nshtrainer 0.14.1__py3-none-any.whl → 0.14.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,2 +1 @@
1
- from .flops import MEASURE_FLOPS_AVAILABLE as MEASURE_FLOPS_AVAILABLE
2
- from .flops import measure_flops as measure_flops
1
+ from lightning.fabric.utilities.throughput import measure_flops as measure_flops
nshtrainer/runner.py CHANGED
@@ -3,10 +3,9 @@ import functools
3
3
  from collections.abc import Callable, Iterable, Mapping, Sequence
4
4
  from typing import Generic
5
5
 
6
- from nshrunner import RunInfo
6
+ from nshrunner import RunInfo, Snapshot
7
7
  from nshrunner import Runner as _Runner
8
8
  from nshrunner._submit import screen
9
- from nshrunner.snapshot import SnapshotArgType
10
9
  from typing_extensions import TypeVar, TypeVarTuple, Unpack, override
11
10
 
12
11
  from .model.config import BaseConfig
@@ -93,7 +92,7 @@ class Runner(
93
92
  options: screen.ScreenJobKwargs = {},
94
93
  n_batches: int = 1,
95
94
  *,
96
- snapshot: SnapshotArgType,
95
+ snapshot: Snapshot,
97
96
  setup_commands: Sequence[str] | None = None,
98
97
  env: Mapping[str, str] | None = None,
99
98
  transforms: list[
@@ -1,5 +1,6 @@
1
1
  import logging
2
2
  import os
3
+ import platform
3
4
  import re
4
5
  import signal
5
6
  import subprocess
@@ -25,6 +26,7 @@ log = logging.getLogger(__name__)
25
26
 
26
27
  _SIGNUM = int | signal.Signals
27
28
  _HANDLER: TypeAlias = Callable[[_SIGNUM, FrameType], Any] | int | signal.Handlers | None
29
+ _IS_WINDOWS = platform.system() == "Windows"
28
30
 
29
31
 
30
32
  def _resolve_requeue_signals():
@@ -57,7 +59,7 @@ class _SignalConnector(_LightningSignalConnector):
57
59
  handlers: list[_HANDLER],
58
60
  replace_existing: bool = False,
59
61
  ):
60
- if self._is_on_windows():
62
+ if _IS_WINDOWS:
61
63
  log.info(
62
64
  f"Signal {signum.name} has no handlers or is not supported on Windows."
63
65
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nshtrainer
3
- Version: 0.14.1
3
+ Version: 0.14.4
4
4
  Summary:
5
5
  Author: Nima Shoghi
6
6
  Author-email: nimashoghi@gmail.com
@@ -2,10 +2,7 @@ nshtrainer/__init__.py,sha256=39loiLLXbaGiozEsAn8mPHopxaPsek8JsgR9DD2gxtY,583
2
2
  nshtrainer/_checkpoint/loader.py,sha256=DSaNR8194kWon4O1svslNsCcN_8vlyLbF0LNCPfUpzI,13789
3
3
  nshtrainer/_checkpoint/metadata.py,sha256=onmetLp5eKbA86abq1PTkwAOO7bWj7Pa1EGUjl2TEjQ,5153
4
4
  nshtrainer/_checkpoint/saver.py,sha256=DkbCH0YeOJ71m32vAARiQdGBf0hvwwdoAV8LOFGy-0Y,1428
5
- nshtrainer/_experimental/__init__.py,sha256=2tQIcrWT8U8no_AeBTYnozaTmxN40kuAJdGQ4b-PoWM,120
6
- nshtrainer/_experimental/flops/__init__.py,sha256=edo9Ez3LlrnxkNRX9W6YBhPkRPKYGLpkpnl5gx7sEX8,1550
7
- nshtrainer/_experimental/flops/flop_counter.py,sha256=-sL0Fy6poXa__hyzUMdZScjPULp4coQELQpPU6p6dXU,25736
8
- nshtrainer/_experimental/flops/module_tracker.py,sha256=bUL-IRTd0aF_DwmXkZjHZAA31p4ZEhyqhc26XWKQUUY,4922
5
+ nshtrainer/_experimental/__init__.py,sha256=pEXPyI184UuDHvfh4p9Kg9nQZQZI41e4_HvNd4BK-yg,81
9
6
  nshtrainer/callbacks/__init__.py,sha256=4qocBDzQbLLhhbIEfvbA3SQB_Dy9ZJH7keMwPay-ZS8,2359
10
7
  nshtrainer/callbacks/_throughput_monitor_callback.py,sha256=aJo_11rc4lo0IYOd-kHmPDtzdC4ctgXyRudkRJqH4m4,23184
11
8
  nshtrainer/callbacks/actsave.py,sha256=qbnaKts4_dvjPeAaPtv7Ds12_vEWzaHUfg_--49NB9I,4041
@@ -73,12 +70,12 @@ nshtrainer/nn/module_dict.py,sha256=NOY0B6WDTnktyWH4GthsprMQo0bpehC-hCq9SfD8paE,
73
70
  nshtrainer/nn/module_list.py,sha256=fb2u5Rqdjff8Pekyr9hkCPkBorQ-fldzzFAjsgWAm30,1719
74
71
  nshtrainer/nn/nonlinearity.py,sha256=owtU4kh4G98psD0axOJWVfBhm-OtJVgFM-TXSHmbNPU,3625
75
72
  nshtrainer/optimizer.py,sha256=kuJEA1pvB3y1FcsfhAoOJujVqEZqFHlmYO8GW6JeA1g,1527
76
- nshtrainer/runner.py,sha256=6qfE5FBONzD79kVHuWYKEvK0J_Qi5dMBbHQhRMmnIhE,3649
73
+ nshtrainer/runner.py,sha256=USAjrExHkN5oVNVunsoPnLxfQrEHSaa54S3RipOe544,3605
77
74
  nshtrainer/scripts/find_packages.py,sha256=FbdlfmAefttFSMfaT0A46a-oHLP_ioaQKihwBfBeWeA,1467
78
75
  nshtrainer/trainer/__init__.py,sha256=P2rmr8oBVTHk-HJHYPcUwWqDEArMbPR4_rPpATbWK3E,40
79
76
  nshtrainer/trainer/_runtime_callback.py,sha256=sd2cUdRJG-UCdQr9ruZvEYpNGNF1t2W2fuxwwVlQD9E,4164
80
77
  nshtrainer/trainer/checkpoint_connector.py,sha256=F2tkHogbMAa5U7335sm77sZBkjEDa5v46XbJCH9Mg6c,2167
81
- nshtrainer/trainer/signal_connector.py,sha256=llwc8pdKAWxREFpjdi14Bpy8rGVMEJsmJx_s2p4gI8E,10689
78
+ nshtrainer/trainer/signal_connector.py,sha256=2EzkVktlasl8PgWAKNLDZRUMY__gRlDy1HdinAU-tfU,10740
82
79
  nshtrainer/trainer/trainer.py,sha256=M97phnALfG18VxkMLoDr5AKFf4UaPBdc6S2BghdBtas,17103
83
80
  nshtrainer/util/_environment_info.py,sha256=yPtAbgjCY4tkvh5wp9sjNsF0Z45TYwzEAM_N2_b5BbY,23123
84
81
  nshtrainer/util/_useful_types.py,sha256=dwZokFkIe7M5i2GR3nQ9A1lhGw06DMAFfH5atyquqSA,8000
@@ -87,6 +84,6 @@ nshtrainer/util/seed.py,sha256=Or2wMPsnQxfnZ2xfBiyMcHFIUt3tGTNeMMyOEanCkqs,280
87
84
  nshtrainer/util/slurm.py,sha256=rofIU26z3SdL79SF45tNez6juou1cyDLz07oXEZb9Hg,1566
88
85
  nshtrainer/util/typed.py,sha256=NGuDkDzFlc1fAoaXjOFZVbmj0mRFjsQi1E_hPa7Bn5U,128
89
86
  nshtrainer/util/typing_utils.py,sha256=8ptjSSLZxlmy4FY6lzzkoGoF5fGNClo8-B_c0XHQaNU,385
90
- nshtrainer-0.14.1.dist-info/METADATA,sha256=V7kssNBEV-JqILCZbRujHMs4ORomy_hWU4vRK0Je2GU,860
91
- nshtrainer-0.14.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
92
- nshtrainer-0.14.1.dist-info/RECORD,,
87
+ nshtrainer-0.14.4.dist-info/METADATA,sha256=Xg7ON7o-nR8N-4C8E59k2jsvIaleKPDas5VpdTVyr6s,860
88
+ nshtrainer-0.14.4.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
89
+ nshtrainer-0.14.4.dist-info/RECORD,,
@@ -1,48 +0,0 @@
1
- from collections.abc import Callable
2
-
3
- import torch
4
- from lightning.fabric.utilities.imports import _TORCH_GREATER_EQUAL_2_1
5
-
6
- MEASURE_FLOPS_AVAILABLE = _TORCH_GREATER_EQUAL_2_1
7
-
8
-
9
- def measure_flops(
10
- forward_fn: Callable[[], torch.Tensor],
11
- loss_fn: Callable[[torch.Tensor], torch.Tensor] | None = None,
12
- display: bool = True,
13
- ) -> int:
14
- """Utility to compute the total number of FLOPs used by a module during training or during inference.
15
-
16
- It's recommended to create a meta-device model for this:
17
-
18
- Example::
19
-
20
- with torch.device("meta"):
21
- model = MyModel()
22
- x = torch.randn(2, 32)
23
-
24
- model_fwd = lambda: model(x)
25
- fwd_flops = measure_flops(model, model_fwd)
26
-
27
- model_loss = lambda y: y.sum()
28
- fwd_and_bwd_flops = measure_flops(model, model_fwd, model_loss)
29
-
30
- Args:
31
- model: The model whose FLOPs should be measured.
32
- forward_fn: A function that runs ``forward`` on the model and returns the result.
33
- loss_fn: A function that computes the loss given the ``forward_fn`` output. If provided, the loss and `backward`
34
- FLOPs will be included in the result.
35
-
36
- """
37
- if not MEASURE_FLOPS_AVAILABLE:
38
- raise ImportError("`measure_flops` requires PyTorch >= 2.1.")
39
-
40
- from .flop_counter import FlopCounterMode
41
-
42
- flop_counter = FlopCounterMode(display=display)
43
- with flop_counter:
44
- if loss_fn is None:
45
- forward_fn()
46
- else:
47
- loss_fn(forward_fn()).backward()
48
- return flop_counter.get_total_flops()
@@ -1,787 +0,0 @@
1
- # type: ignore
2
- import warnings
3
- from collections import defaultdict
4
- from functools import wraps
5
- from math import prod
6
- from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
7
-
8
- import torch
9
- from torch._decomp import register_decomposition
10
- from torch.utils._python_dispatch import TorchDispatchMode
11
- from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
12
-
13
- from .module_tracker import ModuleTracker
14
-
15
- __all__ = ["FlopCounterMode", "register_flop_formula"]
16
-
17
- aten = torch.ops.aten
18
-
19
-
20
- def get_shape(i):
21
- if isinstance(i, torch.Tensor):
22
- return i.shape
23
- return i
24
-
25
-
26
- flop_registry: Dict[Any, Any] = {}
27
-
28
-
29
- def shape_wrapper(f):
30
- @wraps(f)
31
- def nf(*args, out_val=None, **kwargs):
32
- args, kwargs, out_shape = tree_map(get_shape, (args, kwargs, out_val))
33
- return f(*args, out_shape=out_shape, **kwargs)
34
-
35
- return nf
36
-
37
-
38
- def register_flop_formula(targets, get_raw=False):
39
- def register_fun(flop_formula):
40
- if not get_raw:
41
- flop_formula = shape_wrapper(flop_formula)
42
- register_decomposition(targets, registry=flop_registry, unsafe=True)(
43
- flop_formula
44
- )
45
- return flop_formula
46
-
47
- return register_fun
48
-
49
-
50
- @register_flop_formula(aten.mm)
51
- def mm_flop(a_shape, b_shape, *args, out_shape=None, **kwargs) -> int:
52
- """Count flops for matmul."""
53
- # Inputs should be a list of length 2.
54
- # Inputs contains the shapes of two matrices.
55
- m, k = a_shape
56
- k2, n = b_shape
57
- assert k == k2
58
- # NB(chilli): Should be 2 * k - 1 technically for FLOPs.
59
- return m * n * 2 * k
60
-
61
-
62
- @register_flop_formula(aten.addmm)
63
- def addmm_flop(self_shape, a_shape, b_shape, out_shape=None, **kwargs) -> int:
64
- """Count flops for addmm."""
65
- return mm_flop(a_shape, b_shape)
66
-
67
-
68
- @register_flop_formula(aten.bmm)
69
- def bmm_flop(a_shape, b_shape, out_shape=None, **kwargs) -> int:
70
- """Count flops for the bmm operation."""
71
- # Inputs should be a list of length 2.
72
- # Inputs contains the shapes of two tensor.
73
- b, m, k = a_shape
74
- b2, k2, n = b_shape
75
- assert b == b2
76
- assert k == k2
77
- # NB(chilli): Should be 2 * k - 1 technically for FLOPs.
78
- flop = b * m * n * 2 * k
79
- return flop
80
-
81
-
82
- @register_flop_formula(aten.baddbmm)
83
- def baddbmm_flop(self_shape, a_shape, b_shape, out_shape=None, **kwargs) -> int:
84
- """Count flops for the baddbmm operation."""
85
- # Inputs should be a list of length 3.
86
- # Inputs contains the shapes of three tensors.
87
- return bmm_flop(a_shape, b_shape)
88
-
89
-
90
- def conv_flop_count(
91
- x_shape: List[int],
92
- w_shape: List[int],
93
- out_shape: List[int],
94
- transposed: bool = False,
95
- ) -> int:
96
- """Count flops for convolution.
97
-
98
- Note only multiplication is
99
- counted. Computation for bias are ignored.
100
- Flops for a transposed convolution are calculated as
101
- flops = (x_shape[2:] * prod(w_shape) * batch_size).
102
- Args:
103
- x_shape (list(int)): The input shape before convolution.
104
- w_shape (list(int)): The filter shape.
105
- out_shape (list(int)): The output shape after convolution.
106
- transposed (bool): is the convolution transposed
107
- Returns:
108
- int: the number of flops
109
- """
110
-
111
- batch_size = x_shape[0]
112
- conv_shape = (x_shape if transposed else out_shape)[2:]
113
- c_out, c_in, *filter_size = w_shape
114
-
115
- """
116
- General idea here is that for a regular conv, for each point in the output
117
- spatial dimension we convolve the filter with something (hence
118
- `prod(conv_shape) * prod(filter_size)` ops). Then, this gets multiplied by
119
- 1. batch_size, 2. the cross product of input and weight channels.
120
-
121
- For the transpose, it's not each point in the *output* spatial dimension but
122
- each point in the *input* spatial dimension.
123
- """
124
- # NB(chilli): I don't think this properly accounts for padding :think:
125
- # NB(chilli): Should be 2 * c_in - 1 technically for FLOPs.
126
- flop = prod(conv_shape) * prod(filter_size) * batch_size * c_out * c_in * 2
127
- return flop
128
-
129
-
130
- @register_flop_formula([aten.convolution, aten._convolution])
131
- def conv_flop(
132
- x_shape,
133
- w_shape,
134
- _bias,
135
- _stride,
136
- _padding,
137
- _dilation,
138
- transposed,
139
- *args,
140
- out_shape=None,
141
- **kwargs,
142
- ) -> int:
143
- """Count flops for convolution."""
144
- return conv_flop_count(x_shape, w_shape, out_shape, transposed=transposed)
145
-
146
-
147
- @register_flop_formula(aten.convolution_backward)
148
- def conv_backward_flop(
149
- grad_out_shape,
150
- x_shape,
151
- w_shape,
152
- _bias,
153
- _stride,
154
- _padding,
155
- _dilation,
156
- transposed,
157
- _output_padding,
158
- _groups,
159
- output_mask,
160
- out_shape,
161
- ) -> int:
162
- def t(shape):
163
- return [shape[1], shape[0]] + list(shape[2:])
164
-
165
- flop_count = 0
166
-
167
- """
168
- Let's say we have a regular 1D conv
169
- {A, B, C} [inp]
170
- {i, j} [weight]
171
- => (conv)
172
- {Ai + Bj, Bi + Cj} [out]
173
-
174
- And as a reminder, the transposed conv of the above is
175
- => {Ai, Aj + Bi, Bj + Ci, Cj} [transposed conv out]
176
-
177
- For the backwards of conv, we now have
178
- {D, E} [grad_out]
179
- {A, B, C} [inp]
180
- {i, j} [weight]
181
-
182
- # grad_inp as conv_transpose(grad_out, weight)
183
- Let's first compute grad_inp. To do so, we can simply look at all the
184
- multiplications that each element of inp is involved in. For example, A is
185
- only involved in the first element of the output (and thus only depends upon
186
- D in grad_out), and C is only involved in the last element of the output
187
- (and thus only depends upon E in grad_out)
188
-
189
- {Di, Dj + Ei, Ej} [grad_inp]
190
-
191
- Note that this corresponds to the below conv_transpose. This gives us the
192
- output_mask[0] branch, which is grad_inp.
193
-
194
- {D, E} [inp (grad_out)]
195
- {i, j} [weight]
196
- => (conv_transpose)
197
- {Di, Dj + Ei, Ej} [out (grad_inp)]
198
-
199
- I leave the fact that grad_inp for a transposed conv is just conv(grad_out,
200
- weight) as an exercise for the reader.
201
-
202
- # grad_weight as conv(inp, grad_out)
203
- To compute grad_weight, we again look at the terms in the output, which as
204
- a reminder is:
205
- => {Ai + Bj, Bi + Cj} [out]
206
- => {D, E} [grad_out]
207
- If we manually compute the gradient for the weights, we see it's
208
- {AD + BE, BD + CE} [grad_weight]
209
-
210
- This corresponds to the below conv
211
- {A, B, C} [inp]
212
- {D, E} [weight (grad_out)]
213
- => (conv)
214
- {AD + BE, BD + CE} [out (grad_weight)]
215
-
216
- # grad_weight of transposed conv as conv(grad_out, inp)
217
- As a reminder, the terms of the output of a transposed conv are:
218
- => {Ai, Aj + Bi, Bj + Ci, Cj} [transposed conv out]
219
- => {D, E, F, G} [grad_out]
220
-
221
- Manually computing the gradient for the weights, we see it's
222
- {AD + BE + CF, AE + BF + CG} [grad_weight]
223
-
224
- This corresponds to the below conv
225
- {D, E, F, G} [inp (grad_out)]
226
- {A, B, C} [weight (inp)]
227
- => (conv)
228
- {AD + BE + CF, AE + BF + CG} [out (grad_weight)]
229
-
230
- For the full backwards formula, there are also some details involving
231
- transpose of the batch/channel dimensions and groups, but I skip those for
232
- the sake of brevity (and they're pretty similar to matmul backwards)
233
-
234
- Check [conv backwards decomposition as conv forwards]
235
- """
236
- # grad_inp as conv_transpose(grad_out, weight)
237
- if output_mask[0]:
238
- grad_input_shape = get_shape(out_shape[0])
239
- flop_count += conv_flop_count(
240
- grad_out_shape, w_shape, grad_input_shape, not transposed
241
- )
242
-
243
- if output_mask[1]:
244
- grad_weight_shape = get_shape(out_shape[1])
245
- if transposed:
246
- # grad_weight of transposed conv as conv(grad_out, inp)
247
- flop_count += conv_flop_count(
248
- t(grad_out_shape), t(x_shape), t(grad_weight_shape), transposed=False
249
- )
250
- else:
251
- # grad_weight as conv(inp, grad_out)
252
- flop_count += conv_flop_count(
253
- t(x_shape), t(grad_out_shape), t(grad_weight_shape), transposed=False
254
- )
255
-
256
- return flop_count
257
-
258
-
259
- def sdpa_flop_count(query_shape, key_shape, value_shape):
260
- """
261
- Count flops for self-attention.
262
-
263
- NB: We can assume that value_shape == key_shape
264
- """
265
- b, h, s_q, d_q = query_shape
266
- _b2, _h2, s_k, _d2 = key_shape
267
- _b3, _h3, _s3, d_v = value_shape
268
- assert (
269
- b == _b2 == _b3 and h == _h2 == _h3 and d_q == _d2 and s_k == _s3 and d_q == _d2
270
- )
271
- total_flops = 0
272
- # q: [b, h, s_q, d_q] @ k: [b, h, d_q, s_k] -> scores: [b, h, s_q, s_k]
273
- total_flops += bmm_flop((b * h, s_q, d_q), (b * h, d_q, s_k))
274
- # scores: [b, h, s_q, s_k] @ v: [b, h, s_k, d_v] -> out: [b, h, s_q, d_v]
275
- total_flops += bmm_flop((b * h, s_q, s_k), (b * h, s_k, d_v))
276
- return total_flops
277
-
278
-
279
- @register_flop_formula(
280
- [
281
- aten._scaled_dot_product_efficient_attention,
282
- aten._scaled_dot_product_flash_attention,
283
- ]
284
- )
285
- def sdpa_flop(
286
- query_shape, key_shape, value_shape, *args, out_shape=None, **kwargs
287
- ) -> int:
288
- """Count flops for self-attention."""
289
- # NB: We aren't accounting for causal attention here
290
- return sdpa_flop_count(query_shape, key_shape, value_shape)
291
-
292
-
293
- def _unpack_flash_attention_nested_shapes(
294
- *,
295
- query,
296
- key,
297
- value,
298
- grad_out=None,
299
- cum_seq_q,
300
- cum_seq_k,
301
- max_q,
302
- max_k,
303
- ) -> Iterator[
304
- Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Optional[Tuple[int, ...]]]
305
- ]:
306
- """
307
- Given inputs to a flash_attention_(forward|backward) kernel, this will handle behavior for
308
- NestedTensor inputs by effectively unbinding the NestedTensor and yielding the shapes for
309
- each batch element.
310
-
311
- In the case that this isn't a NestedTensor kernel, then it just yields the original shapes.
312
- """
313
- if cum_seq_q is not None:
314
- # This means we should be dealing with a Nested Jagged Tensor query.
315
- # The inputs will have shape (sum(sequence len), heads, dimension)
316
- # In comparison, non-Nested inputs have shape (batch, heads, sequence len, dimension)
317
- # To deal with this, we convert to a shape of (batch, heads, max_seq_len, dimension)
318
- # So the flops calculation in this case is an overestimate of the actual flops.
319
- assert len(key.shape) == 3
320
- assert len(value.shape) == 3
321
- assert grad_out is None or grad_out.shape == query.shape
322
- _, h_q, d_q = query.shape
323
- _, h_k, d_k = key.shape
324
- _, h_v, d_v = value.shape
325
- assert cum_seq_q is not None
326
- assert cum_seq_k is not None
327
- assert cum_seq_q.shape == cum_seq_k.shape
328
- seq_q_lengths = (cum_seq_q[1:] - cum_seq_q[:-1]).tolist()
329
- seq_k_lengths = (cum_seq_k[1:] - cum_seq_k[:-1]).tolist()
330
- for seq_q_len, seq_k_len in zip(seq_q_lengths, seq_k_lengths):
331
- new_query_shape = (1, h_q, seq_q_len, d_q)
332
- new_key_shape = (1, h_k, seq_k_len, d_k)
333
- new_value_shape = (1, h_v, seq_k_len, d_v)
334
- new_grad_out_shape = new_query_shape if grad_out is not None else None
335
- yield new_query_shape, new_key_shape, new_value_shape, new_grad_out_shape
336
- return
337
-
338
- yield (
339
- query.shape,
340
- key.shape,
341
- value.shape,
342
- grad_out.shape if grad_out is not None else None,
343
- )
344
-
345
-
346
- def _unpack_efficient_attention_nested_shapes(
347
- *,
348
- query,
349
- key,
350
- value,
351
- grad_out=None,
352
- cu_seqlens_q,
353
- cu_seqlens_k,
354
- max_seqlen_q,
355
- max_seqlen_k,
356
- ) -> Iterator[
357
- Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Optional[Tuple[int, ...]]]
358
- ]:
359
- """
360
- Given inputs to a efficient_attention_(forward|backward) kernel, this will handle behavior for
361
- NestedTensor inputs by effectively unbinding the NestedTensor and yielding the shapes for
362
- each batch element.
363
-
364
- In the case that this isn't a NestedTensor kernel, then it just yields the original shapes.
365
- """
366
- if cu_seqlens_q is not None:
367
- # Unlike flash_attention_forward, we get a 4D tensor instead of a 3D tensor for efficient attention.
368
- #
369
- # This means we should be dealing with a Nested Jagged Tensor query.
370
- # The inputs will have shape (sum(sequence len), heads, dimension)
371
- # In comparison, non-Nested inputs have shape (batch, heads, sequence len, dimension)
372
- # To deal with this, we convert to a shape of (batch, heads, max_seq_len, dimension)
373
- # So the flops calculation in this case is an overestimate of the actual flops.
374
- assert len(key.shape) == 4
375
- assert len(value.shape) == 4
376
- assert grad_out is None or grad_out.shape == query.shape
377
- _, _, h_q, d_q = query.shape
378
- _, _, h_k, d_k = key.shape
379
- _, _, h_v, d_v = value.shape
380
- assert cu_seqlens_q is not None
381
- assert cu_seqlens_k is not None
382
- assert cu_seqlens_q.shape == cu_seqlens_k.shape
383
- seqlens_q = (cu_seqlens_q[1:] - cu_seqlens_q[:-1]).tolist()
384
- seqlens_k = (cu_seqlens_k[1:] - cu_seqlens_k[:-1]).tolist()
385
- for len_q, len_k in zip(seqlens_q, seqlens_k):
386
- new_query_shape = (1, h_q, len_q, d_q)
387
- new_key_shape = (1, h_k, len_k, d_k)
388
- new_value_shape = (1, h_v, len_k, d_v)
389
- new_grad_out_shape = new_query_shape if grad_out is not None else None
390
- yield new_query_shape, new_key_shape, new_value_shape, new_grad_out_shape
391
- return
392
-
393
- yield (
394
- query.shape,
395
- key.shape,
396
- value.shape,
397
- grad_out.shape if grad_out is not None else None,
398
- )
399
-
400
-
401
- @register_flop_formula(aten._flash_attention_forward, get_raw=True)
402
- def _flash_attention_forward_flop(
403
- query,
404
- key,
405
- value,
406
- cum_seq_q,
407
- cum_seq_k,
408
- max_q,
409
- max_k,
410
- *args,
411
- out_shape=None,
412
- **kwargs,
413
- ) -> int:
414
- """Count flops for self-attention."""
415
- # NB: We aren't accounting for causal attention here
416
- # in case this is a nested tensor, we unpack the individual batch elements
417
- # and then sum the flops per batch element
418
- sizes = _unpack_flash_attention_nested_shapes(
419
- query=query,
420
- key=key,
421
- value=value,
422
- cum_seq_q=cum_seq_q,
423
- cum_seq_k=cum_seq_k,
424
- max_q=max_q,
425
- max_k=max_k,
426
- )
427
- return sum(
428
- sdpa_flop_count(query_shape, key_shape, value_shape)
429
- for query_shape, key_shape, value_shape, _ in sizes
430
- )
431
-
432
-
433
- @register_flop_formula(aten._efficient_attention_forward, get_raw=True)
434
- def _efficient_attention_forward_flop(
435
- query,
436
- key,
437
- value,
438
- bias,
439
- cu_seqlens_q,
440
- cu_seqlens_k,
441
- max_seqlen_q,
442
- max_seqlen_k,
443
- *args,
444
- **kwargs,
445
- ) -> int:
446
- """Count flops for self-attention."""
447
- # NB: We aren't accounting for causal attention here
448
- # in case this is a nested tensor, we unpack the individual batch elements
449
- # and then sum the flops per batch element
450
- sizes = _unpack_efficient_attention_nested_shapes(
451
- query=query,
452
- key=key,
453
- value=value,
454
- cu_seqlens_q=cu_seqlens_q,
455
- cu_seqlens_k=cu_seqlens_k,
456
- max_seqlen_q=max_seqlen_q,
457
- max_seqlen_k=max_seqlen_k,
458
- )
459
- return sum(
460
- sdpa_flop_count(query_shape, key_shape, value_shape)
461
- for query_shape, key_shape, value_shape, _ in sizes
462
- )
463
-
464
-
465
- def sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape):
466
- total_flops = 0
467
- b, h, s_q, d_q = query_shape
468
- _b2, _h2, s_k, _d2 = key_shape
469
- _b3, _h3, _s3, d_v = value_shape
470
- _b4, _h4, _s4, _d4 = grad_out_shape
471
- assert b == _b2 == _b3 == _b4 and h == _h2 == _h3 == _h4 and d_q == _d2
472
- assert d_v == _d4 and s_k == _s3 and s_q == _s4
473
- total_flops = 0
474
- # Step 1: We recompute the scores matrix.
475
- # q: [b, h, s_q, d_q] @ k: [b, h, d_q, s_k] -> scores: [b, h, s_q, s_k]
476
- total_flops += bmm_flop((b * h, s_q, d_q), (b * h, d_q, s_k))
477
-
478
- # Step 2: We propagate the gradients through the score @ v operation.
479
- # gradOut: [b, h, s_q, d_v] @ v: [b, h, d_v, s_k] -> gradScores: [b, h, s_q, s_k]
480
- total_flops += bmm_flop((b * h, s_q, d_v), (b * h, d_v, s_k))
481
- # scores: [b, h, s_k, s_q] @ gradOut: [b, h, s_q, d_v] -> gradV: [b, h, s_k, d_v]
482
- total_flops += bmm_flop((b * h, s_k, s_q), (b * h, s_q, d_v))
483
-
484
- # Step 3: We propagate th gradients through the k @ v operation
485
- # gradScores: [b, h, s_q, s_k] @ k: [b, h, s_k, d_q] -> gradQ: [b, h, s_q, d_q]
486
- total_flops += bmm_flop((b * h, s_q, s_k), (b * h, s_k, d_q))
487
- # q: [b, h, d_q, s_q] @ gradScores: [b, h, s_q, s_k] -> gradK: [b, h, d_q, s_k]
488
- total_flops += bmm_flop((b * h, d_q, s_q), (b * h, s_q, s_k))
489
- return total_flops
490
-
491
-
492
- @register_flop_formula(
493
- [
494
- aten._scaled_dot_product_efficient_attention_backward,
495
- aten._scaled_dot_product_flash_attention_backward,
496
- ]
497
- )
498
- def sdpa_backward_flop(
499
- grad_out_shape, query_shape, key_shape, value_shape, *args, out_shape=None, **kwargs
500
- ) -> int:
501
- """Count flops for self-attention backward."""
502
- return sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape)
503
-
504
-
505
- @register_flop_formula(aten._flash_attention_backward, get_raw=True)
506
- def _flash_attention_backward_flop(
507
- grad_out,
508
- query,
509
- key,
510
- value,
511
- out, # named _out_shape to avoid kwarg collision with out_shape created in wrapper
512
- logsumexp,
513
- cum_seq_q,
514
- cum_seq_k,
515
- max_q,
516
- max_k,
517
- *args,
518
- **kwargs,
519
- ) -> int:
520
- # in case this is a nested tensor, we unpack the individual batch elements
521
- # and then sum the flops per batch element
522
- shapes = _unpack_flash_attention_nested_shapes(
523
- query=query,
524
- key=key,
525
- value=value,
526
- grad_out=grad_out,
527
- cum_seq_q=cum_seq_q,
528
- cum_seq_k=cum_seq_k,
529
- max_q=max_q,
530
- max_k=max_k,
531
- )
532
- return sum(
533
- sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape)
534
- for query_shape, key_shape, value_shape, grad_out_shape in shapes
535
- )
536
-
537
-
538
- @register_flop_formula(aten._efficient_attention_backward, get_raw=True)
539
- def _efficient_attention_backward_flop(
540
- grad_out,
541
- query,
542
- key,
543
- value,
544
- bias,
545
- out, # named _out to avoid kwarg collision with out created in wrapper
546
- cu_seqlens_q,
547
- cu_seqlens_k,
548
- max_seqlen_q,
549
- max_seqlen_k,
550
- *args,
551
- **kwargs,
552
- ) -> int:
553
- # in case this is a nested tensor, we unpack the individual batch elements
554
- # and then sum the flops per batch element
555
- shapes = _unpack_efficient_attention_nested_shapes(
556
- query=query,
557
- key=key,
558
- value=value,
559
- grad_out=grad_out,
560
- cu_seqlens_q=cu_seqlens_q,
561
- cu_seqlens_k=cu_seqlens_k,
562
- max_seqlen_q=max_seqlen_q,
563
- max_seqlen_k=max_seqlen_k,
564
- )
565
- return sum(
566
- sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape)
567
- for query_shape, key_shape, value_shape, grad_out_shape in shapes
568
- )
569
-
570
-
571
- flop_registry = {
572
- aten.mm: mm_flop,
573
- aten.addmm: addmm_flop,
574
- aten.bmm: bmm_flop,
575
- aten.baddbmm: baddbmm_flop,
576
- aten.convolution: conv_flop,
577
- aten._convolution: conv_flop,
578
- aten.convolution_backward: conv_backward_flop,
579
- aten._scaled_dot_product_efficient_attention: sdpa_flop,
580
- aten._scaled_dot_product_flash_attention: sdpa_flop,
581
- aten._scaled_dot_product_efficient_attention_backward: sdpa_backward_flop,
582
- aten._scaled_dot_product_flash_attention_backward: sdpa_backward_flop,
583
- aten._flash_attention_forward: _flash_attention_forward_flop,
584
- aten._efficient_attention_forward: _efficient_attention_forward_flop,
585
- aten._flash_attention_backward: _flash_attention_backward_flop,
586
- aten._efficient_attention_backward: _efficient_attention_backward_flop,
587
- }
588
-
589
-
590
- def normalize_tuple(x):
591
- if not isinstance(x, tuple):
592
- return (x,)
593
- return x
594
-
595
-
596
- # Define the suffixes for different orders of magnitude
597
- suffixes = ["", "K", "M", "B", "T"]
598
-
599
-
600
- # Thanks BingChat!
601
- def get_suffix_str(number):
602
- # Find the index of the appropriate suffix based on the number of digits
603
- # with some additional overflow.
604
- # i.e. 1.01B should be displayed as 1001M, not 1.001B
605
- index = max(0, min(len(suffixes) - 1, (len(str(number)) - 2) // 3))
606
- return suffixes[index]
607
-
608
-
609
- def convert_num_with_suffix(number, suffix):
610
- index = suffixes.index(suffix)
611
- # Divide the number by 1000^index and format it to two decimal places
612
- value = f"{number / 1000 ** index:.3f}"
613
- # Return the value and the suffix as a string
614
- return value + suffixes[index]
615
-
616
-
617
- def convert_to_percent_str(num, denom):
618
- if denom == 0:
619
- return "0%"
620
- return f"{num / denom:.2%}"
621
-
622
-
623
- def _pytreeify_preserve_structure(f):
624
- @wraps(f)
625
- def nf(args):
626
- flat_args, spec = tree_flatten(args)
627
- out = f(*flat_args)
628
- return tree_unflatten(out, spec)
629
-
630
- return nf
631
-
632
-
633
- class FlopCounterMode(TorchDispatchMode):
634
- """
635
- ``FlopCounterMode`` is a context manager that counts the number of flops within its context.
636
-
637
- It does this using a ``TorchDispatchMode``.
638
-
639
- It also supports hierarchical output by passing a module (or list of
640
- modules) to FlopCounterMode on construction. If you do not need hierarchical
641
- output, you do not need to use it with a module.
642
-
643
- Example usage
644
-
645
- .. code-block:: python
646
-
647
- mod = ...
648
- with FlopCounterMode(mod) as flop_counter:
649
- mod.sum().backward()
650
-
651
- """
652
-
653
- def __init__(
654
- self,
655
- mods: Optional[Union[torch.nn.Module, List[torch.nn.Module]]] = None,
656
- depth: int = 2,
657
- display: bool = True,
658
- custom_mapping: Optional[Dict[Any, Any]] = None,
659
- ):
660
- self.flop_counts: Dict[str, Dict[Any, int]] = defaultdict(
661
- lambda: defaultdict(int)
662
- )
663
- self.depth = depth
664
- self.display = display
665
- if custom_mapping is None:
666
- custom_mapping = {}
667
- if mods is not None:
668
- warnings.warn(
669
- "mods argument is not needed anymore, you can stop passing it",
670
- stacklevel=2,
671
- )
672
- self.flop_registry = {
673
- **flop_registry,
674
- **{
675
- k: v if getattr(v, "_get_raw", False) else shape_wrapper(v)
676
- for k, v in custom_mapping.items()
677
- },
678
- }
679
- self.mod_tracker = ModuleTracker()
680
-
681
- def get_total_flops(self) -> int:
682
- return sum(self.flop_counts["Global"].values())
683
-
684
- def get_flop_counts(self) -> Dict[str, Dict[Any, int]]:
685
- """Return the flop counts as a dictionary of dictionaries.
686
-
687
- The outer
688
- dictionary is keyed by module name, and the inner dictionary is keyed by
689
- operation name.
690
-
691
- Returns:
692
- Dict[str, Dict[Any, int]]: The flop counts as a dictionary.
693
- """
694
- return {k: dict(v) for k, v in self.flop_counts.items()}
695
-
696
- def get_table(self, depth=None):
697
- if depth is None:
698
- depth = self.depth
699
- if depth is None:
700
- depth = 999999
701
-
702
- import tabulate
703
-
704
- tabulate.PRESERVE_WHITESPACE = True
705
- header = ["Module", "FLOP", "% Total"]
706
- values = []
707
- global_flops = self.get_total_flops()
708
- global_suffix = get_suffix_str(global_flops)
709
- is_global_subsumed = False
710
-
711
- def process_mod(mod_name, depth):
712
- nonlocal is_global_subsumed
713
-
714
- total_flops = sum(self.flop_counts[mod_name].values())
715
-
716
- is_global_subsumed |= total_flops >= global_flops
717
-
718
- padding = " " * depth
719
- values = []
720
- values.append(
721
- [
722
- padding + mod_name,
723
- convert_num_with_suffix(total_flops, global_suffix),
724
- convert_to_percent_str(total_flops, global_flops),
725
- ]
726
- )
727
- for k, v in self.flop_counts[mod_name].items():
728
- values.append(
729
- [
730
- padding + " - " + str(k),
731
- convert_num_with_suffix(v, global_suffix),
732
- convert_to_percent_str(v, global_flops),
733
- ]
734
- )
735
- return values
736
-
737
- for mod in sorted(self.flop_counts.keys()):
738
- if mod == "Global":
739
- continue
740
- mod_depth = mod.count(".") + 1
741
- if mod_depth > depth:
742
- continue
743
-
744
- cur_values = process_mod(mod, mod_depth - 1)
745
- values.extend(cur_values)
746
-
747
- # We do a bit of messing around here to only output the "Global" value
748
- # if there are any FLOPs in there that aren't already fully contained by
749
- # a module.
750
- if "Global" in self.flop_counts and not is_global_subsumed:
751
- for idx, value in enumerate(values):
752
- values[idx][0] = " " + values[idx][0]
753
-
754
- values = process_mod("Global", 0) + values
755
-
756
- if len(values) == 0:
757
- values = [["Global", "0", "0%"]]
758
-
759
- return tabulate.tabulate(
760
- values, headers=header, colalign=("left", "right", "right")
761
- )
762
-
763
- def __enter__(self):
764
- self.flop_counts.clear()
765
- self.mod_tracker.__enter__()
766
- super().__enter__()
767
- return self
768
-
769
- def __exit__(self, *args):
770
- super().__exit__(*args)
771
- self.mod_tracker.__exit__()
772
- if self.display:
773
- print(self.get_table(self.depth))
774
-
775
- def __torch_dispatch__(self, func, types, args=(), kwargs=None):
776
- kwargs = kwargs if kwargs else {}
777
- out = func(*args, **kwargs)
778
- return self._count_flops(func._overloadpacket, out, args, kwargs)
779
-
780
- def _count_flops(self, func_packet, out, args, kwargs):
781
- if func_packet in self.flop_registry:
782
- flop_count_func = self.flop_registry[func_packet]
783
- flop_count = flop_count_func(*args, **kwargs, out_val=out) # type: ignore[operator]
784
- for par in set(self.mod_tracker.parents):
785
- self.flop_counts[par][func_packet] += flop_count
786
-
787
- return out
@@ -1,140 +0,0 @@
1
- import weakref
2
- from typing import Set
3
-
4
- import torch
5
- from torch.autograd.graph import register_multi_grad_hook
6
- from torch.nn.modules.module import (
7
- register_module_forward_hook,
8
- register_module_forward_pre_hook,
9
- )
10
- from torch.utils._pytree import tree_flatten
11
-
12
- __all__ = ["ModuleTracker"]
13
-
14
-
15
- class ModuleTracker:
16
- """
17
- ``ModuleTracker`` is a context manager that tracks the nn.Module hierarchy during execution
18
- so that other system can query which Module is currently being executed (or its backward is being
19
- executed).
20
-
21
- You can access the ``parents`` attribute on this context manager to get the set of all the
22
- Modules currently being executed via their fqn (fully qualified name, also used as the key within
23
- the state_dict).
24
- You can access the ``is_bw`` attribute to know if you are currently running in backward or not.
25
-
26
- Note that ``parents`` is never empty and always contains the "Global" key. The ``is_bw`` flag
27
- will remain ``True`` after the forward until another Module is executed. If you need it to be
28
- more accurate, please submit an issue requesting this. Adding a map from fqn to the module instance
29
- is possible but not done yet, please submit an issue requesting this if you need it.
30
-
31
- Example usage
32
-
33
- .. code-block:: python
34
-
35
- mod = torch.nn.Linear(2, 2)
36
-
37
- with ModuleTracker() as tracker:
38
- # Access anything during the forward pass
39
- def my_linear(m1, m2, bias):
40
- print(f"Current modules: {tracker.parents}")
41
- return torch.mm(m1, m2.t()) + bias
42
- torch.nn.functional.linear = my_linear
43
-
44
- mod(torch.rand(2, 2))
45
-
46
- """
47
-
48
- parents: Set[str]
49
- """
50
- A Set containing the fqn for each module currently running their forward
51
- """
52
-
53
- def __init__(self):
54
- self.parents = {"Global"}
55
- self._known_modules: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()
56
- self._seen_modules: weakref.WeakSet = weakref.WeakSet()
57
- self._has_callback = False
58
-
59
- def _maybe_set_engine_callback(self):
60
- # This assumes no concurrent calls to backward
61
- if self._has_callback:
62
- return
63
-
64
- def callback():
65
- self.parents = {"Global"}
66
- self._has_callback = False
67
-
68
- torch.autograd.Variable._execution_engine.queue_callback(callback)
69
- self._has_callback = True
70
-
71
- @property
72
- def is_bw(self):
73
- """
74
- A boolean marking if this is currently running during the backward pass or not
75
- """
76
- return torch._C._current_graph_task_id() != -1
77
-
78
- def _get_mod_name(self, mod):
79
- if mod not in self._known_modules:
80
- self._known_modules[mod] = type(mod).__name__
81
- mod_name = self._known_modules[mod]
82
- if mod not in self._seen_modules:
83
- for name, submod in mod.named_children():
84
- self._known_modules[submod] = f"{mod_name}.{name}"
85
- self._get_mod_name(submod)
86
- self._seen_modules.add(mod)
87
- return mod_name
88
-
89
- def _get_append_fn(self, name, is_bw):
90
- def fn(*args):
91
- if is_bw:
92
- self._maybe_set_engine_callback()
93
- if name in self.parents:
94
- print(
95
- "The module hierarchy tracking seems to be messed up."
96
- "Please file a bug to PyTorch."
97
- )
98
- self.parents.add(name)
99
-
100
- return fn
101
-
102
- def _get_pop_fn(self, name, is_bw):
103
- def fn(*args):
104
- if name in self.parents:
105
- self.parents.remove(name)
106
- elif not is_bw:
107
- # Due to some input/output not requiring gradients, we cannot enforce
108
- # proper nesting in backward
109
- raise RuntimeError(
110
- "The Module hierarchy tracking is wrong. Report a bug to PyTorch"
111
- )
112
-
113
- return fn
114
-
115
- def _fw_pre_hook(self, mod, input):
116
- name = self._get_mod_name(mod)
117
- self._get_append_fn(name, False)()
118
-
119
- args, _ = tree_flatten(input)
120
- tensors = [a for a in args if isinstance(a, torch.Tensor) and a.requires_grad]
121
- if tensors:
122
- register_multi_grad_hook(tensors, self._get_pop_fn(name, True))
123
-
124
- def _fw_post_hook(self, mod, input, output):
125
- name = self._get_mod_name(mod)
126
- self._get_pop_fn(name, False)()
127
-
128
- args, _ = tree_flatten(output)
129
- tensors = [a for a in args if isinstance(a, torch.Tensor) and a.requires_grad]
130
- if tensors:
131
- register_multi_grad_hook(tensors, self._get_append_fn(name, True))
132
-
133
- def __enter__(self):
134
- self._fw_pre_handle = register_module_forward_pre_hook(self._fw_pre_hook)
135
- self._fw_post_handle = register_module_forward_hook(self._fw_post_hook)
136
- return self
137
-
138
- def __exit__(self, *args):
139
- self._fw_pre_handle.remove()
140
- self._fw_post_handle.remove()