nshtrainer 1.0.0b48__tar.gz → 1.0.0b51__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (160) hide show
  1. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/PKG-INFO +1 -1
  2. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/pyproject.toml +1 -1
  3. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/metric_validation.py +0 -6
  4. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/lr_scheduler/reduce_lr_on_plateau.py +11 -4
  5. nshtrainer-1.0.0b51/src/nshtrainer/model/mixins/logger.py +275 -0
  6. nshtrainer-1.0.0b48/src/nshtrainer/model/mixins/logger.py +0 -187
  7. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/README.md +0 -0
  8. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/.nshconfig.generated.json +0 -0
  9. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/__init__.py +0 -0
  10. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/_callback.py +0 -0
  11. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/_checkpoint/metadata.py +0 -0
  12. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/_checkpoint/saver.py +0 -0
  13. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/_directory.py +0 -0
  14. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/_experimental/__init__.py +0 -0
  15. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/_hf_hub.py +0 -0
  16. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/__init__.py +0 -0
  17. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/actsave.py +0 -0
  18. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/base.py +0 -0
  19. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/checkpoint/__init__.py +0 -0
  20. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/checkpoint/_base.py +0 -0
  21. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/checkpoint/best_checkpoint.py +0 -0
  22. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/checkpoint/last_checkpoint.py +0 -0
  23. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/checkpoint/on_exception_checkpoint.py +0 -0
  24. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/debug_flag.py +0 -0
  25. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/directory_setup.py +0 -0
  26. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/early_stopping.py +0 -0
  27. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/ema.py +0 -0
  28. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/finite_checks.py +0 -0
  29. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/gradient_skipping.py +0 -0
  30. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/interval.py +0 -0
  31. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/log_epoch.py +0 -0
  32. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/lr_monitor.py +0 -0
  33. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/norm_logging.py +0 -0
  34. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/print_table.py +0 -0
  35. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/rlp_sanity_checks.py +0 -0
  36. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/shared_parameters.py +0 -0
  37. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/timer.py +0 -0
  38. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/wandb_upload_code.py +0 -0
  39. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/callbacks/wandb_watch.py +0 -0
  40. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/.gitattributes +0 -0
  41. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/__init__.py +0 -0
  42. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/_checkpoint/__init__.py +0 -0
  43. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/_checkpoint/metadata/__init__.py +0 -0
  44. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/_directory/__init__.py +0 -0
  45. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/_hf_hub/__init__.py +0 -0
  46. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/__init__.py +0 -0
  47. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/actsave/__init__.py +0 -0
  48. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/base/__init__.py +0 -0
  49. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/checkpoint/__init__.py +0 -0
  50. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/checkpoint/_base/__init__.py +0 -0
  51. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/checkpoint/best_checkpoint/__init__.py +0 -0
  52. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/checkpoint/last_checkpoint/__init__.py +0 -0
  53. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/checkpoint/on_exception_checkpoint/__init__.py +0 -0
  54. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/debug_flag/__init__.py +0 -0
  55. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/directory_setup/__init__.py +0 -0
  56. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/early_stopping/__init__.py +0 -0
  57. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/ema/__init__.py +0 -0
  58. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/finite_checks/__init__.py +0 -0
  59. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/gradient_skipping/__init__.py +0 -0
  60. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/log_epoch/__init__.py +0 -0
  61. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/lr_monitor/__init__.py +0 -0
  62. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/metric_validation/__init__.py +0 -0
  63. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/norm_logging/__init__.py +0 -0
  64. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/print_table/__init__.py +0 -0
  65. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/rlp_sanity_checks/__init__.py +0 -0
  66. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/shared_parameters/__init__.py +0 -0
  67. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/timer/__init__.py +0 -0
  68. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/wandb_upload_code/__init__.py +0 -0
  69. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/callbacks/wandb_watch/__init__.py +0 -0
  70. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/loggers/__init__.py +0 -0
  71. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/loggers/actsave/__init__.py +0 -0
  72. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/loggers/base/__init__.py +0 -0
  73. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/loggers/csv/__init__.py +0 -0
  74. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/loggers/tensorboard/__init__.py +0 -0
  75. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/loggers/wandb/__init__.py +0 -0
  76. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/lr_scheduler/__init__.py +0 -0
  77. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/lr_scheduler/base/__init__.py +0 -0
  78. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/lr_scheduler/linear_warmup_cosine/__init__.py +0 -0
  79. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/lr_scheduler/reduce_lr_on_plateau/__init__.py +0 -0
  80. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/metrics/__init__.py +0 -0
  81. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/metrics/_config/__init__.py +0 -0
  82. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/nn/__init__.py +0 -0
  83. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/nn/mlp/__init__.py +0 -0
  84. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/nn/nonlinearity/__init__.py +0 -0
  85. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/optimizer/__init__.py +0 -0
  86. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/profiler/__init__.py +0 -0
  87. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/profiler/_base/__init__.py +0 -0
  88. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/profiler/advanced/__init__.py +0 -0
  89. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/profiler/pytorch/__init__.py +0 -0
  90. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/profiler/simple/__init__.py +0 -0
  91. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/trainer/__init__.py +0 -0
  92. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/trainer/_config/__init__.py +0 -0
  93. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/trainer/accelerator/__init__.py +0 -0
  94. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/trainer/plugin/__init__.py +0 -0
  95. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/trainer/plugin/base/__init__.py +0 -0
  96. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/trainer/plugin/environment/__init__.py +0 -0
  97. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/trainer/plugin/io/__init__.py +0 -0
  98. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/trainer/plugin/layer_sync/__init__.py +0 -0
  99. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/trainer/plugin/precision/__init__.py +0 -0
  100. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/trainer/strategy/__init__.py +0 -0
  101. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/trainer/trainer/__init__.py +0 -0
  102. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/util/__init__.py +0 -0
  103. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/util/_environment_info/__init__.py +0 -0
  104. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/util/config/__init__.py +0 -0
  105. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/util/config/dtype/__init__.py +0 -0
  106. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/configs/util/config/duration/__init__.py +0 -0
  107. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/data/__init__.py +0 -0
  108. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/data/balanced_batch_sampler.py +0 -0
  109. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/data/datamodule.py +0 -0
  110. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/data/transform.py +0 -0
  111. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/loggers/__init__.py +0 -0
  112. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/loggers/actsave.py +0 -0
  113. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/loggers/base.py +0 -0
  114. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/loggers/csv.py +0 -0
  115. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/loggers/tensorboard.py +0 -0
  116. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/loggers/wandb.py +0 -0
  117. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/lr_scheduler/__init__.py +0 -0
  118. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/lr_scheduler/base.py +0 -0
  119. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/lr_scheduler/linear_warmup_cosine.py +0 -0
  120. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/metrics/__init__.py +0 -0
  121. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/metrics/_config.py +0 -0
  122. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/model/__init__.py +0 -0
  123. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/model/base.py +0 -0
  124. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/model/mixins/callback.py +0 -0
  125. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/model/mixins/debug.py +0 -0
  126. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/nn/__init__.py +0 -0
  127. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/nn/mlp.py +0 -0
  128. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/nn/module_dict.py +0 -0
  129. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/nn/module_list.py +0 -0
  130. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/nn/nonlinearity.py +0 -0
  131. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/optimizer.py +0 -0
  132. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/profiler/__init__.py +0 -0
  133. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/profiler/_base.py +0 -0
  134. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/profiler/advanced.py +0 -0
  135. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/profiler/pytorch.py +0 -0
  136. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/profiler/simple.py +0 -0
  137. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/__init__.py +0 -0
  138. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/_config.py +0 -0
  139. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/_runtime_callback.py +0 -0
  140. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/accelerator.py +0 -0
  141. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/plugin/__init__.py +0 -0
  142. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/plugin/base.py +0 -0
  143. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/plugin/environment.py +0 -0
  144. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/plugin/io.py +0 -0
  145. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/plugin/layer_sync.py +0 -0
  146. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/plugin/precision.py +0 -0
  147. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/signal_connector.py +0 -0
  148. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/strategy.py +0 -0
  149. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/trainer/trainer.py +0 -0
  150. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/util/_environment_info.py +0 -0
  151. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/util/bf16.py +0 -0
  152. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/util/config/__init__.py +0 -0
  153. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/util/config/dtype.py +0 -0
  154. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/util/config/duration.py +0 -0
  155. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/util/environment.py +0 -0
  156. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/util/path.py +0 -0
  157. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/util/seed.py +0 -0
  158. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/util/slurm.py +0 -0
  159. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/util/typed.py +0 -0
  160. {nshtrainer-1.0.0b48 → nshtrainer-1.0.0b51}/src/nshtrainer/util/typing_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: nshtrainer
3
- Version: 1.0.0b48
3
+ Version: 1.0.0b51
4
4
  Summary:
5
5
  Author: Nima Shoghi
6
6
  Author-email: nimashoghi@gmail.com
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "nshtrainer"
3
- version = "1.0.0-beta48"
3
+ version = "1.0.0-beta51"
4
4
  description = ""
5
5
  authors = ["Nima Shoghi <nimashoghi@gmail.com>"]
6
6
  readme = "README.md"
@@ -77,12 +77,6 @@ class MetricValidationCallback(Callback):
77
77
  case _:
78
78
  assert_never(self.config.error_behavior)
79
79
 
80
- @override
81
- def on_sanity_check_end(self, trainer, pl_module):
82
- super().on_sanity_check_end(trainer, pl_module)
83
-
84
- self._check_metrics(trainer)
85
-
86
80
  @override
87
81
  def on_validation_end(self, trainer, pl_module):
88
82
  super().on_validation_end(trainer, pl_module)
@@ -7,6 +7,7 @@ from torch.optim.lr_scheduler import ReduceLROnPlateau
7
7
  from typing_extensions import final, override
8
8
 
9
9
  from ..metrics._config import MetricConfig
10
+ from ..util.config import EpochsConfig
10
11
  from .base import LRSchedulerConfigBase, LRSchedulerMetadata, lr_scheduler_registry
11
12
 
12
13
 
@@ -21,13 +22,13 @@ class ReduceLROnPlateauConfig(LRSchedulerConfigBase):
21
22
  """Metric to monitor.
22
23
  If not provided, the primary metric of the runner will be used."""
23
24
 
24
- patience: int
25
+ patience: int | EpochsConfig
25
26
  r"""Number of epochs with no improvement after which learning rate will be reduced."""
26
27
 
27
28
  factor: float
28
29
  r"""Factor by which the learning rate will be reduced. new_lr = lr * factor."""
29
30
 
30
- cooldown: int = 0
31
+ cooldown: int | EpochsConfig = 0
31
32
  r"""Number of epochs to wait before resuming normal operation after lr has been reduced."""
32
33
 
33
34
  min_lr: float | list[float] = 0.0
@@ -57,14 +58,20 @@ class ReduceLROnPlateauConfig(LRSchedulerConfigBase):
57
58
  "Primary metric must be provided if metric is not specified."
58
59
  )
59
60
 
61
+ if isinstance(patience := self.patience, EpochsConfig):
62
+ patience = int(patience.value)
63
+
64
+ if isinstance(cooldown := self.cooldown, EpochsConfig):
65
+ cooldown = int(cooldown.value)
66
+
60
67
  lr_scheduler = ReduceLROnPlateau(
61
68
  optimizer,
62
69
  mode=metric.mode,
63
70
  factor=self.factor,
64
- patience=self.patience,
71
+ patience=patience,
65
72
  threshold=self.threshold,
66
73
  threshold_mode=self.threshold_mode,
67
- cooldown=self.cooldown,
74
+ cooldown=cooldown,
68
75
  min_lr=self.min_lr,
69
76
  eps=self.eps,
70
77
  )
@@ -0,0 +1,275 @@
1
+ from __future__ import annotations
2
+
3
+ import dataclasses
4
+ from collections import deque
5
+ from collections.abc import Callable, Generator, Mapping
6
+ from contextlib import contextmanager
7
+ from typing import Any, ClassVar
8
+
9
+ import torchmetrics
10
+ from lightning.pytorch import LightningModule
11
+ from lightning.pytorch.utilities.types import _METRIC
12
+ from lightning_utilities.core.rank_zero import rank_zero_warn
13
+ from typing_extensions import override
14
+
15
+ from ...util.typing_utils import mixin_base_type
16
+
17
+
18
+ @dataclasses.dataclass(frozen=True, kw_only=True)
19
+ class _LogContextKwargs:
20
+ __ignore_fields__: ClassVar[set[str]] = {"prefix", "disabled"}
21
+
22
+ prefix: str | None = None
23
+ disabled: bool | None = None
24
+ prog_bar: bool | None = None
25
+ logger: bool | None = None
26
+ on_step: bool | None = None
27
+ on_epoch: bool | None = None
28
+ reduce_fx: str | Callable | None = None
29
+ enable_graph: bool | None = None
30
+ sync_dist: bool | None = None
31
+ sync_dist_group: Any | None = None
32
+ add_dataloader_idx: bool | None = None
33
+ batch_size: int | None = None
34
+ rank_zero_only: bool | None = None
35
+
36
+ def to_dict(self):
37
+ d = dataclasses.asdict(self)
38
+ for field in self.__ignore_fields__:
39
+ d.pop(field, None)
40
+
41
+ # Pop all None values
42
+ for k in list(d.keys()):
43
+ if d[k] is None:
44
+ d.pop(k)
45
+
46
+ return d
47
+
48
+
49
+ class LoggerLightningModuleMixin(mixin_base_type(LightningModule)):
50
+ @override
51
+ def __init__(self, *args, **kwargs):
52
+ super().__init__(*args, **kwargs)
53
+
54
+ self._logger_prefix_stack = deque[_LogContextKwargs]()
55
+
56
+ @property
57
+ def logging_enabled(self) -> bool:
58
+ # Logging is disabled in barebones mode.
59
+ if (trainer := self._trainer) is not None and trainer.barebones:
60
+ # Warn the user once that logging is disabled in barebones mode.
61
+ if not hasattr(self, "_barebones_logging_warned"):
62
+ rank_zero_warn(
63
+ "Logging is disabled in barebones mode. "
64
+ "This is to reduce the overhead of logging in barebones mode. "
65
+ "If you want to enable logging, set `barebones=False` in the Trainer.",
66
+ )
67
+ self._barebones_logging_warned = True
68
+ return False
69
+
70
+ # If no loggers are registered, then logging is disabled.
71
+ if not self.logger:
72
+ return False
73
+
74
+ # Check if the topmost non-null context is disabled
75
+ for context in reversed(self._logger_prefix_stack):
76
+ if context.disabled is not None:
77
+ return not context.disabled
78
+
79
+ # Otherwise, logging is enabled.
80
+ return True
81
+
82
+ @contextmanager
83
+ def log_context(
84
+ self,
85
+ prefix: str | None = None,
86
+ disabled: bool | None = None,
87
+ prog_bar: bool | None = None,
88
+ logger: bool | None = None,
89
+ on_step: bool | None = None,
90
+ on_epoch: bool | None = None,
91
+ reduce_fx: str | Callable | None = None,
92
+ enable_graph: bool | None = None,
93
+ sync_dist: bool | None = None,
94
+ sync_dist_group: Any | None = None,
95
+ add_dataloader_idx: bool | None = None,
96
+ batch_size: int | None = None,
97
+ rank_zero_only: bool | None = None,
98
+ ) -> Generator[None, None, None]:
99
+ self._logger_prefix_stack.append(
100
+ _LogContextKwargs(
101
+ prefix=prefix,
102
+ disabled=disabled,
103
+ prog_bar=prog_bar,
104
+ logger=logger,
105
+ on_step=on_step,
106
+ on_epoch=on_epoch,
107
+ reduce_fx=reduce_fx,
108
+ enable_graph=enable_graph,
109
+ sync_dist=sync_dist,
110
+ sync_dist_group=sync_dist_group,
111
+ add_dataloader_idx=add_dataloader_idx,
112
+ batch_size=batch_size,
113
+ rank_zero_only=rank_zero_only,
114
+ )
115
+ )
116
+ try:
117
+ yield
118
+ finally:
119
+ _ = self._logger_prefix_stack.pop()
120
+
121
+ def _make_prefix_and_kwargs_dict(self, kwargs: _LogContextKwargs):
122
+ prefix = "".join(c.prefix for c in self._logger_prefix_stack if c.prefix)
123
+
124
+ fn_kwargs: dict[str, Any] = {}
125
+ for c in self._logger_prefix_stack:
126
+ fn_kwargs.update(c.to_dict())
127
+
128
+ fn_kwargs.update(kwargs.to_dict())
129
+ return prefix, fn_kwargs
130
+
131
+ @override
132
+ def log(
133
+ self,
134
+ name: str,
135
+ value: _METRIC,
136
+ prog_bar: bool | None = None,
137
+ logger: bool | None = None,
138
+ on_step: bool | None = None,
139
+ on_epoch: bool | None = None,
140
+ reduce_fx: str | Callable | None = None,
141
+ enable_graph: bool | None = None,
142
+ sync_dist: bool | None = None,
143
+ sync_dist_group: Any | None = None,
144
+ add_dataloader_idx: bool | None = None,
145
+ batch_size: int | None = None,
146
+ metric_attribute: str | None = None,
147
+ rank_zero_only: bool | None = None,
148
+ ) -> None:
149
+ """Log a key, value pair.
150
+
151
+ Example::
152
+
153
+ self.log('train_loss', loss)
154
+
155
+ The default behavior per hook is documented here: :ref:`extensions/logging:Automatic Logging`.
156
+
157
+ Args:
158
+ name: key to log. Must be identical across all processes if using DDP or any other distributed strategy.
159
+ value: value to log. Can be a ``float``, ``Tensor``, or a ``Metric``.
160
+ prog_bar: if ``True`` logs to the progress bar.
161
+ logger: if ``True`` logs to the logger.
162
+ on_step: if ``True`` logs at this step. The default value is determined by the hook.
163
+ See :ref:`extensions/logging:Automatic Logging` for details.
164
+ on_epoch: if ``True`` logs epoch accumulated metrics. The default value is determined by the hook.
165
+ See :ref:`extensions/logging:Automatic Logging` for details.
166
+ reduce_fx: reduction function over step values for end of epoch. :meth:`torch.mean` by default.
167
+ enable_graph: if ``True``, will not auto detach the graph.
168
+ sync_dist: if ``True``, reduces the metric across devices. Use with care as this may lead to a significant
169
+ communication overhead.
170
+ sync_dist_group: the DDP group to sync across.
171
+ add_dataloader_idx: if ``True``, appends the index of the current dataloader to
172
+ the name (when using multiple dataloaders). If False, user needs to give unique names for
173
+ each dataloader to not mix the values.
174
+ batch_size: Current batch_size. This will be directly inferred from the loaded batch,
175
+ but for some data structures you might need to explicitly provide it.
176
+ metric_attribute: To restore the metric state, Lightning requires the reference of the
177
+ :class:`torchmetrics.Metric` in your model. This is found automatically if it is a model attribute.
178
+ rank_zero_only: Tells Lightning if you are calling ``self.log`` from every process (default) or only from
179
+ rank 0. If ``True``, you won't be able to use this metric as a monitor in callbacks
180
+ (e.g., early stopping). Warning: Improper use can lead to deadlocks! See
181
+ :ref:`Advanced Logging <visualize/logging_advanced:rank_zero_only>` for more details.
182
+
183
+ """
184
+ # If logging is disabled, then do nothing.
185
+ if not self.logging_enabled:
186
+ return
187
+
188
+ prefix, fn_kwargs = self._make_prefix_and_kwargs_dict(
189
+ _LogContextKwargs(
190
+ prog_bar=prog_bar,
191
+ logger=logger,
192
+ on_step=on_step,
193
+ on_epoch=on_epoch,
194
+ reduce_fx=reduce_fx,
195
+ enable_graph=enable_graph,
196
+ sync_dist=sync_dist,
197
+ sync_dist_group=sync_dist_group,
198
+ add_dataloader_idx=add_dataloader_idx,
199
+ batch_size=batch_size,
200
+ rank_zero_only=rank_zero_only,
201
+ )
202
+ )
203
+ name = f"{prefix}{name}"
204
+ return super().log(name, value, metric_attribute=metric_attribute, **fn_kwargs)
205
+
206
+ def log_dict(
207
+ self,
208
+ dictionary: Mapping[str, _METRIC] | torchmetrics.MetricCollection,
209
+ prog_bar: bool | None = None,
210
+ logger: bool | None = None,
211
+ on_step: bool | None = None,
212
+ on_epoch: bool | None = None,
213
+ reduce_fx: str | Callable | None = None,
214
+ enable_graph: bool | None = None,
215
+ sync_dist: bool | None = None,
216
+ sync_dist_group: Any | None = None,
217
+ add_dataloader_idx: bool | None = None,
218
+ batch_size: int | None = None,
219
+ rank_zero_only: bool | None = None,
220
+ ) -> None:
221
+ """Log a dictionary of values at once.
222
+
223
+ Example::
224
+
225
+ values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n}
226
+ self.log_dict(values)
227
+
228
+ Args:
229
+ dictionary: key value pairs.
230
+ Keys must be identical across all processes if using DDP or any other distributed strategy.
231
+ The values can be a ``float``, ``Tensor``, ``Metric``, or ``MetricCollection``.
232
+ prog_bar: if ``True`` logs to the progress base.
233
+ logger: if ``True`` logs to the logger.
234
+ on_step: if ``True`` logs at this step.
235
+ ``None`` auto-logs for training_step but not validation/test_step.
236
+ The default value is determined by the hook.
237
+ See :ref:`extensions/logging:Automatic Logging` for details.
238
+ on_epoch: if ``True`` logs epoch accumulated metrics.
239
+ ``None`` auto-logs for val/test step but not ``training_step``.
240
+ The default value is determined by the hook.
241
+ See :ref:`extensions/logging:Automatic Logging` for details.
242
+ reduce_fx: reduction function over step values for end of epoch. :meth:`torch.mean` by default.
243
+ enable_graph: if ``True``, will not auto-detach the graph
244
+ sync_dist: if ``True``, reduces the metric across GPUs/TPUs. Use with care as this may lead to a significant
245
+ communication overhead.
246
+ sync_dist_group: the ddp group to sync across.
247
+ add_dataloader_idx: if ``True``, appends the index of the current dataloader to
248
+ the name (when using multiple). If ``False``, user needs to give unique names for
249
+ each dataloader to not mix values.
250
+ batch_size: Current batch size. This will be directly inferred from the loaded batch,
251
+ but some data structures might need to explicitly provide it.
252
+ rank_zero_only: Tells Lightning if you are calling ``self.log`` from every process (default) or only from
253
+ rank 0. If ``True``, you won't be able to use this metric as a monitor in callbacks
254
+ (e.g., early stopping). Warning: Improper use can lead to deadlocks! See
255
+ :ref:`Advanced Logging <visualize/logging_advanced:rank_zero_only>` for more details.
256
+
257
+ """
258
+
259
+ _, fn_kwargs = self._make_prefix_and_kwargs_dict(
260
+ _LogContextKwargs(
261
+ prog_bar=prog_bar,
262
+ logger=logger,
263
+ on_step=on_step,
264
+ on_epoch=on_epoch,
265
+ reduce_fx=reduce_fx,
266
+ enable_graph=enable_graph,
267
+ sync_dist=sync_dist,
268
+ sync_dist_group=sync_dist_group,
269
+ add_dataloader_idx=add_dataloader_idx,
270
+ batch_size=batch_size,
271
+ rank_zero_only=rank_zero_only,
272
+ )
273
+ )
274
+ # NOTE: Prefix will be handled by the individual log calls.
275
+ return super().log_dict(dictionary, **fn_kwargs)
@@ -1,187 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import copy
4
- import dataclasses
5
- from collections import deque
6
- from collections.abc import Callable, Generator
7
- from contextlib import contextmanager
8
- from typing import Any, ClassVar
9
-
10
- from lightning.pytorch import LightningModule
11
- from lightning.pytorch.utilities.types import _METRIC
12
- from lightning_utilities.core.rank_zero import rank_zero_warn
13
- from typing_extensions import Self, override
14
-
15
- from ...util.typing_utils import mixin_base_type
16
-
17
-
18
- @dataclasses.dataclass(frozen=True, kw_only=True)
19
- class _LogContextKwargs:
20
- __ignore_fields__: ClassVar[set[str]] = {"prefix", "disabled"}
21
-
22
- prefix: str | None = None
23
- disabled: bool | None = None
24
- prog_bar: bool | None = None
25
- logger: bool | None = None
26
- on_step: bool | None = None
27
- on_epoch: bool | None = None
28
- reduce_fx: str | Callable | None = None
29
- enable_graph: bool | None = None
30
- sync_dist: bool | None = None
31
- sync_dist_group: Any | None = None
32
- add_dataloader_idx: bool | None = None
33
- batch_size: int | None = None
34
- rank_zero_only: bool | None = None
35
-
36
- def copy_from(self, other: Self):
37
- kwargs = copy.deepcopy(self)
38
-
39
- # Copy over all the not-None values from the other object
40
- updates = {}
41
- for field in dataclasses.fields(self):
42
- # Ignore disabled fields
43
- if field.name in self.__ignore_fields__:
44
- continue
45
-
46
- if (value := getattr(other, field.name, None)) is None:
47
- continue
48
- # setattr(kwargs, field.name, value)
49
- updates[field.name] = value
50
-
51
- return dataclasses.replace(kwargs, **updates)
52
-
53
- def to_dict(self):
54
- d = dataclasses.asdict(self)
55
- for field in self.__ignore_fields__:
56
- d.pop(field, None)
57
-
58
- # Pop all None values
59
- for k in list(d.keys()):
60
- if d[k] is None:
61
- d.pop(k)
62
-
63
- return d
64
-
65
-
66
- class LoggerLightningModuleMixin(mixin_base_type(LightningModule)):
67
- @override
68
- def __init__(self, *args, **kwargs):
69
- super().__init__(*args, **kwargs)
70
-
71
- self._logger_prefix_stack = deque[_LogContextKwargs]()
72
-
73
- @property
74
- def logging_enabled(self) -> bool:
75
- # Logging is disabled in barebones mode.
76
- if (trainer := self._trainer) is not None and trainer.barebones:
77
- # Warn the user once that logging is disabled in barebones mode.
78
- if not hasattr(self, "_barebones_logging_warned"):
79
- rank_zero_warn(
80
- "Logging is disabled in barebones mode. "
81
- "This is to reduce the overhead of logging in barebones mode. "
82
- "If you want to enable logging, set `barebones=False` in the Trainer.",
83
- )
84
- self._barebones_logging_warned = True
85
- return False
86
-
87
- # If no loggers are registered, then logging is disabled.
88
- if not self.logger:
89
- return False
90
-
91
- # Check if the topmost non-null context is disabled
92
- for context in reversed(self._logger_prefix_stack):
93
- if context.disabled is not None:
94
- return not context.disabled
95
-
96
- # Otherwise, logging is enabled.
97
- return True
98
-
99
- @contextmanager
100
- def log_context(
101
- self,
102
- prefix: str | None = None,
103
- disabled: bool | None = None,
104
- prog_bar: bool | None = None,
105
- logger: bool | None = None,
106
- on_step: bool | None = None,
107
- on_epoch: bool | None = None,
108
- reduce_fx: str | Callable | None = None,
109
- enable_graph: bool | None = None,
110
- sync_dist: bool | None = None,
111
- sync_dist_group: Any | None = None,
112
- add_dataloader_idx: bool | None = None,
113
- batch_size: int | None = None,
114
- rank_zero_only: bool | None = None,
115
- ) -> Generator[None, None, None]:
116
- self._logger_prefix_stack.append(
117
- _LogContextKwargs(
118
- prefix=prefix,
119
- disabled=disabled,
120
- prog_bar=prog_bar,
121
- logger=logger,
122
- on_step=on_step,
123
- on_epoch=on_epoch,
124
- reduce_fx=reduce_fx,
125
- enable_graph=enable_graph,
126
- sync_dist=sync_dist,
127
- sync_dist_group=sync_dist_group,
128
- add_dataloader_idx=add_dataloader_idx,
129
- batch_size=batch_size,
130
- rank_zero_only=rank_zero_only,
131
- )
132
- )
133
- try:
134
- yield
135
- finally:
136
- _ = self._logger_prefix_stack.pop()
137
-
138
- @override
139
- def log(
140
- self,
141
- name: str,
142
- value: _METRIC,
143
- prog_bar: bool | None = None,
144
- logger: bool | None = None,
145
- on_step: bool | None = None,
146
- on_epoch: bool | None = None,
147
- reduce_fx: str | Callable | None = None,
148
- enable_graph: bool | None = None,
149
- sync_dist: bool | None = None,
150
- sync_dist_group: Any | None = None,
151
- add_dataloader_idx: bool | None = None,
152
- batch_size: int | None = None,
153
- metric_attribute: str | None = None,
154
- rank_zero_only: bool | None = None,
155
- ) -> None:
156
- # If logging is disabled, then do nothing.
157
- if not self.logging_enabled:
158
- return
159
-
160
- # join all prefixes
161
- prefix = "".join(c.prefix for c in self._logger_prefix_stack if c.prefix)
162
- name = f"{prefix}{name}"
163
-
164
- fn_kwargs = _LogContextKwargs()
165
- for c in self._logger_prefix_stack:
166
- fn_kwargs = fn_kwargs.copy_from(c)
167
- fn_kwargs = fn_kwargs.copy_from(
168
- _LogContextKwargs(
169
- prog_bar=prog_bar,
170
- logger=logger,
171
- on_step=on_step,
172
- on_epoch=on_epoch,
173
- reduce_fx=reduce_fx,
174
- enable_graph=enable_graph,
175
- sync_dist=sync_dist,
176
- sync_dist_group=sync_dist_group,
177
- add_dataloader_idx=add_dataloader_idx,
178
- batch_size=batch_size,
179
- rank_zero_only=rank_zero_only,
180
- )
181
- )
182
- return super().log(
183
- name,
184
- value,
185
- metric_attribute=metric_attribute,
186
- **fn_kwargs.to_dict(),
187
- )
File without changes