numba-cuda 0.10.1__py3-none-any.whl → 0.11.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -4,11 +4,86 @@ import os
4
4
  import numpy as np
5
5
  import unittest
6
6
  from numba.cuda.testing import CUDATestCase
7
-
8
7
  from numba.tests.support import run_in_subprocess, override_config
9
-
8
+ from numba.cuda import get_current_device
9
+ from numba.cuda.cudadrv.nvrtc import compile
10
+ from numba import types
11
+ from numba.cuda.cudadecl import registry as cuda_decl_registry
12
+ from numba.core.typing import signature
13
+ from numba.cuda.cudaimpl import lower as cuda_lower
10
14
  from numba import cuda
11
- from numba.cuda.runtime.nrt import rtsys
15
+ from numba.cuda.runtime.nrt import rtsys, get_include
16
+ from numba.core.typing.templates import AbstractTemplate
17
+ from numba.cuda.cudadrv.linkable_code import (
18
+ CUSource,
19
+ PTXSource,
20
+ Fatbin,
21
+ Cubin,
22
+ Archive,
23
+ Object,
24
+ )
25
+
26
+
27
+ TEST_BIN_DIR = os.getenv("NUMBA_CUDA_TEST_BIN_DIR")
28
+
29
+ if TEST_BIN_DIR:
30
+
31
+ def make_linkable_code(name, kind, mode):
32
+ path = os.path.join(TEST_BIN_DIR, name)
33
+ with open(path, mode) as f:
34
+ contents = f.read()
35
+ return kind(contents, nrt=True)
36
+
37
+ nrt_extern_a = make_linkable_code("nrt_extern.a", Archive, "rb")
38
+ nrt_extern_cubin = make_linkable_code("nrt_extern.cubin", Cubin, "rb")
39
+ nrt_extern_cu = make_linkable_code(
40
+ "nrt_extern.cu",
41
+ CUSource,
42
+ "rb",
43
+ )
44
+ nrt_extern_fatbin = make_linkable_code("nrt_extern.fatbin", Fatbin, "rb")
45
+ nrt_extern_fatbin_multi = make_linkable_code(
46
+ "nrt_extern_multi.fatbin", Fatbin, "rb"
47
+ )
48
+ nrt_extern_o = make_linkable_code("nrt_extern.o", Object, "rb")
49
+ nrt_extern_ptx = make_linkable_code("nrt_extern.ptx", PTXSource, "rb")
50
+
51
+
52
+ def allocate_deallocate_handle():
53
+ """
54
+ Handle to call NRT_Allocate and NRT_Free
55
+ """
56
+ pass
57
+
58
+
59
+ @cuda_decl_registry.register_global(allocate_deallocate_handle)
60
+ class AllocateShimImpl(AbstractTemplate):
61
+ def generic(self, args, kws):
62
+ return signature(types.void)
63
+
64
+
65
+ device_fun_shim = cuda.declare_device(
66
+ "device_allocate_deallocate", types.int32()
67
+ )
68
+
69
+
70
+ # wrapper to turn the above into a python callable
71
+ def call_device_fun_shim():
72
+ return device_fun_shim()
73
+
74
+
75
+ @cuda_lower(allocate_deallocate_handle)
76
+ def allocate_deallocate_impl(context, builder, sig, args):
77
+ sig_ = types.int32()
78
+ # call the external function, passing the pointer
79
+ result = context.compile_internal(
80
+ builder,
81
+ call_device_fun_shim,
82
+ sig_,
83
+ (),
84
+ )
85
+
86
+ return result
12
87
 
13
88
 
14
89
  class TestNrtBasic(CUDATestCase):
@@ -77,6 +152,50 @@ class TestNrtBasic(CUDATestCase):
77
152
  self.assertEqual(out_ary[0], 1)
78
153
 
79
154
 
155
+ class TestNrtLinking(CUDATestCase):
156
+ def run(self, result=None):
157
+ with override_config("CUDA_ENABLE_NRT", True):
158
+ super(TestNrtLinking, self).run(result)
159
+
160
+ def test_nrt_detect_linked_ptx_file(self):
161
+ src = f"#include <{get_include()}/nrt.cuh>"
162
+ src += """
163
+ extern "C" __device__ int device_allocate_deallocate(int* nb_retval){
164
+ auto ptr = NRT_Allocate(1);
165
+ NRT_Free(ptr);
166
+ return 0;
167
+ }
168
+ """
169
+ cc = get_current_device().compute_capability
170
+ ptx, _ = compile(src, "external_nrt.cu", cc)
171
+
172
+ @cuda.jit(link=[PTXSource(ptx.encode(), nrt=True)])
173
+ def kernel():
174
+ allocate_deallocate_handle()
175
+
176
+ kernel[1, 1]()
177
+
178
+ @unittest.skipIf(not TEST_BIN_DIR, "necessary binaries not generated.")
179
+ def test_nrt_detect_linkable_code(self):
180
+ codes = (
181
+ nrt_extern_a,
182
+ nrt_extern_cubin,
183
+ nrt_extern_cu,
184
+ nrt_extern_fatbin,
185
+ nrt_extern_fatbin_multi,
186
+ nrt_extern_o,
187
+ nrt_extern_ptx,
188
+ )
189
+ for code in codes:
190
+ with self.subTest(code=code):
191
+
192
+ @cuda.jit(link=[code])
193
+ def kernel():
194
+ allocate_deallocate_handle()
195
+
196
+ kernel[1, 1]()
197
+
198
+
80
199
  class TestNrtStatistics(CUDATestCase):
81
200
  def setUp(self):
82
201
  self._stream = cuda.default_stream()
@@ -40,6 +40,8 @@ LTOIR_FLAGS := $(LTOIR_GENCODE) -dc
40
40
 
41
41
  OUTPUT_DIR := ./
42
42
 
43
+ NRT_INCLUDE_DIR := $(shell python -c "from numba.cuda.runtime.nrt import get_include; print(get_include())")
44
+
43
45
  all:
44
46
  @echo "GPU CC: $(GPU_CC)"
45
47
  @echo "Alternative CC: $(ALT_CC)"
@@ -52,7 +54,16 @@ all:
52
54
  nvcc $(NVCC_FLAGS) $(OBJECT_FLAGS) -o $(OUTPUT_DIR)/test_device_functions.o test_device_functions.cu
53
55
  nvcc $(NVCC_FLAGS) $(LIBRARY_FLAGS) -o $(OUTPUT_DIR)/test_device_functions.a test_device_functions.cu
54
56
 
57
+ nvcc $(NVCC_FLAGS) $(CUBIN_FLAGS) -o $(OUTPUT_DIR)/nrt_extern.cubin nrt_extern.cu -I$(NRT_INCLUDE_DIR)
58
+ nvcc $(NVCC_FLAGS) $(FATBIN_FLAGS) -o $(OUTPUT_DIR)/nrt_extern.fatbin nrt_extern.cu -I$(NRT_INCLUDE_DIR)
59
+ nvcc $(NVCC_FLAGS) $(MULTI_FATBIN_FLAGS) -o $(OUTPUT_DIR)/nrt_extern_multi.fatbin nrt_extern.cu -I$(NRT_INCLUDE_DIR)
60
+ nvcc $(NVCC_FLAGS) $(PTX_FLAGS) -o $(OUTPUT_DIR)/nrt_extern.ptx nrt_extern.cu -I$(NRT_INCLUDE_DIR)
61
+ nvcc $(NVCC_FLAGS) $(OBJECT_FLAGS) -o $(OUTPUT_DIR)/nrt_extern.o nrt_extern.cu -I$(NRT_INCLUDE_DIR)
62
+ nvcc $(NVCC_FLAGS) $(LIBRARY_FLAGS) -o $(OUTPUT_DIR)/nrt_extern.a nrt_extern.cu -I$(NRT_INCLUDE_DIR)
63
+
55
64
  # Generate LTO-IR wrapped in a fatbin
56
65
  nvcc $(NVCC_FLAGS) $(LTOIR_FLAGS) -o $(OUTPUT_DIR)/test_device_functions.ltoir.o test_device_functions.cu
66
+ nvcc $(NVCC_FLAGS) $(LTOIR_FLAGS) -o $(OUTPUT_DIR)/nrt_extern.ltoir.o nrt_extern.cu -I$(NRT_INCLUDE_DIR)
57
67
  # Generate LTO-IR in a "raw" LTO-IR container
58
68
  python generate_raw_ltoir.py --arch sm_$(GPU_CC) -o $(OUTPUT_DIR)/test_device_functions.ltoir test_device_functions.cu
69
+ python generate_raw_ltoir.py --arch sm_$(GPU_CC) -o $(OUTPUT_DIR)/nrt_extern.ltoir nrt_extern.cu --nrt
@@ -7,6 +7,7 @@ import subprocess
7
7
  import sys
8
8
 
9
9
  from cuda import nvrtc
10
+ from numba.cuda.runtime.nrt import get_include
10
11
 
11
12
  # Magic number found at the start of an LTO-IR file
12
13
  LTOIR_MAGIC = 0x7F4E43ED
@@ -88,7 +89,9 @@ def get_ltoir(source, name, arch):
88
89
  nvrtc.nvrtcCreateProgram(source.encode(), name.encode(), 0, [], [])
89
90
  )
90
91
 
91
- cuda_include_flags = determine_include_flags()
92
+ cuda_include_flags = determine_include_flags() + (
93
+ [f"-I{get_include()}"] if args.nrt else []
94
+ )
92
95
  if cuda_include_flags is None:
93
96
  print("Error determining CUDA include flags. Exiting.", file=sys.stderr)
94
97
  sys.exit(1)
@@ -160,7 +163,7 @@ if __name__ == "__main__":
160
163
  help="compute arch to target (e.g. sm_87). Defaults to sm_50.",
161
164
  default="sm_50",
162
165
  )
163
-
166
+ parser.add_argument("--nrt", action="store_true")
164
167
  args = parser.parse_args()
165
168
  outputpath = args.output
166
169
 
@@ -0,0 +1,7 @@
1
+ #include <nrt.cuh>
2
+
3
+ extern "C" __device__ int device_allocate_deallocate(int* nb_retval){
4
+ auto ptr = NRT_Allocate(1);
5
+ NRT_Free(ptr);
6
+ return 0;
7
+ }
@@ -17,3 +17,7 @@ extern "C" __device__ int add_from_numba(uint32_t *result, uint32_t a,
17
17
  *result = a + b;
18
18
  return 0;
19
19
  }
20
+
21
+ extern "C" __device__ uint32_t add_cabi(uint32_t a, uint32_t b) {
22
+ return a + b;
23
+ }
@@ -1,6 +1,7 @@
1
1
  import os
2
2
  import warnings
3
3
  import traceback
4
+ import functools
4
5
 
5
6
 
6
7
  def _readenv(name, ctor, default):
@@ -20,3 +21,9 @@ def _readenv(name, ctor, default):
20
21
  RuntimeWarning,
21
22
  )
22
23
  return default
24
+
25
+
26
+ @functools.lru_cache(maxsize=None)
27
+ def cached_file_read(filepath, how="r"):
28
+ with open(filepath, how) as f:
29
+ return f.read()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: numba-cuda
3
- Version: 0.10.1
3
+ Version: 0.11.0
4
4
  Summary: CUDA target for Numba
5
5
  Author: Anaconda Inc., NVIDIA Corporation
6
6
  License: BSD 2-clause
@@ -1,6 +1,6 @@
1
1
  _numba_cuda_redirector.pth,sha256=cmfMMmV0JPh3yEpl4bGeM9AuXiVVMSo6Z_b7RaQL3XE,30
2
2
  _numba_cuda_redirector.py,sha256=n_r8MYbu5-vcXMnLJW147k8DnFXXvgb7nPIXnlXwTyQ,2659
3
- numba_cuda/VERSION,sha256=9NQ54LUjIIoJ0ThiwWggzDAo_ZRBcxDOHVOjHRTWosQ,7
3
+ numba_cuda/VERSION,sha256=eV1rx5V00q7AOtnP7EBLuVCDyd0hDmUh4NQZl3LSjUQ,7
4
4
  numba_cuda/__init__.py,sha256=atXeUvJKR3JHcAiCFbXCVOJQUHgB1TulmsqSL_9RT3Q,114
5
5
  numba_cuda/_version.py,sha256=nzrrJXi85d18m6SPdsPsetJNClDETkmF1MrEhGLYDBs,734
6
6
  numba_cuda/numba/cuda/__init__.py,sha256=3siqMXEKqa9ezQ8RxPC3KMdebUjgJt-EKxxV4CX9818,607
@@ -8,20 +8,20 @@ numba_cuda/numba/cuda/api.py,sha256=XnyTZiAPdLhpFDKefpN59mK-RsM2uMVipQjHRNI0Z5s,
8
8
  numba_cuda/numba/cuda/api_util.py,sha256=jK8oUD3zf_D5IX7vbjc3uY_5kmOxwgEqO2m_lDHdWfM,861
9
9
  numba_cuda/numba/cuda/args.py,sha256=UlTHTJpwPeCtnW0Bb-Wetm5UO9TPR-PCgIt5ys8b8tQ,1894
10
10
  numba_cuda/numba/cuda/cg.py,sha256=azz1sIT_jXQfJEZfDjBeqboJc6Pu_NtrZxfE7D1eQLQ,1484
11
- numba_cuda/numba/cuda/codegen.py,sha256=4hAdztvCcpwVbWcl9b5zK9xu04f7mVMNAgekpfc-8uw,14049
12
- numba_cuda/numba/cuda/compiler.py,sha256=sFreZM07D8zp4QyUBL2IKoBtDjzdxj80wN4KUgEQOS8,25283
11
+ numba_cuda/numba/cuda/codegen.py,sha256=N6zwdKah4Pb79TKPFVqTbJWX10MGu_7E2YR6K77OQwE,16451
12
+ numba_cuda/numba/cuda/compiler.py,sha256=jOwiebq5K4eCn745MPNtaXMkLyyTBef65fpZ5sqKbEM,25548
13
13
  numba_cuda/numba/cuda/cpp_function_wrappers.cu,sha256=8lUPmU6FURxphzEqkPLZRPYBCEK_wmDtHq2voPkckfs,950
14
14
  numba_cuda/numba/cuda/cuda_bf16.py,sha256=RfnWMV2_zSAW9FLN4JqfW6GfmWR8ZVO16e9Bw3jZnto,152203
15
15
  numba_cuda/numba/cuda/cuda_paths.py,sha256=kMIJ_1yV2qtcKEM5rCgSDJ3Gz7bgxbfAWh54E5cDndg,15872
16
- numba_cuda/numba/cuda/cudadecl.py,sha256=4DhYDnKg95AKsmDHetJvL1rfdvhnuz9PKS1Ncf4nO20,22343
17
- numba_cuda/numba/cuda/cudaimpl.py,sha256=-a5dvGHORH4RypGliHqXvwG3Rc0CAJVntYGxoYHmbpc,35656
16
+ numba_cuda/numba/cuda/cudadecl.py,sha256=0JTTkA0yZljsa0EFlebmsAibvkf5OhHaeOCsfaUwjU0,22822
17
+ numba_cuda/numba/cuda/cudaimpl.py,sha256=q6CPqD8ZtJvY8JlpMEN--d6003_FIHoHLBqNP2McNyM,39274
18
18
  numba_cuda/numba/cuda/cudamath.py,sha256=wbGjlyGVwcUAoQjgXIaAaasLdVuDSKHkf6KyID5IYBw,3979
19
19
  numba_cuda/numba/cuda/debuginfo.py,sha256=tWlRAC1-AsSQp0pG9kXQY9tlVdZPA-nDUJsrvru4eaM,4504
20
- numba_cuda/numba/cuda/decorators.py,sha256=kqzbv7eEQSyQg2G_XtIyKIfvmm354jw2vZDlOmK-t9s,9454
20
+ numba_cuda/numba/cuda/decorators.py,sha256=T2nFq5nCPmeyJb-RyuVUUaV4qHYTeYm3Zj-o8cMewMc,9483
21
21
  numba_cuda/numba/cuda/descriptor.py,sha256=t1rSVJSCAlVACC5_Un3FQ7iubdTTBe-euqz88cvs2tI,985
22
22
  numba_cuda/numba/cuda/device_init.py,sha256=Rtwd6hQMHMLMkj6MXtndbWYFJfkIaRe0MwOIJF2nzhU,3449
23
23
  numba_cuda/numba/cuda/deviceufunc.py,sha256=zj9BbLiZD-dPttHew4olw8ANgR2nXnXEE9qjCeGLrQI,30731
24
- numba_cuda/numba/cuda/dispatcher.py,sha256=uX6ltCDQq9mIBqSHV6Ci-2mJtuAmeZXBb3yWp8gXZ2U,44426
24
+ numba_cuda/numba/cuda/dispatcher.py,sha256=1QzWn5IO_v27-NZlSjDbCIT_M5vtPuBadlwjliY2y0E,43169
25
25
  numba_cuda/numba/cuda/errors.py,sha256=WRso1Q_jCoWP5yrDBMhihRhhVtVo1-7KdN8QVE9j46o,1712
26
26
  numba_cuda/numba/cuda/extending.py,sha256=VwuU5F0AQFlJsqaiwoWk-6Itihew1FsjVT_BVjhY8Us,2278
27
27
  numba_cuda/numba/cuda/initialize.py,sha256=0SnpjccQEYiWITIyfAJx833H1yhYFFDY42EpnwYyMn8,487
@@ -40,24 +40,24 @@ numba_cuda/numba/cuda/printimpl.py,sha256=AO_KvkKhlJacjoq8IV1nDm7YBNKnqN7SBkvTG1
40
40
  numba_cuda/numba/cuda/random.py,sha256=V30KaFdkuDyjxoP14awz-KkY3lRIXqIZuuH27UotINE,10451
41
41
  numba_cuda/numba/cuda/reshape_funcs.cu,sha256=frw1uoeMSYlkPC38LiKE8Tz2P70X2e4UZGyLKkaPzho,4326
42
42
  numba_cuda/numba/cuda/simulator_init.py,sha256=Hvzty6NJp1SeKspyb-b887xpeNLMMI0x9aPmV--X77E,450
43
- numba_cuda/numba/cuda/stubs.py,sha256=mCS65wc4MuaDnL_XYYxkKbDOH991o6a0JsN9KrLNMGQ,22104
43
+ numba_cuda/numba/cuda/stubs.py,sha256=JMs4Xg8IHlAq5L6SBYWcYNzXfJGM6v0lZCQaOb5x9CQ,23014
44
44
  numba_cuda/numba/cuda/target.py,sha256=mSMnS-bSsC8_4KqkAsa1Byi2mO8jPJdKW3m31qxsxUE,12520
45
45
  numba_cuda/numba/cuda/testing.py,sha256=OR37AuDdzg7vLG4G_4s2uRAkNTScZc-BzHmTMJYuxhQ,6827
46
46
  numba_cuda/numba/cuda/types.py,sha256=hC1MUvgUwy-SLgbzFzXwssJzPR8BxQwqUcjwGJFzVac,1317
47
47
  numba_cuda/numba/cuda/ufuncs.py,sha256=AJifQgapyv62fdJeMm939R1I5TvIRmaA8dJ83Jy8DCw,23559
48
- numba_cuda/numba/cuda/utils.py,sha256=Bk9TZZerYrnAaeKjjAAYkbm6YoP0ptxcPrCysRi_nRI,631
48
+ numba_cuda/numba/cuda/utils.py,sha256=VRphC0PLr8Klq3D1FMONu4aRdVO23HOCBg4bxnsqmfc,785
49
49
  numba_cuda/numba/cuda/vector_types.py,sha256=FlzOKufhvBnZ-VC-liA7y9is8BV-uj0fD-En_vP6zl0,6783
50
50
  numba_cuda/numba/cuda/vectorizers.py,sha256=nEfQxjSA4oCX8ZzvoqjDRygDfwzxFVDXtnjx-K1aPqA,8387
51
51
  numba_cuda/numba/cuda/cudadrv/__init__.py,sha256=inat2K8K1OVrgDe64FK7CyRmyFyNKcNO4p2_L79yRZ0,201
52
52
  numba_cuda/numba/cuda/cudadrv/devicearray.py,sha256=6tF2TYnmjMbKk2fho1ONoD_QsRD9QVTT2kHP7x1u1J0,31556
53
53
  numba_cuda/numba/cuda/cudadrv/devices.py,sha256=k87EDIRhj1ncM9PxJCjZGPFfEks99vzmHlTc55GK5X0,8062
54
- numba_cuda/numba/cuda/cudadrv/driver.py,sha256=09CBF8eU_uyfci6vPRu6U3U8kyr1arLhV40frgPpMdA,115511
54
+ numba_cuda/numba/cuda/cudadrv/driver.py,sha256=dcrti-XDhjdfTiF5HrrGCYtIZkknN_6UugxSA2f-JoE,118994
55
55
  numba_cuda/numba/cuda/cudadrv/drvapi.py,sha256=OnjYWnmy8ZlSfYouhzyYIpW-AJ3x1YHj32YcBY2xet4,16790
56
56
  numba_cuda/numba/cuda/cudadrv/dummyarray.py,sha256=2jycZhniMy3ncoVWQG9D8dBehTEeocBZTW43gKHL5Tc,14291
57
57
  numba_cuda/numba/cuda/cudadrv/enums.py,sha256=raWKryxamWQZ5A8ivMpyYVhhwbSpaD9lu7l1_wl2W9M,23742
58
58
  numba_cuda/numba/cuda/cudadrv/error.py,sha256=C2tTPT5h3BGgzjaFTCqbY7hOk2PgkVh0iuM1EiRp1eI,583
59
59
  numba_cuda/numba/cuda/cudadrv/libs.py,sha256=qjknQxYXd2ucwDLQqzhWC_srNg6FnwvcVHIpKyPxJ9A,7287
60
- numba_cuda/numba/cuda/cudadrv/linkable_code.py,sha256=bgXfXIVLx-R5BGr6aiORJ8uWakMl_2dh1SxDn9fH8EI,2582
60
+ numba_cuda/numba/cuda/cudadrv/linkable_code.py,sha256=IZ13laEG_altDQyi9HkdMcwW-YYEIn2erqz6AnYsqHg,2808
61
61
  numba_cuda/numba/cuda/cudadrv/mappings.py,sha256=9uEs1KepeVGRbEpVhLjtxSsvZpZsbrHnPywmx--y88A,804
62
62
  numba_cuda/numba/cuda/cudadrv/ndarray.py,sha256=HtULWWFyDlgqvrH5459yyPTvU4UbUo2DSdtcNfvbH00,473
63
63
  numba_cuda/numba/cuda/cudadrv/nvrtc.py,sha256=6xtAR1af5BsBkDMJcQsTIUFFO02wwpfLClNIsh5L33Y,14324
@@ -78,8 +78,9 @@ numba_cuda/numba/cuda/kernels/transpose.py,sha256=FbtFmOqaj_e7ARR_kkiTpSvj4BJyqB
78
78
  numba_cuda/numba/cuda/runtime/__init__.py,sha256=H-KOPDk6wMO_ADWzlZbA9U9hroX79WjenRcNpCSICiM,55
79
79
  numba_cuda/numba/cuda/runtime/memsys.cu,sha256=gMBM9_Hnv3EO3Gw_GKvII8y2hGoNtwrlZ43AUjTcsVo,2387
80
80
  numba_cuda/numba/cuda/runtime/memsys.cuh,sha256=hPGBQgKyOfYY25ntoBXlhYyeXzxJyz0ByeTszkaKJUM,504
81
- numba_cuda/numba/cuda/runtime/nrt.cu,sha256=LZKw9PGP2bzHHEO_uPIZTUD_YKvjupcqMtmIdCE2TGY,5400
82
- numba_cuda/numba/cuda/runtime/nrt.py,sha256=TWgesOgq3GJ5v9cyNDpBXh337jrQCiMhfsiIoirm_ZA,9647
81
+ numba_cuda/numba/cuda/runtime/nrt.cu,sha256=1hzbAKyqh9783UVdVT67ZxfvJyl_Ojt8e0AbHUC86ss,4818
82
+ numba_cuda/numba/cuda/runtime/nrt.cuh,sha256=p2GQ-l-EfCoO0sBTyKXhIY3hxGWbPhEJcR-mLLT_V3M,2173
83
+ numba_cuda/numba/cuda/runtime/nrt.py,sha256=6yXKBUvjIw_9BJ48iDIuckREaQVskzQAXm7uIRGFVuc,10039
83
84
  numba_cuda/numba/cuda/simulator/__init__.py,sha256=OByuGEDv4JDPx5LtO_NFApGIlaOEuhhtjrST2nthqeI,1580
84
85
  numba_cuda/numba/cuda/simulator/api.py,sha256=bzvwedFWG-EZWp6iWhRdqQisHu-Ik1TkyqW6Q5pGyrM,3210
85
86
  numba_cuda/numba/cuda/simulator/compiler.py,sha256=MnGuww-h5uzcNuLsXfkpBRSDNhy-8PlHAWwIvtt3PI4,232
@@ -138,6 +139,7 @@ numba_cuda/numba/cuda/tests/cudapy/jitlink.ptx,sha256=PKVafUhDH1SKRWXkt4N3v8SDMh
138
139
  numba_cuda/numba/cuda/tests/cudapy/recursion_usecases.py,sha256=wrWx8AeRhBHM74iYPKKrZqiyWrYCtQU3J-g3Zv7JmoY,1782
139
140
  numba_cuda/numba/cuda/tests/cudapy/test_alignment.py,sha256=RkhAcVkGtze8JpZTlYYvqTesDYE7xfKQZd1izgxDQpU,1219
140
141
  numba_cuda/numba/cuda/tests/cudapy/test_array.py,sha256=lT7XWXl0_lqtXyyXN-w0cd0wH7EBklRElYDnHUM5G1I,13215
142
+ numba_cuda/numba/cuda/tests/cudapy/test_array_alignment.py,sha256=JDKbbRieNE0C3wDsA83B5fTcRMu1OvSaBrs1uV0XtSM,8333
141
143
  numba_cuda/numba/cuda/tests/cudapy/test_array_args.py,sha256=iiFrt5Yn7gfheAGOYG2VBeWeuW3JlBhRLXNfSz4cHAA,4982
142
144
  numba_cuda/numba/cuda/tests/cudapy/test_array_methods.py,sha256=SWa1MvpwG07yBkrFIUeM9pm3BIwUbhttMNBdUW-CpSM,969
143
145
  numba_cuda/numba/cuda/tests/cudapy/test_atomics.py,sha256=agsfUN3WOoh6ICAECtuMuxZNcKq5ivK30Ew3h_m76m0,57689
@@ -163,7 +165,7 @@ numba_cuda/numba/cuda/tests/cudapy/test_dispatcher.py,sha256=Oc6CdI1j9Ad_wklHdIY
163
165
  numba_cuda/numba/cuda/tests/cudapy/test_enums.py,sha256=Yxac6S5P6C8GN0kMwieL3dQb1uogOVZQEx969B0AMpM,4533
164
166
  numba_cuda/numba/cuda/tests/cudapy/test_errors.py,sha256=w6ipW9UIvUD_ZIt_6fQ-uJsHyKLyHVqv2bym-9vyGyY,2757
165
167
  numba_cuda/numba/cuda/tests/cudapy/test_exception.py,sha256=W5NF022DOOTaEjFmhfr8BnfhRXvYyXHiGwznQrm_9T4,5507
166
- numba_cuda/numba/cuda/tests/cudapy/test_extending.py,sha256=2QWcl8yJvp0A22V8qItJuzVvmt5Ng1JdhqR7hn5XX0E,4144
168
+ numba_cuda/numba/cuda/tests/cudapy/test_extending.py,sha256=OEEuJ87D-ZcYtWrcOfcSsKPSDccgZVreUo61dxDv7DE,8537
167
169
  numba_cuda/numba/cuda/tests/cudapy/test_fastmath.py,sha256=fiUoOiwWjctZNFN-DGw1A8eGfHLqNulo2OQ7v1DFS9o,8552
168
170
  numba_cuda/numba/cuda/tests/cudapy/test_forall.py,sha256=Ory5s-_9MauSCP2RuWUEmcGFvP0kS7ytV-3iYPFYR6o,1470
169
171
  numba_cuda/numba/cuda/tests/cudapy/test_freevar.py,sha256=JvWn7Lw137HI61mouKnPvDxZIqLppiCF_351osxQQYE,753
@@ -250,14 +252,15 @@ numba_cuda/numba/cuda/tests/nocuda/test_import.py,sha256=avrMV0jlve3KmDOrYtCeQ4r
250
252
  numba_cuda/numba/cuda/tests/nocuda/test_library_lookup.py,sha256=O_S_HG59Ak071b43BQ2s-xJDw9D8Iy_H1-CechHOZnc,7948
251
253
  numba_cuda/numba/cuda/tests/nocuda/test_nvvm.py,sha256=E_OdYlxgfRTFKONCMlgjvwvwHQkPS1ne1KTwzBDH9GE,1968
252
254
  numba_cuda/numba/cuda/tests/nrt/__init__.py,sha256=43EXdiXXRBd6yIcVGMrU9F_EJCD9Uw3mzOP3SB53AEE,260
253
- numba_cuda/numba/cuda/tests/nrt/test_nrt.py,sha256=YgSEJHs_70ZOpM08PZaCO9mxEKZiZhdDm6sMai9AqKc,8724
255
+ numba_cuda/numba/cuda/tests/nrt/test_nrt.py,sha256=12IJTEgY2gFIgKagYXNvLksQHIj7MrbRYlX9DU4SGoc,12194
254
256
  numba_cuda/numba/cuda/tests/nrt/test_nrt_refct.py,sha256=kbkPw8F7rTiY7RBbf-2Uiw19jRN0a9Y4YchpMep1HQ4,3133
255
- numba_cuda/numba/cuda/tests/test_binary_generation/Makefile,sha256=P2WzCc5d64JGq6pJwHEwmKVmJOJxPBtsMTbnuzqYkik,2679
256
- numba_cuda/numba/cuda/tests/test_binary_generation/generate_raw_ltoir.py,sha256=SE5FrbZdkVrnzS0R62YPPyH25r6Jevd2nuB6HRJ3PZ0,5011
257
- numba_cuda/numba/cuda/tests/test_binary_generation/test_device_functions.cu,sha256=cUf-t6ZM9MK_x7X_aKwsrKW1LdR97XcpR-qnYr5faOE,453
257
+ numba_cuda/numba/cuda/tests/test_binary_generation/Makefile,sha256=gFLhuz0vmU8ZrUXUcy78M-KTRs9vf0yOGnv28Ds7fuA,3631
258
+ numba_cuda/numba/cuda/tests/test_binary_generation/generate_raw_ltoir.py,sha256=UBkdU7Hl5QTnIdZdMu1EJ_1fhtwliBL49EpGTt9fL_A,5172
259
+ numba_cuda/numba/cuda/tests/test_binary_generation/nrt_extern.cu,sha256=T9ubst3fFUK7EXyXXMi73wAban3VFFQ986cY5OcKfvI,157
260
+ numba_cuda/numba/cuda/tests/test_binary_generation/test_device_functions.cu,sha256=IB5t-dVhrKVoue3AbUx3yVMxPG0hBF_yZbzb4642sf0,538
258
261
  numba_cuda/numba/cuda/tests/test_binary_generation/undefined_extern.cu,sha256=q3oxZziT8KDodeNcEBiWULH6vMrHCWucmJmtrg8C0d0,128
259
- numba_cuda-0.10.1.dist-info/licenses/LICENSE,sha256=eHeYE-XjASmwbxfsP5AImgfzRwZurZGqH1f6OFwJ4io,1326
260
- numba_cuda-0.10.1.dist-info/METADATA,sha256=nP_9oLjsU48Y-dOmumPuN2JsiapA9t5ViCU_paTk7Uw,1859
261
- numba_cuda-0.10.1.dist-info/WHEEL,sha256=0CuiUZ_p9E4cD6NyLD6UG80LBXYyiSYZOKDm5lp32xk,91
262
- numba_cuda-0.10.1.dist-info/top_level.txt,sha256=C50SsH-8tXDmt7I0Y3nlJYhS5s6pqWflCPdobe9vx2M,11
263
- numba_cuda-0.10.1.dist-info/RECORD,,
262
+ numba_cuda-0.11.0.dist-info/licenses/LICENSE,sha256=eHeYE-XjASmwbxfsP5AImgfzRwZurZGqH1f6OFwJ4io,1326
263
+ numba_cuda-0.11.0.dist-info/METADATA,sha256=5fGOJBTyB10OIPwAfyn2W7vYjFM5SuRNJWPacBD_rgA,1859
264
+ numba_cuda-0.11.0.dist-info/WHEEL,sha256=DnLRTWE75wApRYVsjgc6wsVswC54sMSJhAEd4xhDpBk,91
265
+ numba_cuda-0.11.0.dist-info/top_level.txt,sha256=C50SsH-8tXDmt7I0Y3nlJYhS5s6pqWflCPdobe9vx2M,11
266
+ numba_cuda-0.11.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.3.1)
2
+ Generator: setuptools (80.4.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5