started but not ended) steps.
202
+
203
+ Returns:
204
+ int: Number of steps that have been started but not yet ended
205
+ """
206
+ return len(self._outstanding_start_steps)
@@ -28,6 +28,7 @@ from pydantic import HttpUrl
28
28
  from pydantic import conlist
29
29
  from pydantic import field_serializer
30
30
  from pydantic import field_validator
31
+ from pydantic import model_validator
31
32
  from pydantic_core.core_schema import ValidationInfo
32
33
 
33
34
  from nat.data_models.interactive import HumanPrompt
@@ -120,15 +121,7 @@ class Message(BaseModel):
120
121
  role: UserMessageContentRoleType
121
122
 
122
123
 
123
- class ChatRequest(BaseModel):
124
- """
125
- ChatRequest is a data model that represents a request to the NAT chat API.
126
- Fully compatible with OpenAI Chat Completions API specification.
127
- """
128
-
129
- # Required fields
130
- messages: typing.Annotated[list[Message], conlist(Message, min_length=1)]
131
-
124
+ class ChatRequestOptionals(BaseModel):
132
125
  # Optional fields (OpenAI Chat Completions API compatible)
133
126
  model: str | None = Field(default=None, description="name of the model to use")
134
127
  frequency_penalty: float | None = Field(default=0.0,
@@ -153,6 +146,16 @@ class ChatRequest(BaseModel):
153
146
  parallel_tool_calls: bool | None = Field(default=True, description="Whether to enable parallel function calling")
154
147
  user: str | None = Field(default=None, description="Unique identifier representing end-user")
155
148
 
149
+
150
+ class ChatRequest(ChatRequestOptionals):
151
+ """
152
+ ChatRequest is a data model that represents a request to the NAT chat API.
153
+ Fully compatible with OpenAI Chat Completions API specification.
154
+ """
155
+
156
+ # Required fields
157
+ messages: typing.Annotated[list[Message], conlist(Message, min_length=1)]
158
+
156
159
  model_config = ConfigDict(extra="allow",
157
160
  json_schema_extra={
158
161
  "example": {
@@ -194,6 +197,42 @@ class ChatRequest(BaseModel):
194
197
  top_p=top_p)
195
198
 
196
199
 
200
+ class ChatRequestOrMessage(ChatRequestOptionals):
201
+ """
202
+ ChatRequestOrMessage is a data model that represents either a conversation or a string input.
203
+ This is useful for functions that can handle either type of input.
204
+
205
+ `messages` is compatible with the OpenAI Chat Completions API specification.
206
+
207
+ `input_string` is a string input that can be used for functions that do not require a conversation.
208
+ """
209
+
210
+ messages: typing.Annotated[list[Message] | None, conlist(Message, min_length=1)] = Field(
211
+ default=None, description="The conversation messages to process.")
212
+
213
+ input_string: str | None = Field(default=None, alias="input_message", description="The input message to process.")
214
+
215
+ @property
216
+ def is_string(self) -> bool:
217
+ return self.input_string is not None
218
+
219
+ @property
220
+ def is_conversation(self) -> bool:
221
+ return self.messages is not None
222
+
223
+ @model_validator(mode="after")
224
+ def validate_messages_or_input_string(self):
225
+ if self.messages is not None and self.input_string is not None:
226
+ raise ValueError("Either messages or input_message/input_string must be provided, not both")
227
+ if self.messages is None and self.input_string is None:
228
+ raise ValueError("Either messages or input_message/input_string must be provided")
229
+ if self.input_string is not None:
230
+ extra_fields = self.model_dump(exclude={"input_string"}, exclude_none=True, exclude_unset=True)
231
+ if len(extra_fields) > 0:
232
+ raise ValueError("no extra fields are permitted when input_message/input_string is provided")
233
+ return self
234
+
235
+
197
236
  class ChoiceMessage(BaseModel):
198
237
  content: str | None = None
199
238
  role: UserMessageContentRoleType | None = None
@@ -661,6 +700,36 @@ def _string_to_nat_chat_request(data: str) -> ChatRequest:
661
700
  GlobalTypeConverter.register_converter(_string_to_nat_chat_request)
662
701
 
663
702
 
703
+ def _chat_request_or_message_to_chat_request(data: ChatRequestOrMessage) -> ChatRequest:
704
+ if data.input_string is not None:
705
+ return _string_to_nat_chat_request(data.input_string)
706
+ return ChatRequest(**data.model_dump(exclude={"input_string"}))
707
+
708
+
709
+ GlobalTypeConverter.register_converter(_chat_request_or_message_to_chat_request)
710
+
711
+
712
+ def _chat_request_to_chat_request_or_message(data: ChatRequest) -> ChatRequestOrMessage:
713
+ return ChatRequestOrMessage(**data.model_dump(by_alias=True))
714
+
715
+
716
+ GlobalTypeConverter.register_converter(_chat_request_to_chat_request_or_message)
717
+
718
+
719
+ def _chat_request_or_message_to_string(data: ChatRequestOrMessage) -> str:
720
+ return data.input_string or ""
721
+
722
+
723
+ GlobalTypeConverter.register_converter(_chat_request_or_message_to_string)
724
+
725
+
726
+ def _string_to_chat_request_or_message(data: str) -> ChatRequestOrMessage:
727
+ return ChatRequestOrMessage(input_message=data)
728
+
729
+
730
+ GlobalTypeConverter.register_converter(_string_to_chat_request_or_message)
731
+
732
+
664
733
  # ======== ChatResponse Converters ========
665
734
  def _nat_chat_response_to_string(data: ChatResponse) -> str:
666
735
  if data.choices and data.choices[0].message:
@@ -43,3 +43,16 @@ class MCPFrontEndConfig(FrontEndBaseConfig, name="mcp"):
43
43
 
44
44
  server_auth: OAuth2ResourceServerConfig | None = Field(
45
45
  default=None, description=("OAuth 2.0 Resource Server configuration for token verification."))
46
+
47
+ # Memory profiling configuration
48
+ enable_memory_profiling: bool = Field(default=False,
49
+ description="Enable memory profiling and diagnostics (default: False)")
50
+ memory_profile_interval: int = Field(default=50,
51
+ description="Log memory stats every N requests (default: 50)",
52
+ ge=1)
53
+ memory_profile_top_n: int = Field(default=10,
54
+ description="Number of top memory allocations to log (default: 10)",
55
+ ge=1,
56
+ le=50)
57
+ memory_profile_log_level: str = Field(default="DEBUG",
58
+ description="Log level for memory profiling output (default: DEBUG)")
@@ -29,6 +29,7 @@ from nat.builder.workflow import Workflow
29
29
  from nat.builder.workflow_builder import WorkflowBuilder
30
30
  from nat.data_models.config import Config
31
31
  from nat.front_ends.mcp.mcp_front_end_config import MCPFrontEndConfig
32
+ from nat.front_ends.mcp.memory_profiler import MemoryProfiler
32
33
 
33
34
  logger = logging.getLogger(__name__)
34
35
 
@@ -45,6 +46,12 @@ class MCPFrontEndPluginWorkerBase(ABC):
45
46
  self.full_config = config
46
47
  self.front_end_config: MCPFrontEndConfig = config.general.front_end
47
48
 
49
+ # Initialize memory profiler if enabled
50
+ self.memory_profiler = MemoryProfiler(enabled=self.front_end_config.enable_memory_profiling,
51
+ log_interval=self.front_end_config.memory_profile_interval,
52
+ top_n=self.front_end_config.memory_profile_top_n,
53
+ log_level=self.front_end_config.memory_profile_log_level)
54
+
48
55
  def _setup_health_endpoint(self, mcp: FastMCP):
49
56
  """Set up the HTTP health endpoint that exercises MCP ping handler."""
50
57
 
@@ -115,6 +122,7 @@ class MCPFrontEndPluginWorkerBase(ABC):
115
122
  Exposes:
116
123
  - GET /debug/tools/list: List tools. Optional query param `name` (one or more, repeatable or comma separated)
117
124
  selects a subset and returns details for those tools.
125
+ - GET /debug/memory/stats: Get current memory profiling statistics (read-only)
118
126
  """
119
127
 
120
128
  @mcp.custom_route("/debug/tools/list", methods=["GET"])
@@ -206,6 +214,15 @@ class MCPFrontEndPluginWorkerBase(ABC):
206
214
  return JSONResponse(
207
215
  _build_final_json(functions_to_include, _parse_detail_param(detail_raw, has_names=bool(names))))
208
216
 
217
+ # Memory profiling endpoint (read-only)
218
+ @mcp.custom_route("/debug/memory/stats", methods=["GET"])
219
+ async def get_memory_stats(_request: Request):
220
+ """Get current memory profiling statistics."""
221
+ from starlette.responses import JSONResponse
222
+
223
+ stats = self.memory_profiler.get_stats()
224
+ return JSONResponse(stats)
225
+
209
226
 
210
227
  class MCPFrontEndPluginWorker(MCPFrontEndPluginWorkerBase):
211
228
  """Default MCP front end plugin worker implementation."""
@@ -241,7 +258,7 @@ class MCPFrontEndPluginWorker(MCPFrontEndPluginWorkerBase):
241
258
 
242
259
  # Register each function with MCP, passing workflow context for observability
243
260
  for function_name, function in functions.items():
244
- register_function_with_mcp(mcp, function_name, function, workflow)
261
+ register_function_with_mcp(mcp, function_name, function, workflow, self.memory_profiler)
245
262
 
246
263
  # Add a simple fallback function if no functions were found
247
264
  if not functions:
@@ -0,0 +1,320 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Memory profiling utilities for MCP frontend."""
16
+
17
+ import gc
18
+ import logging
19
+ import tracemalloc
20
+ from typing import Any
21
+
22
+ logger = logging.getLogger(__name__)
23
+
24
+
25
+ class MemoryProfiler:
26
+ """Memory profiler for tracking memory usage and potential leaks."""
27
+
28
+ def __init__(self, enabled: bool = False, log_interval: int = 50, top_n: int = 10, log_level: str = "DEBUG"):
29
+ """Initialize the memory profiler.
30
+
31
+ Args:
32
+ enabled: Whether memory profiling is enabled
33
+ log_interval: Log stats every N requests
34
+ top_n: Number of top allocations to log
35
+ log_level: Log level for memory profiling output (e.g., "DEBUG", "INFO")
36
+ """
37
+ self.enabled = enabled
38
+ # normalize interval to avoid modulo-by-zero
39
+ self.log_interval = max(1, int(log_interval))
40
+ self.top_n = top_n
41
+ self.log_level = getattr(logging, log_level.upper(), logging.DEBUG)
42
+ self.request_count = 0
43
+ self.baseline_snapshot = None
44
+
45
+ # Track whether this instance started tracemalloc (to avoid resetting external tracing)
46
+ self._we_started_tracemalloc = False
47
+
48
+ if self.enabled:
49
+ logger.info("Memory profiling ENABLED (interval=%d, top_n=%d, log_level=%s)",
50
+ self.log_interval,
51
+ top_n,
52
+ log_level)
53
+ try:
54
+ if not tracemalloc.is_tracing():
55
+ tracemalloc.start()
56
+ self._we_started_tracemalloc = True
57
+ # Take baseline snapshot
58
+ gc.collect()
59
+ self.baseline_snapshot = tracemalloc.take_snapshot()
60
+ except RuntimeError as e:
61
+ logger.warning("tracemalloc unavailable or not tracing: %s", e)
62
+ else:
63
+ logger.info("Memory profiling DISABLED")
64
+
65
+ def _log(self, message: str, *args: Any) -> None:
66
+ """Log a message at the configured log level.
67
+
68
+ Args:
69
+ message: Log message format string
70
+ args: Arguments for the format string
71
+ """
72
+ logger.log(self.log_level, message, *args)
73
+
74
+ def on_request_complete(self) -> None:
75
+ """Called after each request completes."""
76
+ if not self.enabled:
77
+ return
78
+ self.request_count += 1
79
+ if self.request_count % self.log_interval == 0:
80
+ self.log_memory_stats()
81
+
82
+ def _ensure_tracing(self) -> bool:
83
+ """Ensure tracemalloc is running if we started it originally.
84
+
85
+ Returns:
86
+ True if tracemalloc is active, False otherwise
87
+ """
88
+ if tracemalloc.is_tracing():
89
+ return True
90
+
91
+ # Only restart if we started it originally (respect external control)
92
+ if not self._we_started_tracemalloc:
93
+ return False
94
+
95
+ # Attempt to restart
96
+ try:
97
+ logger.warning("tracemalloc was stopped externally; restarting (we started it originally)")
98
+ tracemalloc.start()
99
+
100
+ # Reset baseline since old tracking data is lost
101
+ gc.collect()
102
+ self.baseline_snapshot = tracemalloc.take_snapshot()
103
+ logger.info("Baseline snapshot reset after tracemalloc restart")
104
+
105
+ return True
106
+ except RuntimeError as e:
107
+ logger.error("Failed to restart tracemalloc: %s", e)
108
+ return False
109
+
110
+ def _safe_traced_memory(self) -> tuple[float, float] | None:
111
+ """Return (current, peak usage in MB) if tracemalloc is active, else None."""
112
+ if not self._ensure_tracing():
113
+ return None
114
+
115
+ try:
116
+ current, peak = tracemalloc.get_traced_memory()
117
+ megabyte = (1 << 20)
118
+ return (current / megabyte, peak / megabyte)
119
+ except RuntimeError:
120
+ return None
121
+
122
+ def _safe_snapshot(self) -> tracemalloc.Snapshot | None:
123
+ """Return a tracemalloc Snapshot if available, else None."""
124
+ if not self._ensure_tracing():
125
+ return None
126
+
127
+ try:
128
+ return tracemalloc.take_snapshot()
129
+ except RuntimeError:
130
+ return None
131
+
132
+ def log_memory_stats(self) -> dict[str, Any]:
133
+ """Log current memory statistics and return them."""
134
+ if not self.enabled:
135
+ return {}
136
+
137
+ # Force garbage collection first
138
+ gc.collect()
139
+
140
+ # Get current memory usage
141
+ mem = self._safe_traced_memory()
142
+ if mem is None:
143
+ logger.info("tracemalloc is not active; cannot collect memory stats.")
144
+ # still return structural fields
145
+ stats = {
146
+ "request_count": self.request_count,
147
+ "current_memory_mb": None,
148
+ "peak_memory_mb": None,
149
+ "active_intermediate_managers": self._safe_intermediate_step_manager_count(),
150
+ "outstanding_steps": self._safe_outstanding_step_count(),
151
+ "active_exporters": self._safe_exporter_count(),
152
+ "isolated_exporters": self._safe_isolated_exporter_count(),
153
+ "subject_instances": self._count_instances_of_type("Subject"),
154
+ }
155
+ return stats
156
+
157
+ current_mb, peak_mb = mem
158
+
159
+ # Take snapshot and compare to baseline
160
+ snapshot = self._safe_snapshot()
161
+
162
+ # Track BaseExporter instances (observability layer)
163
+ exporter_count = self._safe_exporter_count()
164
+ isolated_exporter_count = self._safe_isolated_exporter_count()
165
+
166
+ # Track Subject instances (event streams)
167
+ subject_count = self._count_instances_of_type("Subject")
168
+
169
+ stats = {
170
+ "request_count": self.request_count,
171
+ "current_memory_mb": round(current_mb, 2),
172
+ "peak_memory_mb": round(peak_mb, 2),
173
+ "active_intermediate_managers": self._safe_intermediate_step_manager_count(),
174
+ "outstanding_steps": self._safe_outstanding_step_count(),
175
+ "active_exporters": exporter_count,
176
+ "isolated_exporters": isolated_exporter_count,
177
+ "subject_instances": subject_count,
178
+ }
179
+
180
+ self._log("=" * 80)
181
+ self._log("MEMORY PROFILE AFTER %d REQUESTS:", self.request_count)
182
+ self._log(" Current Memory: %.2f MB", current_mb)
183
+ self._log(" Peak Memory: %.2f MB", peak_mb)
184
+ self._log("")
185
+ self._log("NAT COMPONENT INSTANCES:")
186
+ self._log(" IntermediateStepManagers: %d active (%d outstanding steps)",
187
+ stats["active_intermediate_managers"],
188
+ stats["outstanding_steps"])
189
+ self._log(" BaseExporters: %d active (%d isolated)", stats["active_exporters"], stats["isolated_exporters"])
190
+ self._log(" Subject (event streams): %d instances", stats["subject_instances"])
191
+
192
+ # Show top allocations
193
+ if snapshot is None:
194
+ self._log("tracemalloc snapshot unavailable.")
195
+ else:
196
+ if self.baseline_snapshot:
197
+ self._log("TOP %d MEMORY GROWTH SINCE BASELINE:", self.top_n)
198
+ top_stats = snapshot.compare_to(self.baseline_snapshot, 'lineno')
199
+ else:
200
+ self._log("TOP %d MEMORY ALLOCATIONS:", self.top_n)
201
+ top_stats = snapshot.statistics('lineno')
202
+
203
+ for i, stat in enumerate(top_stats[:self.top_n], 1):
204
+ self._log(" #%d: %s", i, stat)
205
+
206
+ self._log("=" * 80)
207
+
208
+ return stats
209
+
210
+ def _count_instances_of_type(self, type_name: str) -> int:
211
+ """Count instances of a specific type in memory."""
212
+ count = 0
213
+ for obj in gc.get_objects():
214
+ try:
215
+ if type(obj).__name__ == type_name:
216
+ count += 1
217
+ except Exception:
218
+ pass
219
+ return count
220
+
221
+ def _safe_exporter_count(self) -> int:
222
+ try:
223
+ from nat.observability.exporter.base_exporter import BaseExporter
224
+ return BaseExporter.get_active_instance_count()
225
+ except Exception as e:
226
+ logger.debug("Could not get BaseExporter stats: %s", e)
227
+ return 0
228
+
229
+ def _safe_isolated_exporter_count(self) -> int:
230
+ try:
231
+ from nat.observability.exporter.base_exporter import BaseExporter
232
+ return BaseExporter.get_isolated_instance_count()
233
+ except Exception:
234
+ return 0
235
+
236
+ def _safe_intermediate_step_manager_count(self) -> int:
237
+ try:
238
+ from nat.builder.intermediate_step_manager import IntermediateStepManager
239
+ # len() is atomic in CPython, but catch RuntimeError just in case
240
+ try:
241
+ return IntermediateStepManager.get_active_instance_count()
242
+ except RuntimeError:
243
+ # Set was modified during len() - very rare
244
+ logger.debug("Set changed during count, returning 0")
245
+ return 0
246
+ except Exception as e:
247
+ logger.debug("Could not get IntermediateStepManager stats: %s", e)
248
+ return 0
249
+
250
+ def _safe_outstanding_step_count(self) -> int:
251
+ """Get total outstanding steps across all active IntermediateStepManager instances."""
252
+ try:
253
+ from nat.builder.intermediate_step_manager import IntermediateStepManager
254
+
255
+ # Make a snapshot to avoid "Set changed size during iteration" if GC runs
256
+ try:
257
+ instances_snapshot = list(IntermediateStepManager._active_instances)
258
+ except RuntimeError:
259
+ # Set changed during list() call - rare but possible
260
+ logger.debug("Set changed during snapshot, returning 0 for outstanding steps")
261
+ return 0
262
+
263
+ total_outstanding = 0
264
+ # Iterate through snapshot safely
265
+ for ref in instances_snapshot:
266
+ try:
267
+ manager = ref()
268
+ if manager is not None:
269
+ total_outstanding += manager.get_outstanding_step_count()
270
+ except (ReferenceError, AttributeError):
271
+ # Manager was GC'd or in invalid state - skip it
272
+ continue
273
+ return total_outstanding
274
+ except Exception as e:
275
+ logger.debug("Could not get outstanding step count: %s", e)
276
+ return 0
277
+
278
+ def get_stats(self) -> dict[str, Any]:
279
+ """Get current memory statistics without logging."""
280
+ if not self.enabled:
281
+ return {"enabled": False}
282
+
283
+ mem = self._safe_traced_memory()
284
+ if mem is None:
285
+ return {
286
+ "enabled": True,
287
+ "request_count": self.request_count,
288
+ "current_memory_mb": None,
289
+ "peak_memory_mb": None,
290
+ "active_intermediate_managers": self._safe_intermediate_step_manager_count(),
291
+ "outstanding_steps": self._safe_outstanding_step_count(),
292
+ "active_exporters": self._safe_exporter_count(),
293
+ "isolated_exporters": self._safe_isolated_exporter_count(),
294
+ "subject_instances": self._count_instances_of_type("Subject"),
295
+ }
296
+
297
+ current_mb, peak_mb = mem
298
+ return {
299
+ "enabled": True,
300
+ "request_count": self.request_count,
301
+ "current_memory_mb": round(current_mb, 2),
302
+ "peak_memory_mb": round(peak_mb, 2),
303
+ "active_intermediate_managers": self._safe_intermediate_step_manager_count(),
304
+ "outstanding_steps": self._safe_outstanding_step_count(),
305
+ "active_exporters": self._safe_exporter_count(),
306
+ "isolated_exporters": self._safe_isolated_exporter_count(),
307
+ "subject_instances": self._count_instances_of_type("Subject"),
308
+ }
309
+
310
+ def reset_baseline(self) -> None:
311
+ """Reset the baseline snapshot to current state."""
312
+ if not self.enabled:
313
+ return
314
+ gc.collect()
315
+ snap = self._safe_snapshot()
316
+ if snap is None:
317
+ logger.info("Cannot reset baseline: tracemalloc is not active.")
318
+ return
319
+ self.baseline_snapshot = snap
320
+ logger.info("Memory profiling baseline reset at request %d", self.request_count)
@@ -28,6 +28,7 @@ from nat.builder.function_base import FunctionBase
28
28
 
29
29
  if TYPE_CHECKING:
30
30
  from nat.builder.workflow import Workflow
31
+ from nat.front_ends.mcp.memory_profiler import MemoryProfiler
31
32
 
32
33
  logger = logging.getLogger(__name__)
33
34
 
@@ -38,6 +39,7 @@ def create_function_wrapper(
38
39
  schema: type[BaseModel],
39
40
  is_workflow: bool = False,
40
41
  workflow: 'Workflow | None' = None,
42
+ memory_profiler: 'MemoryProfiler | None' = None,
41
43
  ):
42
44
  """Create a wrapper function that exposes the actual parameters of a NAT Function as an MCP tool.
43
45
 
@@ -47,6 +49,7 @@ def create_function_wrapper(
47
49
  schema (type[BaseModel]): The input schema of the function
48
50
  is_workflow (bool): Whether the function is a Workflow
49
51
  workflow (Workflow | None): The parent workflow for observability context
52
+ memory_profiler: Optional memory profiler to track requests
50
53
 
51
54
  Returns:
52
55
  A wrapper function suitable for registration with MCP
@@ -172,6 +175,10 @@ def create_function_wrapper(
172
175
  if ctx:
173
176
  await ctx.report_progress(100, 100)
174
177
 
178
+ # Track request completion for memory profiling
179
+ if memory_profiler:
180
+ memory_profiler.on_request_complete()
181
+
175
182
  # Handle different result types for proper formatting
176
183
  if isinstance(result, str):
177
184
  return result
@@ -181,6 +188,11 @@ def create_function_wrapper(
181
188
  except Exception as e:
182
189
  if ctx:
183
190
  ctx.error("Error calling function %s: %s", function_name, str(e))
191
+
192
+ # Track request completion even on error
193
+ if memory_profiler:
194
+ memory_profiler.on_request_complete()
195
+
184
196
  raise
185
197
 
186
198
  return wrapper_with_ctx
@@ -242,7 +254,8 @@ def get_function_description(function: FunctionBase) -> str:
242
254
  def register_function_with_mcp(mcp: FastMCP,
243
255
  function_name: str,
244
256
  function: FunctionBase,
245
- workflow: 'Workflow | None' = None) -> None:
257
+ workflow: 'Workflow | None' = None,
258
+ memory_profiler: 'MemoryProfiler | None' = None) -> None:
246
259
  """Register a NAT Function as an MCP tool.
247
260
 
248
261
  Args:
@@ -250,6 +263,7 @@ def register_function_with_mcp(mcp: FastMCP,
250
263
  function_name: The name to register the function under
251
264
  function: The NAT Function to register
252
265
  workflow: The parent workflow for observability context (if available)
266
+ memory_profiler: Optional memory profiler to track requests
253
267
  """
254
268
  logger.info("Registering function %s with MCP", function_name)
255
269
 
@@ -267,5 +281,10 @@ def register_function_with_mcp(mcp: FastMCP,
267
281
  function_description = get_function_description(function)
268
282
 
269
283
  # Create and register the wrapper function with MCP
270
- wrapper_func = create_function_wrapper(function_name, function, input_schema, is_workflow, workflow)
284
+ wrapper_func = create_function_wrapper(function_name,
285
+ function,
286
+ input_schema,
287
+ is_workflow,
288
+ workflow,
289
+ memory_profiler)
271
290
  mcp.tool(name=function_name, description=function_description)(wrapper_func)
nat/runtime/runner.py CHANGED
@@ -196,8 +196,7 @@ class Runner:
196
196
 
197
197
  return result
198
198
  except Exception as e:
199
- err_msg = f": {e}" if str(e).strip() else "."
200
- logger.error("Error running workflow%s", err_msg)
199
+ logger.error("Error running workflow: %s", e)
201
200
  event_stream = self._context_state.event_stream.get()
202
201
  if event_stream:
203
202
  event_stream.on_complete()
@@ -93,6 +93,14 @@ class TypeConverter:
93
93
  if to_type is None or decomposed.is_instance(data):
94
94
  return data
95
95
 
96
+ # 2) If data is a union type, try to convert to each type in the union
97
+ if decomposed.is_union:
98
+ for union_type in decomposed.args:
99
+ result = self._convert(data, union_type)
100
+ if result is not None:
101
+ return result
102
+ return None
103
+
96
104
  root = decomposed.root
97
105
 
98
106
  # 2) Attempt direct in *this* converter
@@ -1,10 +1,10 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: nvidia-nat
3
- Version: 1.4.0a20251010
3
+ Version: 1.4.0a20251011
4
4
  Summary: NVIDIA NeMo Agent toolkit
5
5
  Author: NVIDIA Corporation
6
6
  Maintainer: NVIDIA Corporation
7
- License-Expression: Apache-2.0
7
+ License: Apache-2.0
8
8
  Project-URL: documentation, https://docs.nvidia.com/nemo/agent-toolkit/latest/
9
9
  Project-URL: source, https://github.com/NVIDIA/NeMo-Agent-Toolkit
10
10
  Keywords: ai,rag,agents
@@ -14,8 +14,8 @@ Classifier: Programming Language :: Python :: 3.12
14
14
  Classifier: Programming Language :: Python :: 3.13
15
15
  Requires-Python: <3.14,>=3.11
16
16
  Description-Content-Type: text/markdown
17
- License-File: LICENSE.md
18
17
  License-File: LICENSE-3rd-party.txt
18
+ License-File: LICENSE.md
19
19
  Requires-Dist: aioboto3>=11.0.0
20
20
  Requires-Dist: authlib~=1.5
21
21
  Requires-Dist: click~=8.1
@@ -10,16 +10,16 @@ nat/agent/react_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3h
10
10
  nat/agent/react_agent/agent.py,sha256=sWrg9WrglTKQQyG3EcjNm2JTEchCPEo9li-Po7TJKss,21294
11
11
  nat/agent/react_agent/output_parser.py,sha256=m7K6wRwtckBBpAHqOf3BZ9mqZLwrP13Kxz5fvNxbyZE,4219
12
12
  nat/agent/react_agent/prompt.py,sha256=N47JJrT6xwYQCv1jedHhlul2AE7EfKsSYfAbgJwWRew,1758
13
- nat/agent/react_agent/register.py,sha256=wAoPkly7dE8bb5x8XFf5-C1qJQausLKQwQcFCby_dwU,9307
13
+ nat/agent/react_agent/register.py,sha256=qkPaK6AvXjolL-q_Z3waVobXDz24GMfuqGqCn-2un2Q,8991
14
14
  nat/agent/reasoning_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
15
  nat/agent/reasoning_agent/reasoning_agent.py,sha256=k_0wEDqACQn1Rn1MAKxoXyqOKsthHCQ1gt990YYUqHU,9575
16
16
  nat/agent/rewoo_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
17
  nat/agent/rewoo_agent/agent.py,sha256=XXgVXY9xwkyxnr093KXUtfgyNxAQbyGAecoGqN5mMLY,26199
18
18
  nat/agent/rewoo_agent/prompt.py,sha256=B0JeL1xDX4VKcShlkkviEcAsOKAwzSlX8NcAQdmUUPw,3645
19
- nat/agent/rewoo_agent/register.py,sha256=GfJRQgpFWl-LQ-pPaG7EUeBH5u7pDZZNVP5cSweZJdM,9599
19
+ nat/agent/rewoo_agent/register.py,sha256=XArlOR37QOBtAvsdKJUjRok5qTmx39S2mJHSteOwU58,9283
20
20
  nat/agent/tool_calling_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
21
  nat/agent/tool_calling_agent/agent.py,sha256=4SIp29I56oznPRQu7B3HCoX53Ri3_o3BRRYNJjeBkF8,11006
22
- nat/agent/tool_calling_agent/register.py,sha256=ijiRfgDVtt2p7_q1YbIQZmUVV8-jf3yT18HwtKyReUI,6822
22
+ nat/agent/tool_calling_agent/register.py,sha256=OucceyELA2xZL3KdANWK9w12fnVP75eVbZgzOnmXHys,7057
23
23
  nat/authentication/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
24
24
  nat/authentication/interfaces.py,sha256=1J2CWEJ_n6CLA3_HD3XV28CSbyfxrPAHzr7Q4kKDFdc,3511
25
25
  nat/authentication/register.py,sha256=lFhswYUk9iZ53mq33fClR9UfjJPdjGIivGGNHQeWiYo,915
@@ -48,10 +48,10 @@ nat/builder/eval_builder.py,sha256=I-ScvupmorClYoVBIs_PhSsB7Xf9e2nGWe0rCZp3txo,6
48
48
  nat/builder/evaluator.py,sha256=xWHMND2vcAUkdFP7FU3jnVki1rUHeTa0-9saFh2hWKs,1162
49
49
  nat/builder/framework_enum.py,sha256=n7IaTQBxhFozIQqRMcX9kXntw28JhFzCj82jJ0C5tNU,901
50
50
  nat/builder/front_end.py,sha256=FCJ87NSshVVuTg8zZrq3YAr_u0RaYVZVcibnqlRFy-M,2173
51
- nat/builder/function.py,sha256=RrfKSCt9WunPhwn5fk8X7wuvb9A21iO8T-IySHUi3KM,27763
51
+ nat/builder/function.py,sha256=eZZWLwhphgQTnPvbga8sGleX7HCP46usZPIegE7zFzs,27725
52
52
  nat/builder/function_base.py,sha256=0Eg8RtjWhEU3Yme0CVxcRutobA0Qo8-YHZLI6L2qAgM,13116
53
53
  nat/builder/function_info.py,sha256=7Rmrn-gOFrT2TIJklJwA_O-ycx_oimwZ0-qMYpbuZrU,25161
54
- nat/builder/intermediate_step_manager.py,sha256=iOuMLWTaES0J0XzaLxhTUqFvuoCAChJu3V69T43K0k0,7599
54
+ nat/builder/intermediate_step_manager.py,sha256=E4syoUNn0BGHnNqqmTYn2oMXKSHkf8GCmTpVeJX3zTY,8764
55
55
  nat/builder/llm.py,sha256=DW-2q64A06VChsXNEL5PfBjH3DcsnTKVoCEWDuP7MF4,951
56
56
  nat/builder/retriever.py,sha256=ZyEqc7pFK31t_yr6Jaxa34c-tRas2edKqJZCNiVh9-0,970
57
57
  nat/builder/user_interaction_manager.py,sha256=-Z2qbQes7a2cuXgT7KEbWeuok0HcCnRdw9WB8Ghyl9k,3081
@@ -112,7 +112,7 @@ nat/control_flow/router_agent/prompt.py,sha256=fIAiNsAs1zXRAatButR76zSpHJNxSkXXK
112
112
  nat/control_flow/router_agent/register.py,sha256=4RGmS9sy-QtIMmvh8mfMcR1VqxFPLpG4RckWCIExh40,4144
113
113
  nat/data_models/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
114
114
  nat/data_models/agent.py,sha256=IwDyb9Zc3R4Zd5rFeqt7q0EQswczAl5focxV9KozIzs,1625
115
- nat/data_models/api_server.py,sha256=V8y1v9-5p4kmaQmmDU2N6m_V_CFJeozDzJEoIHOSV8w,26177
115
+ nat/data_models/api_server.py,sha256=NWT1ChN2qaakD2DgyYCy_7MhfzvEBQX15qnUXnpCQmk,28883
116
116
  nat/data_models/authentication.py,sha256=XPu9W8nh4XRSuxPv3HxO-FMQ_JtTEoK6Y02JwnzDwTg,8457
117
117
  nat/data_models/common.py,sha256=nXXfGrjpxebzBUa55mLdmzePLt7VFHvTAc6Znj3yEv0,5875
118
118
  nat/data_models/component.py,sha256=b_hXOA8Gm5UNvlFkAhsR6kEvf33ST50MKtr5kWf75Ao,1894
@@ -259,11 +259,12 @@ nat/front_ends/fastapi/html_snippets/__init__.py,sha256=GUJrgGtpvyMUCjUBvR3faAdv
259
259
  nat/front_ends/fastapi/html_snippets/auth_code_grant_success.py,sha256=BNpWwzmA58UM0GK4kZXG4PHJy_5K9ihaVHu8SgCs5JA,1131
260
260
  nat/front_ends/mcp/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
261
261
  nat/front_ends/mcp/introspection_token_verifier.py,sha256=s7Q4Q6rWZJ0ZVujSxxpvVI6Bnhkg1LJQ3RLkvhzFIGE,2836
262
- nat/front_ends/mcp/mcp_front_end_config.py,sha256=fFbg800FDJfwv-nXc0jEPaNVtW4ApESmVRexr-werks,2313
262
+ nat/front_ends/mcp/mcp_front_end_config.py,sha256=aDgNAyzl_09GfMCWKRGPV8_-16PAov5N40UMMD4yg8c,3143
263
263
  nat/front_ends/mcp/mcp_front_end_plugin.py,sha256=NiIIgApk1X2yAEwtG9tHaY6SexQMbZrd6Drs7uIJix8,5055
264
- nat/front_ends/mcp/mcp_front_end_plugin_worker.py,sha256=jMclC0qEd910oTGCqd1kQ8WjP3WPdQKTl854-2bU_KI,10200
264
+ nat/front_ends/mcp/mcp_front_end_plugin_worker.py,sha256=NUYu2FFrHat_U4VBAm3c9YMpWSyVr2pKUYyseSFw2pM,11208
265
+ nat/front_ends/mcp/memory_profiler.py,sha256=OpcpLBAGCdQwYSFZbtAqdfncrnGYVjDcMpWydB71hjY,12811
265
266
  nat/front_ends/mcp/register.py,sha256=3aJtgG5VaiqujoeU1-Eq7Hl5pWslIlIwGFU2ASLTXgM,1173
266
- nat/front_ends/mcp/tool_converter.py,sha256=jyH6tFKUDXSfRBKkv8WjvJsQt05zk3FJBTCwnIuUh5M,11547
267
+ nat/front_ends/mcp/tool_converter.py,sha256=14NweQN3cPFBw7ZNiGyUHO4VhMGHrtfLGgvu4_H38oU,12426
267
268
  nat/front_ends/simple_base/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
268
269
  nat/front_ends/simple_base/simple_front_end_plugin_base.py,sha256=py_yA9XAw-yHfK5cQJLM8ElnubEEM2ac8M0bvz-ScWs,1801
269
270
  nat/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -406,7 +407,7 @@ nat/retriever/nemo_retriever/register.py,sha256=3XdrvEJzX2Zc8wpdm__4YYlEWBW-FK3t
406
407
  nat/retriever/nemo_retriever/retriever.py,sha256=gi3_qJFqE-iqRh3of_cmJg-SwzaQ3z24zA9LwY_MSLY,6930
407
408
  nat/runtime/__init__.py,sha256=Xs1JQ16L9btwreh4pdGKwskffAw1YFO48jKrU4ib_7c,685
408
409
  nat/runtime/loader.py,sha256=obUdAgZVYCPGC0R8u3wcoKFJzzSPQgJvrbU4OWygtog,7953
409
- nat/runtime/runner.py,sha256=sUF-zJMgqcFq4xRx8y5bxct2EzgiKbmFkvWkYxlDsQg,11798
410
+ nat/runtime/runner.py,sha256=qa_AqtmB8TUHX6nVJ0TLEYCKUsm2L99kq5O72AuL3yc,11736
410
411
  nat/runtime/session.py,sha256=E8RTbnAhPbY5KCoSfiHzOJksmBh7xWjsoX0BC7Rn1ck,9101
411
412
  nat/runtime/user_metadata.py,sha256=ce37NRYJWnMOWk6A7VAQ1GQztjMmkhMOq-uYf2gNCwo,3692
412
413
  nat/settings/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -448,7 +449,7 @@ nat/utils/metadata_utils.py,sha256=BSsiB6jIWd8oEuEynJi55qCG762UuTYFaiUH0OT9HdY,2
448
449
  nat/utils/optional_imports.py,sha256=jQSVBc2fBSRw-2d6r8cEwvh5-di2EUUPakuuo9QbbwA,4039
449
450
  nat/utils/producer_consumer_queue.py,sha256=AcSYkAMBxLx06A5Xdy960PP3AJ7YaSPGJ7rbN_hJsjI,6599
450
451
  nat/utils/string_utils.py,sha256=71HuIzGx7rF8ocTmeoUBpnCi1Qf1yynYlNLLIKP4BVs,1415
451
- nat/utils/type_converter.py,sha256=-2PwMsEm7tlmrniZzO7x2DnRxhOEeJGVAIJc3c5n2g4,10655
452
+ nat/utils/type_converter.py,sha256=vDZzrZ9ycWgZJdkWB1sHB2ivZX-E8fPfkrB-vAAxroI,10968
452
453
  nat/utils/type_utils.py,sha256=SMo5hM4dKf2G3U_0J0wvdFX6-lzMVSh8vd-W34Oixow,14836
453
454
  nat/utils/url_utils.py,sha256=UzDP_xaS6brWTu7vAws0B4jZyrITIK9Si3U6pZBZqDE,1028
454
455
  nat/utils/data_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -470,10 +471,10 @@ nat/utils/reactive/base/observer_base.py,sha256=6BiQfx26EMumotJ3KoVcdmFBYR_fnAss
470
471
  nat/utils/reactive/base/subject_base.py,sha256=UQOxlkZTIeeyYmG5qLtDpNf_63Y7p-doEeUA08_R8ME,2521
471
472
  nat/utils/settings/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
472
473
  nat/utils/settings/global_settings.py,sha256=9JaO6pxKT_Pjw6rxJRsRlFCXdVKCl_xUKU2QHZQWWNM,7294
473
- nvidia_nat-1.4.0a20251010.dist-info/licenses/LICENSE-3rd-party.txt,sha256=fOk5jMmCX9YoKWyYzTtfgl-SUy477audFC5hNY4oP7Q,284609
474
- nvidia_nat-1.4.0a20251010.dist-info/licenses/LICENSE.md,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
475
- nvidia_nat-1.4.0a20251010.dist-info/METADATA,sha256=00VTeVFR2xV-WeSbD9_vuaSgV-cmgEgGTxnDpualLPM,10239
476
- nvidia_nat-1.4.0a20251010.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
477
- nvidia_nat-1.4.0a20251010.dist-info/entry_points.txt,sha256=4jCqjyETMpyoWbCBf4GalZU8I_wbstpzwQNezdAVbbo,698
478
- nvidia_nat-1.4.0a20251010.dist-info/top_level.txt,sha256=lgJWLkigiVZuZ_O1nxVnD_ziYBwgpE2OStdaCduMEGc,8
479
- nvidia_nat-1.4.0a20251010.dist-info/RECORD,,
474
+ nvidia_nat-1.4.0a20251011.dist-info/licenses/LICENSE-3rd-party.txt,sha256=fOk5jMmCX9YoKWyYzTtfgl-SUy477audFC5hNY4oP7Q,284609
475
+ nvidia_nat-1.4.0a20251011.dist-info/licenses/LICENSE.md,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
476
+ nvidia_nat-1.4.0a20251011.dist-info/METADATA,sha256=kBMZinQbnPKYYzxF1s7BvCytUn0HncnbGG6yKrtCIqo,10228
477
+ nvidia_nat-1.4.0a20251011.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
478
+ nvidia_nat-1.4.0a20251011.dist-info/entry_points.txt,sha256=4jCqjyETMpyoWbCBf4GalZU8I_wbstpzwQNezdAVbbo,698
479
+ nvidia_nat-1.4.0a20251011.dist-info/top_level.txt,sha256=lgJWLkigiVZuZ_O1nxVnD_ziYBwgpE2OStdaCduMEGc,8
480
+ nvidia_nat-1.4.0a20251011.dist-info/RECORD,,