nvidia-nat 1.3.0.dev2__py3-none-any.whl → 1.3.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aiq/__init__.py +2 -2
- nat/agent/base.py +24 -15
- nat/agent/dual_node.py +9 -4
- nat/agent/prompt_optimizer/prompt.py +68 -0
- nat/agent/prompt_optimizer/register.py +149 -0
- nat/agent/react_agent/agent.py +79 -47
- nat/agent/react_agent/register.py +50 -22
- nat/agent/reasoning_agent/reasoning_agent.py +11 -9
- nat/agent/register.py +1 -1
- nat/agent/rewoo_agent/agent.py +326 -148
- nat/agent/rewoo_agent/prompt.py +19 -22
- nat/agent/rewoo_agent/register.py +54 -27
- nat/agent/tool_calling_agent/agent.py +84 -28
- nat/agent/tool_calling_agent/register.py +51 -28
- nat/authentication/api_key/api_key_auth_provider.py +2 -2
- nat/authentication/credential_validator/bearer_token_validator.py +557 -0
- nat/authentication/http_basic_auth/http_basic_auth_provider.py +1 -1
- nat/authentication/interfaces.py +5 -2
- nat/authentication/oauth2/oauth2_auth_code_flow_provider.py +69 -36
- nat/authentication/oauth2/oauth2_resource_server_config.py +124 -0
- nat/authentication/register.py +0 -1
- nat/builder/builder.py +56 -24
- nat/builder/component_utils.py +9 -5
- nat/builder/context.py +68 -17
- nat/builder/eval_builder.py +16 -11
- nat/builder/framework_enum.py +1 -0
- nat/builder/front_end.py +1 -1
- nat/builder/function.py +378 -8
- nat/builder/function_base.py +3 -3
- nat/builder/function_info.py +6 -8
- nat/builder/user_interaction_manager.py +2 -2
- nat/builder/workflow.py +13 -1
- nat/builder/workflow_builder.py +281 -76
- nat/cli/cli_utils/config_override.py +2 -2
- nat/cli/commands/evaluate.py +1 -1
- nat/cli/commands/info/info.py +16 -6
- nat/cli/commands/info/list_channels.py +1 -1
- nat/cli/commands/info/list_components.py +7 -8
- nat/cli/commands/mcp/__init__.py +14 -0
- nat/cli/commands/mcp/mcp.py +986 -0
- nat/cli/commands/object_store/__init__.py +14 -0
- nat/cli/commands/object_store/object_store.py +227 -0
- nat/cli/commands/optimize.py +90 -0
- nat/cli/commands/registry/publish.py +2 -2
- nat/cli/commands/registry/pull.py +2 -2
- nat/cli/commands/registry/remove.py +2 -2
- nat/cli/commands/registry/search.py +15 -17
- nat/cli/commands/start.py +16 -5
- nat/cli/commands/uninstall.py +1 -1
- nat/cli/commands/workflow/templates/config.yml.j2 +14 -13
- nat/cli/commands/workflow/templates/pyproject.toml.j2 +4 -1
- nat/cli/commands/workflow/templates/register.py.j2 +2 -3
- nat/cli/commands/workflow/templates/workflow.py.j2 +35 -21
- nat/cli/commands/workflow/workflow_commands.py +62 -22
- nat/cli/entrypoint.py +8 -10
- nat/cli/main.py +3 -0
- nat/cli/register_workflow.py +38 -4
- nat/cli/type_registry.py +75 -6
- nat/control_flow/__init__.py +0 -0
- nat/control_flow/register.py +20 -0
- nat/control_flow/router_agent/__init__.py +0 -0
- nat/control_flow/router_agent/agent.py +329 -0
- nat/control_flow/router_agent/prompt.py +48 -0
- nat/control_flow/router_agent/register.py +91 -0
- nat/control_flow/sequential_executor.py +166 -0
- nat/data_models/agent.py +34 -0
- nat/data_models/api_server.py +74 -66
- nat/data_models/authentication.py +23 -9
- nat/data_models/common.py +1 -1
- nat/data_models/component.py +2 -0
- nat/data_models/component_ref.py +11 -0
- nat/data_models/config.py +41 -17
- nat/data_models/dataset_handler.py +1 -1
- nat/data_models/discovery_metadata.py +4 -4
- nat/data_models/evaluate.py +4 -1
- nat/data_models/function.py +34 -0
- nat/data_models/function_dependencies.py +14 -6
- nat/data_models/gated_field_mixin.py +242 -0
- nat/data_models/intermediate_step.py +3 -3
- nat/data_models/optimizable.py +119 -0
- nat/data_models/optimizer.py +149 -0
- nat/data_models/span.py +41 -3
- nat/data_models/swe_bench_model.py +1 -1
- nat/data_models/temperature_mixin.py +44 -0
- nat/data_models/thinking_mixin.py +86 -0
- nat/data_models/top_p_mixin.py +44 -0
- nat/embedder/nim_embedder.py +1 -1
- nat/embedder/openai_embedder.py +1 -1
- nat/embedder/register.py +0 -1
- nat/eval/config.py +3 -1
- nat/eval/dataset_handler/dataset_handler.py +71 -7
- nat/eval/evaluate.py +86 -31
- nat/eval/evaluator/base_evaluator.py +1 -1
- nat/eval/evaluator/evaluator_model.py +13 -0
- nat/eval/intermediate_step_adapter.py +1 -1
- nat/eval/rag_evaluator/evaluate.py +2 -2
- nat/eval/rag_evaluator/register.py +3 -3
- nat/eval/register.py +4 -1
- nat/eval/remote_workflow.py +3 -3
- nat/eval/runtime_evaluator/__init__.py +14 -0
- nat/eval/runtime_evaluator/evaluate.py +123 -0
- nat/eval/runtime_evaluator/register.py +100 -0
- nat/eval/swe_bench_evaluator/evaluate.py +6 -6
- nat/eval/trajectory_evaluator/evaluate.py +1 -1
- nat/eval/trajectory_evaluator/register.py +1 -1
- nat/eval/tunable_rag_evaluator/evaluate.py +4 -7
- nat/eval/utils/eval_trace_ctx.py +89 -0
- nat/eval/utils/weave_eval.py +18 -9
- nat/experimental/decorators/experimental_warning_decorator.py +27 -7
- nat/experimental/test_time_compute/functions/plan_select_execute_function.py +7 -3
- nat/experimental/test_time_compute/functions/ttc_tool_orchestration_function.py +3 -3
- nat/experimental/test_time_compute/functions/ttc_tool_wrapper_function.py +1 -1
- nat/experimental/test_time_compute/models/strategy_base.py +5 -4
- nat/experimental/test_time_compute/register.py +0 -1
- nat/experimental/test_time_compute/selection/llm_based_output_merging_selector.py +1 -3
- nat/front_ends/console/authentication_flow_handler.py +82 -30
- nat/front_ends/console/console_front_end_plugin.py +8 -5
- nat/front_ends/fastapi/auth_flow_handlers/websocket_flow_handler.py +52 -17
- nat/front_ends/fastapi/dask_client_mixin.py +65 -0
- nat/front_ends/fastapi/fastapi_front_end_config.py +36 -5
- nat/front_ends/fastapi/fastapi_front_end_controller.py +4 -4
- nat/front_ends/fastapi/fastapi_front_end_plugin.py +135 -4
- nat/front_ends/fastapi/fastapi_front_end_plugin_worker.py +452 -282
- nat/front_ends/fastapi/job_store.py +518 -99
- nat/front_ends/fastapi/main.py +11 -19
- nat/front_ends/fastapi/message_handler.py +13 -14
- nat/front_ends/fastapi/message_validator.py +19 -19
- nat/front_ends/fastapi/response_helpers.py +4 -4
- nat/front_ends/fastapi/step_adaptor.py +2 -2
- nat/front_ends/fastapi/utils.py +57 -0
- nat/front_ends/mcp/introspection_token_verifier.py +73 -0
- nat/front_ends/mcp/mcp_front_end_config.py +10 -1
- nat/front_ends/mcp/mcp_front_end_plugin.py +45 -13
- nat/front_ends/mcp/mcp_front_end_plugin_worker.py +116 -8
- nat/front_ends/mcp/tool_converter.py +44 -14
- nat/front_ends/register.py +0 -1
- nat/front_ends/simple_base/simple_front_end_plugin_base.py +3 -1
- nat/llm/aws_bedrock_llm.py +24 -12
- nat/llm/azure_openai_llm.py +13 -6
- nat/llm/litellm_llm.py +69 -0
- nat/llm/nim_llm.py +20 -8
- nat/llm/openai_llm.py +14 -6
- nat/llm/register.py +4 -1
- nat/llm/utils/env_config_value.py +2 -3
- nat/llm/utils/thinking.py +215 -0
- nat/meta/pypi.md +9 -9
- nat/object_store/register.py +0 -1
- nat/observability/exporter/base_exporter.py +3 -3
- nat/observability/exporter/file_exporter.py +1 -1
- nat/observability/exporter/processing_exporter.py +309 -81
- nat/observability/exporter/span_exporter.py +35 -15
- nat/observability/exporter_manager.py +7 -7
- nat/observability/mixin/file_mixin.py +7 -7
- nat/observability/mixin/redaction_config_mixin.py +42 -0
- nat/observability/mixin/tagging_config_mixin.py +62 -0
- nat/observability/mixin/type_introspection_mixin.py +420 -107
- nat/observability/processor/batching_processor.py +5 -7
- nat/observability/processor/falsy_batch_filter_processor.py +55 -0
- nat/observability/processor/processor.py +3 -0
- nat/observability/processor/processor_factory.py +70 -0
- nat/observability/processor/redaction/__init__.py +24 -0
- nat/observability/processor/redaction/contextual_redaction_processor.py +125 -0
- nat/observability/processor/redaction/contextual_span_redaction_processor.py +66 -0
- nat/observability/processor/redaction/redaction_processor.py +177 -0
- nat/observability/processor/redaction/span_header_redaction_processor.py +92 -0
- nat/observability/processor/span_tagging_processor.py +68 -0
- nat/observability/register.py +6 -4
- nat/profiler/calc/calc_runner.py +3 -4
- nat/profiler/callbacks/agno_callback_handler.py +1 -1
- nat/profiler/callbacks/langchain_callback_handler.py +6 -6
- nat/profiler/callbacks/llama_index_callback_handler.py +3 -3
- nat/profiler/callbacks/semantic_kernel_callback_handler.py +3 -3
- nat/profiler/data_frame_row.py +1 -1
- nat/profiler/decorators/framework_wrapper.py +62 -13
- nat/profiler/decorators/function_tracking.py +160 -3
- nat/profiler/forecasting/models/forecasting_base_model.py +3 -1
- nat/profiler/forecasting/models/linear_model.py +1 -1
- nat/profiler/forecasting/models/random_forest_regressor.py +1 -1
- nat/profiler/inference_optimization/bottleneck_analysis/nested_stack_analysis.py +1 -1
- nat/profiler/inference_optimization/bottleneck_analysis/simple_stack_analysis.py +1 -1
- nat/profiler/inference_optimization/data_models.py +3 -3
- nat/profiler/inference_optimization/experimental/prefix_span_analysis.py +8 -9
- nat/profiler/inference_optimization/token_uniqueness.py +1 -1
- nat/profiler/parameter_optimization/__init__.py +0 -0
- nat/profiler/parameter_optimization/optimizable_utils.py +93 -0
- nat/profiler/parameter_optimization/optimizer_runtime.py +67 -0
- nat/profiler/parameter_optimization/parameter_optimizer.py +153 -0
- nat/profiler/parameter_optimization/parameter_selection.py +107 -0
- nat/profiler/parameter_optimization/pareto_visualizer.py +380 -0
- nat/profiler/parameter_optimization/prompt_optimizer.py +384 -0
- nat/profiler/parameter_optimization/update_helpers.py +66 -0
- nat/profiler/profile_runner.py +14 -9
- nat/profiler/utils.py +4 -2
- nat/registry_handlers/local/local_handler.py +2 -2
- nat/registry_handlers/package_utils.py +1 -2
- nat/registry_handlers/pypi/pypi_handler.py +23 -26
- nat/registry_handlers/register.py +3 -4
- nat/registry_handlers/rest/rest_handler.py +12 -13
- nat/retriever/milvus/retriever.py +2 -2
- nat/retriever/nemo_retriever/retriever.py +1 -1
- nat/retriever/register.py +0 -1
- nat/runtime/loader.py +2 -2
- nat/runtime/runner.py +106 -8
- nat/runtime/session.py +69 -8
- nat/settings/global_settings.py +16 -5
- nat/tool/chat_completion.py +5 -2
- nat/tool/code_execution/local_sandbox/local_sandbox_server.py +3 -3
- nat/tool/datetime_tools.py +49 -9
- nat/tool/document_search.py +2 -2
- nat/tool/github_tools.py +450 -0
- nat/tool/memory_tools/get_memory_tool.py +1 -1
- nat/tool/nvidia_rag.py +1 -1
- nat/tool/register.py +2 -9
- nat/tool/retriever.py +3 -2
- nat/utils/callable_utils.py +70 -0
- nat/utils/data_models/schema_validator.py +3 -3
- nat/utils/decorators.py +210 -0
- nat/utils/exception_handlers/automatic_retries.py +104 -51
- nat/utils/exception_handlers/schemas.py +1 -1
- nat/utils/io/yaml_tools.py +2 -2
- nat/utils/log_levels.py +25 -0
- nat/utils/reactive/base/observable_base.py +2 -2
- nat/utils/reactive/base/observer_base.py +1 -1
- nat/utils/reactive/observable.py +2 -2
- nat/utils/reactive/observer.py +4 -4
- nat/utils/reactive/subscription.py +1 -1
- nat/utils/settings/global_settings.py +6 -8
- nat/utils/type_converter.py +4 -3
- nat/utils/type_utils.py +9 -5
- {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/METADATA +42 -18
- {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/RECORD +238 -196
- {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/entry_points.txt +1 -0
- nat/cli/commands/info/list_mcp.py +0 -304
- nat/tool/github_tools/create_github_commit.py +0 -133
- nat/tool/github_tools/create_github_issue.py +0 -87
- nat/tool/github_tools/create_github_pr.py +0 -106
- nat/tool/github_tools/get_github_file.py +0 -106
- nat/tool/github_tools/get_github_issue.py +0 -166
- nat/tool/github_tools/get_github_pr.py +0 -256
- nat/tool/github_tools/update_github_issue.py +0 -100
- nat/tool/mcp/exceptions.py +0 -142
- nat/tool/mcp/mcp_client.py +0 -255
- nat/tool/mcp/mcp_tool.py +0 -96
- nat/utils/exception_handlers/mcp.py +0 -211
- /nat/{tool/github_tools → agent/prompt_optimizer}/__init__.py +0 -0
- /nat/{tool/mcp → authentication/credential_validator}/__init__.py +0 -0
- {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/WHEEL +0 -0
- {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/licenses/LICENSE-3rd-party.txt +0 -0
- {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/licenses/LICENSE.md +0 -0
- {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,380 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# flake8: noqa: W293
|
|
16
|
+
|
|
17
|
+
import logging
|
|
18
|
+
from pathlib import Path
|
|
19
|
+
|
|
20
|
+
import matplotlib.pyplot as plt
|
|
21
|
+
import numpy as np
|
|
22
|
+
import optuna
|
|
23
|
+
import pandas as pd
|
|
24
|
+
|
|
25
|
+
logger = logging.getLogger(__name__)
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class ParetoVisualizer:
|
|
29
|
+
|
|
30
|
+
def __init__(self, metric_names: list[str], directions: list[str], title_prefix: str = "Optimization Results"):
|
|
31
|
+
self.metric_names = metric_names
|
|
32
|
+
self.directions = directions
|
|
33
|
+
self.title_prefix = title_prefix
|
|
34
|
+
|
|
35
|
+
if len(metric_names) != len(directions):
|
|
36
|
+
raise ValueError("Number of metric names must match number of directions")
|
|
37
|
+
|
|
38
|
+
def plot_pareto_front_2d(self,
|
|
39
|
+
trials_df: pd.DataFrame,
|
|
40
|
+
pareto_trials_df: pd.DataFrame | None = None,
|
|
41
|
+
save_path: Path | None = None,
|
|
42
|
+
figsize: tuple[int, int] = (10, 8),
|
|
43
|
+
show_plot: bool = True) -> plt.Figure:
|
|
44
|
+
if len(self.metric_names) != 2:
|
|
45
|
+
raise ValueError("2D Pareto front visualization requires exactly 2 metrics")
|
|
46
|
+
|
|
47
|
+
fig, ax = plt.subplots(figsize=figsize)
|
|
48
|
+
|
|
49
|
+
# Extract metric values
|
|
50
|
+
x_vals = trials_df[f"values_{0}"].values
|
|
51
|
+
y_vals = trials_df[f"values_{1}"].values
|
|
52
|
+
|
|
53
|
+
# Plot all trials
|
|
54
|
+
ax.scatter(x_vals,
|
|
55
|
+
y_vals,
|
|
56
|
+
alpha=0.6,
|
|
57
|
+
s=50,
|
|
58
|
+
c='lightblue',
|
|
59
|
+
label=f'All Trials (n={len(trials_df)})',
|
|
60
|
+
edgecolors='navy',
|
|
61
|
+
linewidths=0.5)
|
|
62
|
+
|
|
63
|
+
# Plot Pareto optimal trials if provided
|
|
64
|
+
if pareto_trials_df is not None and not pareto_trials_df.empty:
|
|
65
|
+
pareto_x = pareto_trials_df[f"values_{0}"].values
|
|
66
|
+
pareto_y = pareto_trials_df[f"values_{1}"].values
|
|
67
|
+
|
|
68
|
+
ax.scatter(pareto_x,
|
|
69
|
+
pareto_y,
|
|
70
|
+
alpha=0.9,
|
|
71
|
+
s=100,
|
|
72
|
+
c='red',
|
|
73
|
+
label=f'Pareto Optimal (n={len(pareto_trials_df)})',
|
|
74
|
+
edgecolors='darkred',
|
|
75
|
+
linewidths=1.5,
|
|
76
|
+
marker='*')
|
|
77
|
+
|
|
78
|
+
# Draw Pareto front line (only for 2D)
|
|
79
|
+
if len(pareto_x) > 1:
|
|
80
|
+
# Sort points for line drawing based on first objective
|
|
81
|
+
sorted_indices = np.argsort(pareto_x)
|
|
82
|
+
ax.plot(pareto_x[sorted_indices],
|
|
83
|
+
pareto_y[sorted_indices],
|
|
84
|
+
'r--',
|
|
85
|
+
alpha=0.7,
|
|
86
|
+
linewidth=2,
|
|
87
|
+
label='Pareto Front')
|
|
88
|
+
|
|
89
|
+
# Customize plot
|
|
90
|
+
x_direction = "↓" if self.directions[0] == "minimize" else "↑"
|
|
91
|
+
y_direction = "↓" if self.directions[1] == "minimize" else "↑"
|
|
92
|
+
|
|
93
|
+
ax.set_xlabel(f"{self.metric_names[0]} {x_direction}", fontsize=12)
|
|
94
|
+
ax.set_ylabel(f"{self.metric_names[1]} {y_direction}", fontsize=12)
|
|
95
|
+
ax.set_title(f"{self.title_prefix}: Pareto Front Visualization", fontsize=14, fontweight='bold')
|
|
96
|
+
|
|
97
|
+
ax.legend(loc='best', frameon=True, fancybox=True, shadow=True)
|
|
98
|
+
ax.grid(True, alpha=0.3)
|
|
99
|
+
|
|
100
|
+
# Add direction annotations
|
|
101
|
+
x_annotation = (f"Better {self.metric_names[0]} →"
|
|
102
|
+
if self.directions[0] == "minimize" else f"← Better {self.metric_names[0]}")
|
|
103
|
+
ax.annotate(x_annotation,
|
|
104
|
+
xy=(0.02, 0.98),
|
|
105
|
+
xycoords='axes fraction',
|
|
106
|
+
ha='left',
|
|
107
|
+
va='top',
|
|
108
|
+
fontsize=10,
|
|
109
|
+
style='italic',
|
|
110
|
+
bbox=dict(boxstyle="round,pad=0.3", facecolor="wheat", alpha=0.7))
|
|
111
|
+
|
|
112
|
+
y_annotation = (f"Better {self.metric_names[1]} ↑"
|
|
113
|
+
if self.directions[1] == "minimize" else f"Better {self.metric_names[1]} ↓")
|
|
114
|
+
ax.annotate(y_annotation,
|
|
115
|
+
xy=(0.02, 0.02),
|
|
116
|
+
xycoords='axes fraction',
|
|
117
|
+
ha='left',
|
|
118
|
+
va='bottom',
|
|
119
|
+
fontsize=10,
|
|
120
|
+
style='italic',
|
|
121
|
+
bbox=dict(boxstyle="round,pad=0.3", facecolor="lightgreen", alpha=0.7))
|
|
122
|
+
|
|
123
|
+
plt.tight_layout()
|
|
124
|
+
|
|
125
|
+
if save_path:
|
|
126
|
+
fig.savefig(save_path, dpi=300, bbox_inches='tight')
|
|
127
|
+
logger.info("2D Pareto plot saved to: %s", save_path)
|
|
128
|
+
|
|
129
|
+
if show_plot:
|
|
130
|
+
plt.show()
|
|
131
|
+
|
|
132
|
+
return fig
|
|
133
|
+
|
|
134
|
+
def plot_pareto_parallel_coordinates(self,
|
|
135
|
+
trials_df: pd.DataFrame,
|
|
136
|
+
pareto_trials_df: pd.DataFrame | None = None,
|
|
137
|
+
save_path: Path | None = None,
|
|
138
|
+
figsize: tuple[int, int] = (12, 8),
|
|
139
|
+
show_plot: bool = True) -> plt.Figure:
|
|
140
|
+
fig, ax = plt.subplots(figsize=figsize)
|
|
141
|
+
|
|
142
|
+
n_metrics = len(self.metric_names)
|
|
143
|
+
x_positions = np.arange(n_metrics)
|
|
144
|
+
|
|
145
|
+
# Normalize values for better visualization
|
|
146
|
+
all_values = []
|
|
147
|
+
for i in range(n_metrics):
|
|
148
|
+
all_values.append(trials_df[f"values_{i}"].values)
|
|
149
|
+
|
|
150
|
+
# Normalize each metric to [0, 1] for parallel coordinates
|
|
151
|
+
normalized_values = []
|
|
152
|
+
for i, values in enumerate(all_values):
|
|
153
|
+
min_val, max_val = values.min(), values.max()
|
|
154
|
+
if max_val > min_val:
|
|
155
|
+
if self.directions[i] == "minimize":
|
|
156
|
+
# For minimize: lower values get higher normalized scores
|
|
157
|
+
norm_vals = 1 - (values - min_val) / (max_val - min_val)
|
|
158
|
+
else:
|
|
159
|
+
# For maximize: higher values get higher normalized scores
|
|
160
|
+
norm_vals = (values - min_val) / (max_val - min_val)
|
|
161
|
+
else:
|
|
162
|
+
norm_vals = np.ones_like(values) * 0.5
|
|
163
|
+
normalized_values.append(norm_vals)
|
|
164
|
+
|
|
165
|
+
# Plot all trials
|
|
166
|
+
for i in range(len(trials_df)):
|
|
167
|
+
trial_values = [normalized_values[j][i] for j in range(n_metrics)]
|
|
168
|
+
ax.plot(x_positions, trial_values, 'b-', alpha=0.1, linewidth=1)
|
|
169
|
+
|
|
170
|
+
# Plot Pareto optimal trials
|
|
171
|
+
if pareto_trials_df is not None and not pareto_trials_df.empty:
|
|
172
|
+
pareto_indices = pareto_trials_df.index
|
|
173
|
+
for idx in pareto_indices:
|
|
174
|
+
if idx < len(trials_df):
|
|
175
|
+
trial_values = [normalized_values[j][idx] for j in range(n_metrics)]
|
|
176
|
+
ax.plot(x_positions, trial_values, 'r-', alpha=0.8, linewidth=3)
|
|
177
|
+
|
|
178
|
+
# Customize plot
|
|
179
|
+
ax.set_xticks(x_positions)
|
|
180
|
+
ax.set_xticklabels([f"{name}\n({direction})" for name, direction in zip(self.metric_names, self.directions)])
|
|
181
|
+
ax.set_ylabel("Normalized Performance (Higher is Better)", fontsize=12)
|
|
182
|
+
ax.set_title(f"{self.title_prefix}: Parallel Coordinates Plot", fontsize=14, fontweight='bold')
|
|
183
|
+
ax.set_ylim(-0.05, 1.05)
|
|
184
|
+
ax.grid(True, alpha=0.3)
|
|
185
|
+
|
|
186
|
+
# Add legend
|
|
187
|
+
from matplotlib.lines import Line2D
|
|
188
|
+
legend_elements = [
|
|
189
|
+
Line2D([0], [0], color='blue', alpha=0.3, linewidth=2, label='All Trials'),
|
|
190
|
+
Line2D([0], [0], color='red', alpha=0.8, linewidth=3, label='Pareto Optimal')
|
|
191
|
+
]
|
|
192
|
+
ax.legend(handles=legend_elements, loc='best')
|
|
193
|
+
|
|
194
|
+
plt.tight_layout()
|
|
195
|
+
|
|
196
|
+
if save_path:
|
|
197
|
+
fig.savefig(save_path, dpi=300, bbox_inches='tight')
|
|
198
|
+
logger.info("Parallel coordinates plot saved to: %s", save_path)
|
|
199
|
+
|
|
200
|
+
if show_plot:
|
|
201
|
+
plt.show()
|
|
202
|
+
|
|
203
|
+
return fig
|
|
204
|
+
|
|
205
|
+
def plot_pairwise_matrix(self,
|
|
206
|
+
trials_df: pd.DataFrame,
|
|
207
|
+
pareto_trials_df: pd.DataFrame | None = None,
|
|
208
|
+
save_path: Path | None = None,
|
|
209
|
+
figsize: tuple[int, int] | None = None,
|
|
210
|
+
show_plot: bool = True) -> plt.Figure:
|
|
211
|
+
n_metrics = len(self.metric_names)
|
|
212
|
+
if figsize is None:
|
|
213
|
+
figsize = (4 * n_metrics, 4 * n_metrics)
|
|
214
|
+
|
|
215
|
+
fig, axes = plt.subplots(n_metrics, n_metrics, figsize=figsize)
|
|
216
|
+
fig.suptitle(f"{self.title_prefix}: Pairwise Metric Comparison", fontsize=16, fontweight='bold')
|
|
217
|
+
|
|
218
|
+
for i in range(n_metrics):
|
|
219
|
+
for j in range(n_metrics):
|
|
220
|
+
ax = axes[i, j] if n_metrics > 1 else axes
|
|
221
|
+
|
|
222
|
+
if i == j:
|
|
223
|
+
# Diagonal: histograms
|
|
224
|
+
values = trials_df[f"values_{i}"].values
|
|
225
|
+
ax.hist(values, bins=20, alpha=0.7, color='lightblue', edgecolor='navy')
|
|
226
|
+
if pareto_trials_df is not None and not pareto_trials_df.empty:
|
|
227
|
+
pareto_values = pareto_trials_df[f"values_{i}"].values
|
|
228
|
+
ax.hist(pareto_values, bins=20, alpha=0.8, color='red', edgecolor='darkred')
|
|
229
|
+
ax.set_xlabel(f"{self.metric_names[i]}")
|
|
230
|
+
ax.set_ylabel("Frequency")
|
|
231
|
+
else:
|
|
232
|
+
# Off-diagonal: scatter plots
|
|
233
|
+
x_vals = trials_df[f"values_{j}"].values
|
|
234
|
+
y_vals = trials_df[f"values_{i}"].values
|
|
235
|
+
|
|
236
|
+
ax.scatter(x_vals, y_vals, alpha=0.6, s=30, c='lightblue', edgecolors='navy', linewidths=0.5)
|
|
237
|
+
|
|
238
|
+
if pareto_trials_df is not None and not pareto_trials_df.empty:
|
|
239
|
+
pareto_x = pareto_trials_df[f"values_{j}"].values
|
|
240
|
+
pareto_y = pareto_trials_df[f"values_{i}"].values
|
|
241
|
+
ax.scatter(pareto_x,
|
|
242
|
+
pareto_y,
|
|
243
|
+
alpha=0.9,
|
|
244
|
+
s=60,
|
|
245
|
+
c='red',
|
|
246
|
+
edgecolors='darkred',
|
|
247
|
+
linewidths=1,
|
|
248
|
+
marker='*')
|
|
249
|
+
|
|
250
|
+
ax.set_xlabel(f"{self.metric_names[j]} ({self.directions[j]})")
|
|
251
|
+
ax.set_ylabel(f"{self.metric_names[i]} ({self.directions[i]})")
|
|
252
|
+
|
|
253
|
+
ax.grid(True, alpha=0.3)
|
|
254
|
+
|
|
255
|
+
plt.tight_layout()
|
|
256
|
+
|
|
257
|
+
if save_path:
|
|
258
|
+
fig.savefig(save_path, dpi=300, bbox_inches='tight')
|
|
259
|
+
logger.info("Pairwise matrix plot saved to: %s", save_path)
|
|
260
|
+
|
|
261
|
+
if show_plot:
|
|
262
|
+
plt.show()
|
|
263
|
+
|
|
264
|
+
return fig
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
def load_trials_from_study(study: optuna.Study) -> tuple[pd.DataFrame, pd.DataFrame]:
|
|
268
|
+
# Get all trials
|
|
269
|
+
trials_df = study.trials_dataframe()
|
|
270
|
+
|
|
271
|
+
# Get Pareto optimal trials
|
|
272
|
+
pareto_trials = study.best_trials
|
|
273
|
+
pareto_trial_numbers = [trial.number for trial in pareto_trials]
|
|
274
|
+
pareto_trials_df = trials_df[trials_df['number'].isin(pareto_trial_numbers)]
|
|
275
|
+
|
|
276
|
+
return trials_df, pareto_trials_df
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
def load_trials_from_csv(csv_path: Path, metric_names: list[str],
|
|
280
|
+
directions: list[str]) -> tuple[pd.DataFrame, pd.DataFrame]:
|
|
281
|
+
trials_df = pd.read_csv(csv_path)
|
|
282
|
+
|
|
283
|
+
# Extract values columns
|
|
284
|
+
value_cols = [col for col in trials_df.columns if col.startswith('values_')]
|
|
285
|
+
if not value_cols:
|
|
286
|
+
raise ValueError("CSV file must contain 'values_' columns with metric scores")
|
|
287
|
+
|
|
288
|
+
# Compute Pareto optimal solutions manually
|
|
289
|
+
pareto_mask = compute_pareto_optimal_mask(trials_df, value_cols, directions)
|
|
290
|
+
pareto_trials_df = trials_df[pareto_mask]
|
|
291
|
+
|
|
292
|
+
return trials_df, pareto_trials_df
|
|
293
|
+
|
|
294
|
+
|
|
295
|
+
def compute_pareto_optimal_mask(df: pd.DataFrame, value_cols: list[str], directions: list[str]) -> np.ndarray:
|
|
296
|
+
values = df[value_cols].values
|
|
297
|
+
n_trials = len(values)
|
|
298
|
+
|
|
299
|
+
# Normalize directions: convert all to maximization
|
|
300
|
+
normalized_values = values.copy()
|
|
301
|
+
for i, direction in enumerate(directions):
|
|
302
|
+
if direction == "minimize":
|
|
303
|
+
normalized_values[:, i] = -normalized_values[:, i]
|
|
304
|
+
|
|
305
|
+
is_pareto = np.ones(n_trials, dtype=bool)
|
|
306
|
+
|
|
307
|
+
for i in range(n_trials):
|
|
308
|
+
if is_pareto[i]:
|
|
309
|
+
# Compare with all other solutions
|
|
310
|
+
dominates = np.all(normalized_values[i] >= normalized_values, axis=1) & \
|
|
311
|
+
np.any(normalized_values[i] > normalized_values, axis=1)
|
|
312
|
+
is_pareto[dominates] = False
|
|
313
|
+
|
|
314
|
+
return is_pareto
|
|
315
|
+
|
|
316
|
+
|
|
317
|
+
def create_pareto_visualization(data_source: optuna.Study | Path | pd.DataFrame,
|
|
318
|
+
metric_names: list[str],
|
|
319
|
+
directions: list[str],
|
|
320
|
+
output_dir: Path | None = None,
|
|
321
|
+
title_prefix: str = "Optimization Results",
|
|
322
|
+
show_plots: bool = True) -> dict[str, plt.Figure]:
|
|
323
|
+
# Load data based on source type
|
|
324
|
+
if hasattr(data_source, 'trials_dataframe'):
|
|
325
|
+
# Optuna study object
|
|
326
|
+
trials_df, pareto_trials_df = load_trials_from_study(data_source)
|
|
327
|
+
elif isinstance(data_source, str | Path):
|
|
328
|
+
# CSV file path
|
|
329
|
+
trials_df, pareto_trials_df = load_trials_from_csv(Path(data_source), metric_names, directions)
|
|
330
|
+
elif isinstance(data_source, pd.DataFrame):
|
|
331
|
+
# DataFrame
|
|
332
|
+
trials_df = data_source
|
|
333
|
+
value_cols = [col for col in trials_df.columns if col.startswith('values_')]
|
|
334
|
+
pareto_mask = compute_pareto_optimal_mask(trials_df, value_cols, directions)
|
|
335
|
+
pareto_trials_df = trials_df[pareto_mask]
|
|
336
|
+
else:
|
|
337
|
+
raise ValueError("data_source must be an Optuna study, CSV file path, or pandas DataFrame")
|
|
338
|
+
|
|
339
|
+
visualizer = ParetoVisualizer(metric_names, directions, title_prefix)
|
|
340
|
+
figures = {}
|
|
341
|
+
|
|
342
|
+
logger.info("Creating Pareto front visualizations...")
|
|
343
|
+
logger.info("Total trials: %d", len(trials_df))
|
|
344
|
+
logger.info("Pareto optimal trials: %d", len(pareto_trials_df))
|
|
345
|
+
|
|
346
|
+
# Create output directory if specified
|
|
347
|
+
if output_dir:
|
|
348
|
+
output_dir = Path(output_dir)
|
|
349
|
+
output_dir.mkdir(parents=True, exist_ok=True)
|
|
350
|
+
|
|
351
|
+
try:
|
|
352
|
+
if len(metric_names) == 2:
|
|
353
|
+
# 2D scatter plot
|
|
354
|
+
save_path = output_dir / "pareto_front_2d.png" if output_dir else None
|
|
355
|
+
fig = visualizer.plot_pareto_front_2d(trials_df, pareto_trials_df, save_path, show_plot=show_plots)
|
|
356
|
+
figures["2d_scatter"] = fig
|
|
357
|
+
|
|
358
|
+
if len(metric_names) >= 2:
|
|
359
|
+
# Parallel coordinates plot
|
|
360
|
+
save_path = output_dir / "pareto_parallel_coordinates.png" if output_dir else None
|
|
361
|
+
fig = visualizer.plot_pareto_parallel_coordinates(trials_df,
|
|
362
|
+
pareto_trials_df,
|
|
363
|
+
save_path,
|
|
364
|
+
show_plot=show_plots)
|
|
365
|
+
figures["parallel_coordinates"] = fig
|
|
366
|
+
|
|
367
|
+
# Pairwise matrix plot
|
|
368
|
+
save_path = output_dir / "pareto_pairwise_matrix.png" if output_dir else None
|
|
369
|
+
fig = visualizer.plot_pairwise_matrix(trials_df, pareto_trials_df, save_path, show_plot=show_plots)
|
|
370
|
+
figures["pairwise_matrix"] = fig
|
|
371
|
+
|
|
372
|
+
logger.info("Visualization complete!")
|
|
373
|
+
if output_dir:
|
|
374
|
+
logger.info("Plots saved to: %s", output_dir)
|
|
375
|
+
|
|
376
|
+
except Exception as e:
|
|
377
|
+
logger.error("Error creating visualizations: %s", e)
|
|
378
|
+
raise
|
|
379
|
+
|
|
380
|
+
return figures
|