nvidia-nat 1.3.0.dev2__py3-none-any.whl → 1.3.0rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (250) hide show
  1. aiq/__init__.py +2 -2
  2. nat/agent/base.py +24 -15
  3. nat/agent/dual_node.py +9 -4
  4. nat/agent/prompt_optimizer/prompt.py +68 -0
  5. nat/agent/prompt_optimizer/register.py +149 -0
  6. nat/agent/react_agent/agent.py +79 -47
  7. nat/agent/react_agent/register.py +50 -22
  8. nat/agent/reasoning_agent/reasoning_agent.py +11 -9
  9. nat/agent/register.py +1 -1
  10. nat/agent/rewoo_agent/agent.py +326 -148
  11. nat/agent/rewoo_agent/prompt.py +19 -22
  12. nat/agent/rewoo_agent/register.py +54 -27
  13. nat/agent/tool_calling_agent/agent.py +84 -28
  14. nat/agent/tool_calling_agent/register.py +51 -28
  15. nat/authentication/api_key/api_key_auth_provider.py +2 -2
  16. nat/authentication/credential_validator/bearer_token_validator.py +557 -0
  17. nat/authentication/http_basic_auth/http_basic_auth_provider.py +1 -1
  18. nat/authentication/interfaces.py +5 -2
  19. nat/authentication/oauth2/oauth2_auth_code_flow_provider.py +69 -36
  20. nat/authentication/oauth2/oauth2_resource_server_config.py +124 -0
  21. nat/authentication/register.py +0 -1
  22. nat/builder/builder.py +56 -24
  23. nat/builder/component_utils.py +9 -5
  24. nat/builder/context.py +68 -17
  25. nat/builder/eval_builder.py +16 -11
  26. nat/builder/framework_enum.py +1 -0
  27. nat/builder/front_end.py +1 -1
  28. nat/builder/function.py +378 -8
  29. nat/builder/function_base.py +3 -3
  30. nat/builder/function_info.py +6 -8
  31. nat/builder/user_interaction_manager.py +2 -2
  32. nat/builder/workflow.py +13 -1
  33. nat/builder/workflow_builder.py +281 -76
  34. nat/cli/cli_utils/config_override.py +2 -2
  35. nat/cli/commands/evaluate.py +1 -1
  36. nat/cli/commands/info/info.py +16 -6
  37. nat/cli/commands/info/list_channels.py +1 -1
  38. nat/cli/commands/info/list_components.py +7 -8
  39. nat/cli/commands/mcp/__init__.py +14 -0
  40. nat/cli/commands/mcp/mcp.py +986 -0
  41. nat/cli/commands/object_store/__init__.py +14 -0
  42. nat/cli/commands/object_store/object_store.py +227 -0
  43. nat/cli/commands/optimize.py +90 -0
  44. nat/cli/commands/registry/publish.py +2 -2
  45. nat/cli/commands/registry/pull.py +2 -2
  46. nat/cli/commands/registry/remove.py +2 -2
  47. nat/cli/commands/registry/search.py +15 -17
  48. nat/cli/commands/start.py +16 -5
  49. nat/cli/commands/uninstall.py +1 -1
  50. nat/cli/commands/workflow/templates/config.yml.j2 +14 -13
  51. nat/cli/commands/workflow/templates/pyproject.toml.j2 +4 -1
  52. nat/cli/commands/workflow/templates/register.py.j2 +2 -3
  53. nat/cli/commands/workflow/templates/workflow.py.j2 +35 -21
  54. nat/cli/commands/workflow/workflow_commands.py +62 -22
  55. nat/cli/entrypoint.py +8 -10
  56. nat/cli/main.py +3 -0
  57. nat/cli/register_workflow.py +38 -4
  58. nat/cli/type_registry.py +75 -6
  59. nat/control_flow/__init__.py +0 -0
  60. nat/control_flow/register.py +20 -0
  61. nat/control_flow/router_agent/__init__.py +0 -0
  62. nat/control_flow/router_agent/agent.py +329 -0
  63. nat/control_flow/router_agent/prompt.py +48 -0
  64. nat/control_flow/router_agent/register.py +91 -0
  65. nat/control_flow/sequential_executor.py +166 -0
  66. nat/data_models/agent.py +34 -0
  67. nat/data_models/api_server.py +74 -66
  68. nat/data_models/authentication.py +23 -9
  69. nat/data_models/common.py +1 -1
  70. nat/data_models/component.py +2 -0
  71. nat/data_models/component_ref.py +11 -0
  72. nat/data_models/config.py +41 -17
  73. nat/data_models/dataset_handler.py +1 -1
  74. nat/data_models/discovery_metadata.py +4 -4
  75. nat/data_models/evaluate.py +4 -1
  76. nat/data_models/function.py +34 -0
  77. nat/data_models/function_dependencies.py +14 -6
  78. nat/data_models/gated_field_mixin.py +242 -0
  79. nat/data_models/intermediate_step.py +3 -3
  80. nat/data_models/optimizable.py +119 -0
  81. nat/data_models/optimizer.py +149 -0
  82. nat/data_models/span.py +41 -3
  83. nat/data_models/swe_bench_model.py +1 -1
  84. nat/data_models/temperature_mixin.py +44 -0
  85. nat/data_models/thinking_mixin.py +86 -0
  86. nat/data_models/top_p_mixin.py +44 -0
  87. nat/embedder/nim_embedder.py +1 -1
  88. nat/embedder/openai_embedder.py +1 -1
  89. nat/embedder/register.py +0 -1
  90. nat/eval/config.py +3 -1
  91. nat/eval/dataset_handler/dataset_handler.py +71 -7
  92. nat/eval/evaluate.py +86 -31
  93. nat/eval/evaluator/base_evaluator.py +1 -1
  94. nat/eval/evaluator/evaluator_model.py +13 -0
  95. nat/eval/intermediate_step_adapter.py +1 -1
  96. nat/eval/rag_evaluator/evaluate.py +2 -2
  97. nat/eval/rag_evaluator/register.py +3 -3
  98. nat/eval/register.py +4 -1
  99. nat/eval/remote_workflow.py +3 -3
  100. nat/eval/runtime_evaluator/__init__.py +14 -0
  101. nat/eval/runtime_evaluator/evaluate.py +123 -0
  102. nat/eval/runtime_evaluator/register.py +100 -0
  103. nat/eval/swe_bench_evaluator/evaluate.py +6 -6
  104. nat/eval/trajectory_evaluator/evaluate.py +1 -1
  105. nat/eval/trajectory_evaluator/register.py +1 -1
  106. nat/eval/tunable_rag_evaluator/evaluate.py +4 -7
  107. nat/eval/utils/eval_trace_ctx.py +89 -0
  108. nat/eval/utils/weave_eval.py +18 -9
  109. nat/experimental/decorators/experimental_warning_decorator.py +27 -7
  110. nat/experimental/test_time_compute/functions/plan_select_execute_function.py +7 -3
  111. nat/experimental/test_time_compute/functions/ttc_tool_orchestration_function.py +3 -3
  112. nat/experimental/test_time_compute/functions/ttc_tool_wrapper_function.py +1 -1
  113. nat/experimental/test_time_compute/models/strategy_base.py +5 -4
  114. nat/experimental/test_time_compute/register.py +0 -1
  115. nat/experimental/test_time_compute/selection/llm_based_output_merging_selector.py +1 -3
  116. nat/front_ends/console/authentication_flow_handler.py +82 -30
  117. nat/front_ends/console/console_front_end_plugin.py +8 -5
  118. nat/front_ends/fastapi/auth_flow_handlers/websocket_flow_handler.py +52 -17
  119. nat/front_ends/fastapi/dask_client_mixin.py +65 -0
  120. nat/front_ends/fastapi/fastapi_front_end_config.py +36 -5
  121. nat/front_ends/fastapi/fastapi_front_end_controller.py +4 -4
  122. nat/front_ends/fastapi/fastapi_front_end_plugin.py +135 -4
  123. nat/front_ends/fastapi/fastapi_front_end_plugin_worker.py +452 -282
  124. nat/front_ends/fastapi/job_store.py +518 -99
  125. nat/front_ends/fastapi/main.py +11 -19
  126. nat/front_ends/fastapi/message_handler.py +13 -14
  127. nat/front_ends/fastapi/message_validator.py +19 -19
  128. nat/front_ends/fastapi/response_helpers.py +4 -4
  129. nat/front_ends/fastapi/step_adaptor.py +2 -2
  130. nat/front_ends/fastapi/utils.py +57 -0
  131. nat/front_ends/mcp/introspection_token_verifier.py +73 -0
  132. nat/front_ends/mcp/mcp_front_end_config.py +10 -1
  133. nat/front_ends/mcp/mcp_front_end_plugin.py +45 -13
  134. nat/front_ends/mcp/mcp_front_end_plugin_worker.py +116 -8
  135. nat/front_ends/mcp/tool_converter.py +44 -14
  136. nat/front_ends/register.py +0 -1
  137. nat/front_ends/simple_base/simple_front_end_plugin_base.py +3 -1
  138. nat/llm/aws_bedrock_llm.py +24 -12
  139. nat/llm/azure_openai_llm.py +13 -6
  140. nat/llm/litellm_llm.py +69 -0
  141. nat/llm/nim_llm.py +20 -8
  142. nat/llm/openai_llm.py +14 -6
  143. nat/llm/register.py +4 -1
  144. nat/llm/utils/env_config_value.py +2 -3
  145. nat/llm/utils/thinking.py +215 -0
  146. nat/meta/pypi.md +9 -9
  147. nat/object_store/register.py +0 -1
  148. nat/observability/exporter/base_exporter.py +3 -3
  149. nat/observability/exporter/file_exporter.py +1 -1
  150. nat/observability/exporter/processing_exporter.py +309 -81
  151. nat/observability/exporter/span_exporter.py +35 -15
  152. nat/observability/exporter_manager.py +7 -7
  153. nat/observability/mixin/file_mixin.py +7 -7
  154. nat/observability/mixin/redaction_config_mixin.py +42 -0
  155. nat/observability/mixin/tagging_config_mixin.py +62 -0
  156. nat/observability/mixin/type_introspection_mixin.py +420 -107
  157. nat/observability/processor/batching_processor.py +5 -7
  158. nat/observability/processor/falsy_batch_filter_processor.py +55 -0
  159. nat/observability/processor/processor.py +3 -0
  160. nat/observability/processor/processor_factory.py +70 -0
  161. nat/observability/processor/redaction/__init__.py +24 -0
  162. nat/observability/processor/redaction/contextual_redaction_processor.py +125 -0
  163. nat/observability/processor/redaction/contextual_span_redaction_processor.py +66 -0
  164. nat/observability/processor/redaction/redaction_processor.py +177 -0
  165. nat/observability/processor/redaction/span_header_redaction_processor.py +92 -0
  166. nat/observability/processor/span_tagging_processor.py +68 -0
  167. nat/observability/register.py +6 -4
  168. nat/profiler/calc/calc_runner.py +3 -4
  169. nat/profiler/callbacks/agno_callback_handler.py +1 -1
  170. nat/profiler/callbacks/langchain_callback_handler.py +6 -6
  171. nat/profiler/callbacks/llama_index_callback_handler.py +3 -3
  172. nat/profiler/callbacks/semantic_kernel_callback_handler.py +3 -3
  173. nat/profiler/data_frame_row.py +1 -1
  174. nat/profiler/decorators/framework_wrapper.py +62 -13
  175. nat/profiler/decorators/function_tracking.py +160 -3
  176. nat/profiler/forecasting/models/forecasting_base_model.py +3 -1
  177. nat/profiler/forecasting/models/linear_model.py +1 -1
  178. nat/profiler/forecasting/models/random_forest_regressor.py +1 -1
  179. nat/profiler/inference_optimization/bottleneck_analysis/nested_stack_analysis.py +1 -1
  180. nat/profiler/inference_optimization/bottleneck_analysis/simple_stack_analysis.py +1 -1
  181. nat/profiler/inference_optimization/data_models.py +3 -3
  182. nat/profiler/inference_optimization/experimental/prefix_span_analysis.py +8 -9
  183. nat/profiler/inference_optimization/token_uniqueness.py +1 -1
  184. nat/profiler/parameter_optimization/__init__.py +0 -0
  185. nat/profiler/parameter_optimization/optimizable_utils.py +93 -0
  186. nat/profiler/parameter_optimization/optimizer_runtime.py +67 -0
  187. nat/profiler/parameter_optimization/parameter_optimizer.py +153 -0
  188. nat/profiler/parameter_optimization/parameter_selection.py +107 -0
  189. nat/profiler/parameter_optimization/pareto_visualizer.py +380 -0
  190. nat/profiler/parameter_optimization/prompt_optimizer.py +384 -0
  191. nat/profiler/parameter_optimization/update_helpers.py +66 -0
  192. nat/profiler/profile_runner.py +14 -9
  193. nat/profiler/utils.py +4 -2
  194. nat/registry_handlers/local/local_handler.py +2 -2
  195. nat/registry_handlers/package_utils.py +1 -2
  196. nat/registry_handlers/pypi/pypi_handler.py +23 -26
  197. nat/registry_handlers/register.py +3 -4
  198. nat/registry_handlers/rest/rest_handler.py +12 -13
  199. nat/retriever/milvus/retriever.py +2 -2
  200. nat/retriever/nemo_retriever/retriever.py +1 -1
  201. nat/retriever/register.py +0 -1
  202. nat/runtime/loader.py +2 -2
  203. nat/runtime/runner.py +106 -8
  204. nat/runtime/session.py +69 -8
  205. nat/settings/global_settings.py +16 -5
  206. nat/tool/chat_completion.py +5 -2
  207. nat/tool/code_execution/local_sandbox/local_sandbox_server.py +3 -3
  208. nat/tool/datetime_tools.py +49 -9
  209. nat/tool/document_search.py +2 -2
  210. nat/tool/github_tools.py +450 -0
  211. nat/tool/memory_tools/get_memory_tool.py +1 -1
  212. nat/tool/nvidia_rag.py +1 -1
  213. nat/tool/register.py +2 -9
  214. nat/tool/retriever.py +3 -2
  215. nat/utils/callable_utils.py +70 -0
  216. nat/utils/data_models/schema_validator.py +3 -3
  217. nat/utils/decorators.py +210 -0
  218. nat/utils/exception_handlers/automatic_retries.py +104 -51
  219. nat/utils/exception_handlers/schemas.py +1 -1
  220. nat/utils/io/yaml_tools.py +2 -2
  221. nat/utils/log_levels.py +25 -0
  222. nat/utils/reactive/base/observable_base.py +2 -2
  223. nat/utils/reactive/base/observer_base.py +1 -1
  224. nat/utils/reactive/observable.py +2 -2
  225. nat/utils/reactive/observer.py +4 -4
  226. nat/utils/reactive/subscription.py +1 -1
  227. nat/utils/settings/global_settings.py +6 -8
  228. nat/utils/type_converter.py +4 -3
  229. nat/utils/type_utils.py +9 -5
  230. {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/METADATA +42 -18
  231. {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/RECORD +238 -196
  232. {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/entry_points.txt +1 -0
  233. nat/cli/commands/info/list_mcp.py +0 -304
  234. nat/tool/github_tools/create_github_commit.py +0 -133
  235. nat/tool/github_tools/create_github_issue.py +0 -87
  236. nat/tool/github_tools/create_github_pr.py +0 -106
  237. nat/tool/github_tools/get_github_file.py +0 -106
  238. nat/tool/github_tools/get_github_issue.py +0 -166
  239. nat/tool/github_tools/get_github_pr.py +0 -256
  240. nat/tool/github_tools/update_github_issue.py +0 -100
  241. nat/tool/mcp/exceptions.py +0 -142
  242. nat/tool/mcp/mcp_client.py +0 -255
  243. nat/tool/mcp/mcp_tool.py +0 -96
  244. nat/utils/exception_handlers/mcp.py +0 -211
  245. /nat/{tool/github_tools → agent/prompt_optimizer}/__init__.py +0 -0
  246. /nat/{tool/mcp → authentication/credential_validator}/__init__.py +0 -0
  247. {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/WHEEL +0 -0
  248. {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/licenses/LICENSE-3rd-party.txt +0 -0
  249. {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/licenses/LICENSE.md +0 -0
  250. {nvidia_nat-1.3.0.dev2.dist-info → nvidia_nat-1.3.0rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,93 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import logging
17
+ from typing import get_args
18
+ from typing import get_origin
19
+
20
+ from pydantic import BaseModel
21
+
22
+ from nat.data_models.optimizable import SearchSpace
23
+
24
+ logger = logging.getLogger(__name__)
25
+
26
+
27
+ def walk_optimizables(obj: BaseModel, path: str = "") -> dict[str, SearchSpace]:
28
+ """
29
+ Recursively build ``{flattened.path: SearchSpace}`` for every optimizable
30
+ field inside *obj*.
31
+
32
+ * Honors ``optimizable_params`` on any model that mixes in
33
+ ``OptimizableMixin`` – only listed fields are kept.
34
+ * If a model contains optimizable fields **but** omits
35
+ ``optimizable_params``, we emit a warning and skip them.
36
+ """
37
+ spaces: dict[str, SearchSpace] = {}
38
+
39
+ allowed_params_raw = getattr(obj, "optimizable_params", None)
40
+ allowed_params = set(allowed_params_raw) if allowed_params_raw is not None else None
41
+ overrides = getattr(obj, "search_space", {}) or {}
42
+ has_optimizable_flag = False
43
+
44
+ for name, fld in obj.model_fields.items():
45
+ full = f"{path}.{name}" if path else name
46
+ extra = fld.json_schema_extra or {}
47
+
48
+ is_field_optimizable = extra.get("optimizable", False) or name in overrides
49
+ has_optimizable_flag = has_optimizable_flag or is_field_optimizable
50
+
51
+ # honour allow-list
52
+ if allowed_params is not None and name not in allowed_params:
53
+ continue
54
+
55
+ # 1. plain optimizable field or override from config
56
+ if is_field_optimizable:
57
+ space = overrides.get(name, extra.get("search_space"))
58
+ if space is None:
59
+ logger.error(
60
+ "Field %s is marked optimizable but no search space was provided.",
61
+ full,
62
+ )
63
+ raise ValueError(f"Field {full} is marked optimizable but no search space was provided")
64
+ spaces[full] = space
65
+
66
+ value = getattr(obj, name, None)
67
+
68
+ # 2. nested BaseModel
69
+ if isinstance(value, BaseModel):
70
+ spaces.update(walk_optimizables(value, full))
71
+
72
+ # 3. dict[str, BaseModel] container
73
+ elif isinstance(value, dict):
74
+ for key, subval in value.items():
75
+ if isinstance(subval, BaseModel):
76
+ spaces.update(walk_optimizables(subval, f"{full}.{key}"))
77
+
78
+ # 4. static-type fallback for class-level annotations
79
+ elif isinstance(obj, type):
80
+ ann = fld.annotation
81
+ if get_origin(ann) in (dict, dict):
82
+ _, val_t = get_args(ann) or (None, None)
83
+ if isinstance(val_t, type) and issubclass(val_t, BaseModel):
84
+ if allowed_params is None or name in allowed_params:
85
+ spaces[f"{full}.*"] = SearchSpace(low=None, high=None) # sentinel
86
+
87
+ if allowed_params is None and has_optimizable_flag:
88
+ logger.warning(
89
+ "Model %s contains optimizable fields but no `optimizable_params` "
90
+ "were defined; these fields will be ignored.",
91
+ obj.__class__.__name__,
92
+ )
93
+ return spaces
@@ -0,0 +1,67 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import logging
17
+
18
+ from pydantic import BaseModel
19
+
20
+ from nat.data_models.optimizer import OptimizerRunConfig
21
+ from nat.experimental.decorators.experimental_warning_decorator import experimental
22
+ from nat.profiler.parameter_optimization.optimizable_utils import walk_optimizables
23
+ from nat.profiler.parameter_optimization.parameter_optimizer import optimize_parameters
24
+ from nat.profiler.parameter_optimization.prompt_optimizer import optimize_prompts
25
+ from nat.runtime.loader import load_config
26
+
27
+ logger = logging.getLogger(__name__)
28
+
29
+
30
+ @experimental(feature_name="Optimizer")
31
+ async def optimize_config(opt_run_config: OptimizerRunConfig):
32
+ """Entry-point called by the CLI or runtime."""
33
+ # ---------------- 1. load / normalise ---------------- #
34
+ if not isinstance(opt_run_config.config_file, BaseModel):
35
+ from nat.data_models.config import Config # guarded import
36
+ base_cfg: Config = load_config(config_file=opt_run_config.config_file)
37
+ else:
38
+ base_cfg = opt_run_config.config_file # already validated
39
+
40
+ # ---------------- 2. discover search space ----------- #
41
+ full_space = walk_optimizables(base_cfg)
42
+ if not full_space:
43
+ logger.warning("No optimizable parameters found in the configuration. "
44
+ "Skipping optimization.")
45
+ return base_cfg
46
+
47
+ # ---------------- 3. numeric / enum tuning ----------- #
48
+ tuned_cfg = base_cfg
49
+ if base_cfg.optimizer.numeric.enabled:
50
+ tuned_cfg = optimize_parameters(
51
+ base_cfg=base_cfg,
52
+ full_space=full_space,
53
+ optimizer_config=base_cfg.optimizer,
54
+ opt_run_config=opt_run_config,
55
+ )
56
+
57
+ # ---------------- 4. prompt optimization ------------- #
58
+ if base_cfg.optimizer.prompt.enabled:
59
+ await optimize_prompts(
60
+ base_cfg=tuned_cfg,
61
+ full_space=full_space,
62
+ optimizer_config=base_cfg.optimizer,
63
+ opt_run_config=opt_run_config,
64
+ )
65
+
66
+ logger.info("All optimization phases complete.")
67
+ return tuned_cfg
@@ -0,0 +1,153 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import asyncio
17
+ import logging
18
+ from collections.abc import Mapping as Dict
19
+
20
+ import optuna
21
+ import yaml
22
+
23
+ from nat.data_models.config import Config
24
+ from nat.data_models.optimizable import SearchSpace
25
+ from nat.data_models.optimizer import OptimizerConfig
26
+ from nat.data_models.optimizer import OptimizerRunConfig
27
+ from nat.eval.evaluate import EvaluationRun
28
+ from nat.eval.evaluate import EvaluationRunConfig
29
+ from nat.experimental.decorators.experimental_warning_decorator import experimental
30
+ from nat.profiler.parameter_optimization.parameter_selection import pick_trial
31
+ from nat.profiler.parameter_optimization.update_helpers import apply_suggestions
32
+
33
+ logger = logging.getLogger(__name__)
34
+
35
+
36
+ @experimental(feature_name="Optimizer")
37
+ def optimize_parameters(
38
+ *,
39
+ base_cfg: Config,
40
+ full_space: Dict[str, SearchSpace],
41
+ optimizer_config: OptimizerConfig,
42
+ opt_run_config: OptimizerRunConfig,
43
+ ) -> Config:
44
+ """Tune all *non-prompt* hyper-parameters and persist the best config."""
45
+ space = {k: v for k, v in full_space.items() if not v.is_prompt}
46
+
47
+ # Ensure output_path is not None
48
+ if optimizer_config.output_path is None:
49
+ raise ValueError("optimizer_config.output_path cannot be None")
50
+ out_dir = optimizer_config.output_path
51
+ out_dir.mkdir(parents=True, exist_ok=True)
52
+
53
+ # Ensure eval_metrics is not None
54
+ if optimizer_config.eval_metrics is None:
55
+ raise ValueError("optimizer_config.eval_metrics cannot be None")
56
+
57
+ metric_cfg = optimizer_config.eval_metrics
58
+ directions = [v.direction for v in metric_cfg.values()]
59
+ eval_metrics = [v.evaluator_name for v in metric_cfg.values()]
60
+ weights = [v.weight for v in metric_cfg.values()]
61
+
62
+ study = optuna.create_study(directions=directions)
63
+
64
+ # Create output directory for intermediate files
65
+ out_dir = optimizer_config.output_path
66
+ out_dir.mkdir(parents=True, exist_ok=True)
67
+
68
+ async def _run_eval(runner: EvaluationRun):
69
+ return await runner.run_and_evaluate()
70
+
71
+ def _objective(trial: optuna.Trial):
72
+ reps = max(1, getattr(optimizer_config, "reps_per_param_set", 1))
73
+
74
+ # build trial config
75
+ suggestions = {p: spec.suggest(trial, p) for p, spec in space.items()}
76
+ cfg_trial = apply_suggestions(base_cfg, suggestions)
77
+
78
+ async def _single_eval(trial_idx: int) -> list[float]: # noqa: ARG001
79
+ eval_cfg = EvaluationRunConfig(
80
+ config_file=cfg_trial,
81
+ dataset=opt_run_config.dataset,
82
+ result_json_path=opt_run_config.result_json_path,
83
+ endpoint=opt_run_config.endpoint,
84
+ endpoint_timeout=opt_run_config.endpoint_timeout,
85
+ )
86
+ scores = await _run_eval(EvaluationRun(config=eval_cfg))
87
+ values = []
88
+ for metric_name in eval_metrics:
89
+ metric = next(r[1] for r in scores.evaluation_results if r[0] == metric_name)
90
+ values.append(metric.average_score)
91
+
92
+ return values
93
+
94
+ # Create tasks for all evaluations
95
+ async def _run_all_evals():
96
+ tasks = [_single_eval(i) for i in range(reps)]
97
+ return await asyncio.gather(*tasks)
98
+
99
+ with (out_dir / f"config_numeric_trial_{trial._trial_id}.yml").open("w") as fh:
100
+ yaml.dump(cfg_trial.model_dump(), fh)
101
+
102
+ all_scores = asyncio.run(_run_all_evals())
103
+ # Persist raw per‑repetition scores so they appear in `trials_dataframe`.
104
+ trial.set_user_attr("rep_scores", all_scores)
105
+ return [sum(run[i] for run in all_scores) / reps for i in range(len(eval_metrics))]
106
+
107
+ logger.info("Starting numeric / enum parameter optimization...")
108
+ study.optimize(_objective, n_trials=optimizer_config.numeric.n_trials)
109
+ logger.info("Numeric optimization finished")
110
+
111
+ best_params = pick_trial(
112
+ study=study,
113
+ mode=optimizer_config.multi_objective_combination_mode,
114
+ weights=weights,
115
+ ).params
116
+ tuned_cfg = apply_suggestions(base_cfg, best_params)
117
+
118
+ # Save final results (out_dir already created and defined above)
119
+ with (out_dir / "optimized_config.yml").open("w") as fh:
120
+ yaml.dump(tuned_cfg.model_dump(), fh)
121
+ with (out_dir / "trials_dataframe_params.csv").open("w") as fh:
122
+ # Export full trials DataFrame (values, params, timings, etc.).
123
+ df = study.trials_dataframe()
124
+ # Normalise rep_scores column naming for convenience.
125
+ if "user_attrs_rep_scores" in df.columns and "rep_scores" not in df.columns:
126
+ df = df.rename(columns={"user_attrs_rep_scores": "rep_scores"})
127
+ elif "user_attrs" in df.columns and "rep_scores" not in df.columns:
128
+ # Some Optuna versions return a dict in a single user_attrs column.
129
+ df["rep_scores"] = df["user_attrs"].apply(lambda d: d.get("rep_scores") if isinstance(d, dict) else None)
130
+ df = df.drop(columns=["user_attrs"])
131
+ df.to_csv(fh, index=False)
132
+
133
+ # Generate Pareto front visualizations
134
+ try:
135
+ from nat.profiler.parameter_optimization.pareto_visualizer import create_pareto_visualization
136
+ logger.info("Generating Pareto front visualizations...")
137
+ create_pareto_visualization(
138
+ data_source=study,
139
+ metric_names=eval_metrics,
140
+ directions=directions,
141
+ output_dir=out_dir / "plots",
142
+ title_prefix="Parameter Optimization",
143
+ show_plots=False # Don't show plots in automated runs
144
+ )
145
+ logger.info("Pareto visualizations saved to: %s", out_dir / "plots")
146
+ except ImportError as ie:
147
+ logger.warning("Could not import visualization dependencies: %s. "
148
+ "Have you installed nvidia-nat-profiling?",
149
+ ie)
150
+ except Exception as e:
151
+ logger.warning("Failed to generate visualizations: %s", e)
152
+
153
+ return tuned_cfg
@@ -0,0 +1,107 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from collections.abc import Sequence
17
+
18
+ import numpy as np
19
+ import optuna
20
+ from optuna._hypervolume import compute_hypervolume
21
+ from optuna.study import Study
22
+ from optuna.study import StudyDirection
23
+
24
+
25
+ # ---------- helper ----------
26
+ def _to_minimisation_matrix(
27
+ trials: Sequence[optuna.trial.FrozenTrial],
28
+ directions: Sequence[StudyDirection],
29
+ ) -> np.ndarray:
30
+ """Return array (n_trials × n_objectives) where **all** objectives are ‘smaller-is-better’."""
31
+ vals = np.asarray([t.values for t in trials], dtype=float)
32
+ for j, d in enumerate(directions):
33
+ if d == StudyDirection.MAXIMIZE:
34
+ vals[:, j] *= -1.0 # flip sign
35
+ return vals
36
+
37
+
38
+ # ---------- public API ----------
39
+ def pick_trial(
40
+ study: Study,
41
+ mode: str = "harmonic",
42
+ *,
43
+ weights: Sequence[float] | None = None,
44
+ ref_point: Sequence[float] | None = None,
45
+ eps: float = 1e-12,
46
+ ) -> optuna.trial.FrozenTrial:
47
+ """
48
+ Collapse Optuna’s Pareto front (`study.best_trials`) to a single “best compromise”.
49
+
50
+ Parameters
51
+ ----------
52
+ study : completed **multi-objective** Optuna study
53
+ mode : {"harmonic", "sum", "chebyshev", "hypervolume"}
54
+ weights : per-objective weights (used only for "sum")
55
+ ref_point : reference point for hyper-volume (defaults to ones after normalisation)
56
+ eps : tiny value to avoid division by zero
57
+
58
+ Returns
59
+ -------
60
+ optuna.trial.FrozenTrial
61
+ """
62
+
63
+ # ---- 1. Pareto front ----
64
+ front = study.best_trials
65
+ if not front:
66
+ raise ValueError("`study.best_trials` is empty – no Pareto-optimal trials found.")
67
+
68
+ # ---- 2. Convert & normalise objectives ----
69
+ vals = _to_minimisation_matrix(front, study.directions) # smaller is better
70
+ span = np.ptp(vals, axis=0)
71
+ norm = (vals - vals.min(axis=0)) / (span + eps) # 0 = best, 1 = worst
72
+
73
+ # ---- 3. Scalarise according to chosen mode ----
74
+ mode = mode.lower()
75
+
76
+ if mode == "harmonic":
77
+ hmean = norm.shape[1] / (1.0 / (norm + eps)).sum(axis=1)
78
+ best_idx = hmean.argmin() # lower = better
79
+
80
+ elif mode == "sum":
81
+ w = np.ones(norm.shape[1]) if weights is None else np.asarray(weights, float)
82
+ if w.size != norm.shape[1]:
83
+ raise ValueError("`weights` length must equal number of objectives.")
84
+ score = norm @ w
85
+ best_idx = score.argmin()
86
+
87
+ elif mode == "chebyshev":
88
+ score = norm.max(axis=1) # worst dimension
89
+ best_idx = score.argmin()
90
+
91
+ elif mode == "hypervolume":
92
+ # Hyper-volume assumes points are *below* the reference point (minimisation space).
93
+ if len(front) == 0:
94
+ raise ValueError("Pareto front is empty - no trials to select from")
95
+ elif len(front) == 1:
96
+ best_idx = 0
97
+ else:
98
+ rp = np.ones(norm.shape[1]) if ref_point is None else np.asarray(ref_point, float)
99
+ base_hv = compute_hypervolume(norm, rp)
100
+ contrib = np.array([base_hv - compute_hypervolume(np.delete(norm, i, 0), rp) for i in range(len(front))])
101
+ best_idx = contrib.argmax() # bigger contribution wins
102
+
103
+ else:
104
+ raise ValueError(f"Unknown mode '{mode}'. Choose from "
105
+ "'harmonic', 'sum', 'chebyshev', 'hypervolume'.")
106
+
107
+ return front[best_idx]