npcpy 1.2.32__tar.gz → 1.2.34__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {npcpy-1.2.32/npcpy.egg-info → npcpy-1.2.34}/PKG-INFO +97 -34
- {npcpy-1.2.32 → npcpy-1.2.34}/README.md +96 -33
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/llm_funcs.py +57 -37
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/memory/command_history.py +26 -1
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/npc_compiler.py +591 -456
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/serve.py +362 -291
- {npcpy-1.2.32 → npcpy-1.2.34/npcpy.egg-info}/PKG-INFO +97 -34
- {npcpy-1.2.32 → npcpy-1.2.34}/setup.py +1 -1
- {npcpy-1.2.32 → npcpy-1.2.34}/LICENSE +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/MANIFEST.in +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/__init__.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/data/__init__.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/data/audio.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/data/data_models.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/data/image.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/data/load.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/data/text.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/data/video.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/data/web.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/ft/__init__.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/ft/diff.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/ft/ge.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/ft/memory_trainer.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/ft/model_ensembler.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/ft/rl.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/ft/sft.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/ft/usft.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/gen/__init__.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/gen/audio_gen.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/gen/embeddings.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/gen/image_gen.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/gen/response.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/gen/video_gen.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/main.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/memory/__init__.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/memory/kg_vis.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/memory/knowledge_graph.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/memory/memory_processor.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/memory/search.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/mix/__init__.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/mix/debate.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/npc_sysenv.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/npcs.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/sql/__init__.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/sql/ai_function_tools.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/sql/database_ai_adapters.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/sql/database_ai_functions.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/sql/model_runner.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/sql/npcsql.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/sql/sql_model_compiler.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/tools.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/work/__init__.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/work/desktop.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/work/plan.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy/work/trigger.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy.egg-info/SOURCES.txt +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy.egg-info/dependency_links.txt +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy.egg-info/requires.txt +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/npcpy.egg-info/top_level.txt +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/setup.cfg +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/tests/test_audio.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/tests/test_command_history.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/tests/test_image.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/tests/test_llm_funcs.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/tests/test_load.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/tests/test_npc_compiler.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/tests/test_npcsql.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/tests/test_response.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/tests/test_serve.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/tests/test_text.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/tests/test_tools.py +0 -0
- {npcpy-1.2.32 → npcpy-1.2.34}/tests/test_web.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: npcpy
|
|
3
|
-
Version: 1.2.
|
|
3
|
+
Version: 1.2.34
|
|
4
4
|
Summary: npcpy is the premier open-source library for integrating LLMs and Agents into python systems.
|
|
5
5
|
Home-page: https://github.com/NPC-Worldwide/npcpy
|
|
6
6
|
Author: Christopher Agostino
|
|
@@ -185,62 +185,117 @@ for tool_call in response['tool_results']:
|
|
|
185
185
|
Here is an example for setting up an agent team to use Jinja Execution (Jinxs) templates that are processed entirely with prompts, allowing you to use them with models that do or do not possess tool calling support.
|
|
186
186
|
|
|
187
187
|
```python
|
|
188
|
+
|
|
188
189
|
from npcpy.npc_compiler import NPC, Team, Jinx
|
|
189
190
|
from npcpy.tools import auto_tools
|
|
190
191
|
import os
|
|
192
|
+
from jinja2 import Environment, Undefined, DictLoader # Import necessary Jinja2 components for Jinx code
|
|
191
193
|
|
|
192
|
-
|
|
193
|
-
|
|
194
|
+
# --- REVISED file_reader_jinx ---
|
|
194
195
|
file_reader_jinx = Jinx(jinx_data={
|
|
195
196
|
"jinx_name": "file_reader",
|
|
196
|
-
"description": "Read a file and summarize its contents",
|
|
197
|
+
"description": "Read a file and optionally summarize its contents using an LLM.",
|
|
197
198
|
"inputs": ["filename"],
|
|
198
199
|
"steps": [
|
|
199
200
|
{
|
|
200
|
-
"name": "
|
|
201
|
+
"name": "read_file_content",
|
|
201
202
|
"engine": "python",
|
|
202
|
-
"code":
|
|
203
|
+
"code": '''
|
|
203
204
|
import os
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
205
|
+
from jinja2 import Environment, Undefined, DictLoader # Local import for Jinx step
|
|
206
|
+
|
|
207
|
+
# The 'filename' input to the file_reader jinx might be a Jinja template string like "{{ source_filename }}"
|
|
208
|
+
# or a direct filename. We need to render it using the current execution context.
|
|
209
|
+
|
|
210
|
+
# Get the Jinja environment from the NPC if available, otherwise create a default one.
|
|
211
|
+
# The 'npc' variable is available in the Jinx execution context.
|
|
212
|
+
# We need to ensure 'npc' exists before trying to access its 'jinja_env'.
|
|
213
|
+
execution_jinja_env = npc.jinja_env if npc else Environment(loader=DictLoader({}), undefined=Undefined)
|
|
214
|
+
|
|
215
|
+
# Render the filename. The current 'context' should contain the variables needed for rendering.
|
|
216
|
+
# For declarative calls, the parent Jinx's inputs (like 'source_filename') will be in this context.
|
|
217
|
+
# We also need to ensure the value from context['filename'] is treated as a template string.
|
|
218
|
+
filename_template = execution_jinja_env.from_string(context['filename'])
|
|
219
|
+
rendered_filename = filename_template.render(**context)
|
|
220
|
+
|
|
221
|
+
file_path_abs = os.path.abspath(rendered_filename)
|
|
222
|
+
try:
|
|
223
|
+
with open(file_path_abs, 'r') as f:
|
|
224
|
+
content = f.read()
|
|
225
|
+
context['file_raw_content'] = content # Store raw content in context for later use
|
|
226
|
+
output = content # Output of this step is the raw content
|
|
227
|
+
except FileNotFoundError:
|
|
228
|
+
output = f"Error: File not found at {file_path_abs}"
|
|
229
|
+
context['file_raw_content'] = output # Store error message for consistency
|
|
230
|
+
except Exception as e:
|
|
231
|
+
output = f"Error reading file {file_path_abs}: {e}"
|
|
232
|
+
context['file_raw_content'] = output # Store error message for consistency
|
|
233
|
+
'''
|
|
208
234
|
},
|
|
209
235
|
{
|
|
210
|
-
"name": "
|
|
211
|
-
"engine": "
|
|
212
|
-
"code":
|
|
213
|
-
|
|
214
|
-
|
|
236
|
+
"name": "summarize_file_content",
|
|
237
|
+
"engine": "python",
|
|
238
|
+
"code": '''
|
|
239
|
+
# Check if the previous step encountered an error
|
|
240
|
+
if "Error" not in context['file_raw_content']:
|
|
241
|
+
prompt = f"Summarize the following content concisely, highlighting key themes and points: {context['file_raw_content']}"
|
|
242
|
+
llm_result = npc.get_llm_response(prompt, tool_choice=False) # FIX: Passed prompt positionally
|
|
243
|
+
output = llm_result.get('response', 'Failed to generate summary due to LLM error.')
|
|
244
|
+
else:
|
|
245
|
+
output = "Skipping summary due to previous file reading error."
|
|
246
|
+
'''
|
|
215
247
|
}
|
|
216
248
|
]
|
|
217
249
|
})
|
|
218
250
|
|
|
219
|
-
|
|
220
|
-
# Define a jinx for literary research
|
|
251
|
+
# --- REVISED literary_research_jinx ---
|
|
221
252
|
literary_research_jinx = Jinx(jinx_data={
|
|
222
253
|
"jinx_name": "literary_research",
|
|
223
|
-
"description": "Research a literary topic,
|
|
224
|
-
"inputs": ["topic"],
|
|
254
|
+
"description": "Research a literary topic, read a specific file, analyze, and synthesize findings.",
|
|
255
|
+
"inputs": ["topic", "source_filename"],
|
|
225
256
|
"steps": [
|
|
226
257
|
{
|
|
227
|
-
"name": "
|
|
228
|
-
"engine": "
|
|
229
|
-
"code":
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
258
|
+
"name": "initial_llm_research",
|
|
259
|
+
"engine": "python",
|
|
260
|
+
"code": '''
|
|
261
|
+
prompt = f"Research the topic: {context['topic']}. Summarize the main themes, key authors, and historical context. Be thorough."
|
|
262
|
+
llm_result = npc.get_llm_response(prompt, tool_choice=False) # FIX: Passed prompt positionally
|
|
263
|
+
context['research_summary'] = llm_result.get('response', 'No initial LLM research found.')
|
|
264
|
+
output = context['research_summary']
|
|
265
|
+
'''
|
|
266
|
+
},
|
|
267
|
+
{
|
|
268
|
+
"name": "read_and_process_source_file",
|
|
269
|
+
"engine": "file_reader",
|
|
270
|
+
"filename": "{{ source_filename }}" # This is passed as a string template to file_reader
|
|
233
271
|
},
|
|
234
272
|
{
|
|
235
|
-
"name": "
|
|
236
|
-
"engine": "
|
|
237
|
-
"code":
|
|
238
|
-
|
|
239
|
-
|
|
273
|
+
"name": "final_synthesis_and_creative_writing",
|
|
274
|
+
"engine": "python",
|
|
275
|
+
"code": '''
|
|
276
|
+
# Access outputs from previous steps.
|
|
277
|
+
research_summary = context['initial_llm_research']
|
|
278
|
+
# The output of a declarative jinx call (like 'file_reader') is stored under its step name.
|
|
279
|
+
# The actual content we want is the 'output' of the *last step* within that sub-jinx.
|
|
280
|
+
file_summary = context['read_and_process_source_file'].get('output', 'No file summary available.')
|
|
281
|
+
|
|
282
|
+
prompt = f"""Based on the following information:
|
|
283
|
+
1. Comprehensive Research Summary:
|
|
284
|
+
{research_summary}
|
|
285
|
+
|
|
286
|
+
2. Key Insights from Source File:
|
|
287
|
+
{file_summary}
|
|
288
|
+
|
|
289
|
+
Integrate these findings and write a concise, creative, and poetically styled summary of the literary topic '{context['topic']}'. Emphasize unique perspectives or connections between the research and the file content, as if written by a master of magical realism.
|
|
290
|
+
"""
|
|
291
|
+
llm_result = npc.get_llm_response(prompt, tool_choice=False) # FIX: Passed prompt positionally
|
|
292
|
+
output = llm_result.get('response', 'Failed to generate final creative summary.')
|
|
293
|
+
'''
|
|
240
294
|
}
|
|
241
295
|
]
|
|
242
296
|
})
|
|
243
297
|
|
|
298
|
+
# --- NPC Definitions (unchanged) ---
|
|
244
299
|
ggm = NPC(
|
|
245
300
|
name='Gabriel Garcia Marquez',
|
|
246
301
|
primary_directive='You are Gabriel Garcia Marquez, master of magical realism. Research, analyze, and write with poetic flair.',
|
|
@@ -263,16 +318,24 @@ borges = NPC(
|
|
|
263
318
|
provider='ollama',
|
|
264
319
|
)
|
|
265
320
|
|
|
266
|
-
#
|
|
267
|
-
lit_team = Team(
|
|
321
|
+
# --- Team Setup ---
|
|
322
|
+
lit_team = Team(
|
|
323
|
+
npcs=[ggm, isabel],
|
|
324
|
+
forenpc=borges,
|
|
325
|
+
jinxs=[literary_research_jinx, file_reader_jinx],
|
|
268
326
|
)
|
|
269
327
|
|
|
270
|
-
#
|
|
328
|
+
# --- Orchestration Example ---
|
|
271
329
|
result = lit_team.orchestrate(
|
|
272
|
-
"Research the topic of magical realism,
|
|
330
|
+
"Research the topic of magical realism, using the file './test_data/magical_realism.txt' as a primary source, and provide a comprehensive, creative summary."
|
|
273
331
|
)
|
|
332
|
+
|
|
333
|
+
print("\n--- Orchestration Result Summary ---")
|
|
274
334
|
print(result['debrief']['summary'])
|
|
275
335
|
|
|
336
|
+
print("\n--- Full Orchestration Output ---")
|
|
337
|
+
print(result['output'])
|
|
338
|
+
|
|
276
339
|
```
|
|
277
340
|
```
|
|
278
341
|
• Action chosen: pass_to_npc
|
|
@@ -89,62 +89,117 @@ for tool_call in response['tool_results']:
|
|
|
89
89
|
Here is an example for setting up an agent team to use Jinja Execution (Jinxs) templates that are processed entirely with prompts, allowing you to use them with models that do or do not possess tool calling support.
|
|
90
90
|
|
|
91
91
|
```python
|
|
92
|
+
|
|
92
93
|
from npcpy.npc_compiler import NPC, Team, Jinx
|
|
93
94
|
from npcpy.tools import auto_tools
|
|
94
95
|
import os
|
|
96
|
+
from jinja2 import Environment, Undefined, DictLoader # Import necessary Jinja2 components for Jinx code
|
|
95
97
|
|
|
96
|
-
|
|
97
|
-
|
|
98
|
+
# --- REVISED file_reader_jinx ---
|
|
98
99
|
file_reader_jinx = Jinx(jinx_data={
|
|
99
100
|
"jinx_name": "file_reader",
|
|
100
|
-
"description": "Read a file and summarize its contents",
|
|
101
|
+
"description": "Read a file and optionally summarize its contents using an LLM.",
|
|
101
102
|
"inputs": ["filename"],
|
|
102
103
|
"steps": [
|
|
103
104
|
{
|
|
104
|
-
"name": "
|
|
105
|
+
"name": "read_file_content",
|
|
105
106
|
"engine": "python",
|
|
106
|
-
"code":
|
|
107
|
+
"code": '''
|
|
107
108
|
import os
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
109
|
+
from jinja2 import Environment, Undefined, DictLoader # Local import for Jinx step
|
|
110
|
+
|
|
111
|
+
# The 'filename' input to the file_reader jinx might be a Jinja template string like "{{ source_filename }}"
|
|
112
|
+
# or a direct filename. We need to render it using the current execution context.
|
|
113
|
+
|
|
114
|
+
# Get the Jinja environment from the NPC if available, otherwise create a default one.
|
|
115
|
+
# The 'npc' variable is available in the Jinx execution context.
|
|
116
|
+
# We need to ensure 'npc' exists before trying to access its 'jinja_env'.
|
|
117
|
+
execution_jinja_env = npc.jinja_env if npc else Environment(loader=DictLoader({}), undefined=Undefined)
|
|
118
|
+
|
|
119
|
+
# Render the filename. The current 'context' should contain the variables needed for rendering.
|
|
120
|
+
# For declarative calls, the parent Jinx's inputs (like 'source_filename') will be in this context.
|
|
121
|
+
# We also need to ensure the value from context['filename'] is treated as a template string.
|
|
122
|
+
filename_template = execution_jinja_env.from_string(context['filename'])
|
|
123
|
+
rendered_filename = filename_template.render(**context)
|
|
124
|
+
|
|
125
|
+
file_path_abs = os.path.abspath(rendered_filename)
|
|
126
|
+
try:
|
|
127
|
+
with open(file_path_abs, 'r') as f:
|
|
128
|
+
content = f.read()
|
|
129
|
+
context['file_raw_content'] = content # Store raw content in context for later use
|
|
130
|
+
output = content # Output of this step is the raw content
|
|
131
|
+
except FileNotFoundError:
|
|
132
|
+
output = f"Error: File not found at {file_path_abs}"
|
|
133
|
+
context['file_raw_content'] = output # Store error message for consistency
|
|
134
|
+
except Exception as e:
|
|
135
|
+
output = f"Error reading file {file_path_abs}: {e}"
|
|
136
|
+
context['file_raw_content'] = output # Store error message for consistency
|
|
137
|
+
'''
|
|
112
138
|
},
|
|
113
139
|
{
|
|
114
|
-
"name": "
|
|
115
|
-
"engine": "
|
|
116
|
-
"code":
|
|
117
|
-
|
|
118
|
-
|
|
140
|
+
"name": "summarize_file_content",
|
|
141
|
+
"engine": "python",
|
|
142
|
+
"code": '''
|
|
143
|
+
# Check if the previous step encountered an error
|
|
144
|
+
if "Error" not in context['file_raw_content']:
|
|
145
|
+
prompt = f"Summarize the following content concisely, highlighting key themes and points: {context['file_raw_content']}"
|
|
146
|
+
llm_result = npc.get_llm_response(prompt, tool_choice=False) # FIX: Passed prompt positionally
|
|
147
|
+
output = llm_result.get('response', 'Failed to generate summary due to LLM error.')
|
|
148
|
+
else:
|
|
149
|
+
output = "Skipping summary due to previous file reading error."
|
|
150
|
+
'''
|
|
119
151
|
}
|
|
120
152
|
]
|
|
121
153
|
})
|
|
122
154
|
|
|
123
|
-
|
|
124
|
-
# Define a jinx for literary research
|
|
155
|
+
# --- REVISED literary_research_jinx ---
|
|
125
156
|
literary_research_jinx = Jinx(jinx_data={
|
|
126
157
|
"jinx_name": "literary_research",
|
|
127
|
-
"description": "Research a literary topic,
|
|
128
|
-
"inputs": ["topic"],
|
|
158
|
+
"description": "Research a literary topic, read a specific file, analyze, and synthesize findings.",
|
|
159
|
+
"inputs": ["topic", "source_filename"],
|
|
129
160
|
"steps": [
|
|
130
161
|
{
|
|
131
|
-
"name": "
|
|
132
|
-
"engine": "
|
|
133
|
-
"code":
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
162
|
+
"name": "initial_llm_research",
|
|
163
|
+
"engine": "python",
|
|
164
|
+
"code": '''
|
|
165
|
+
prompt = f"Research the topic: {context['topic']}. Summarize the main themes, key authors, and historical context. Be thorough."
|
|
166
|
+
llm_result = npc.get_llm_response(prompt, tool_choice=False) # FIX: Passed prompt positionally
|
|
167
|
+
context['research_summary'] = llm_result.get('response', 'No initial LLM research found.')
|
|
168
|
+
output = context['research_summary']
|
|
169
|
+
'''
|
|
170
|
+
},
|
|
171
|
+
{
|
|
172
|
+
"name": "read_and_process_source_file",
|
|
173
|
+
"engine": "file_reader",
|
|
174
|
+
"filename": "{{ source_filename }}" # This is passed as a string template to file_reader
|
|
137
175
|
},
|
|
138
176
|
{
|
|
139
|
-
"name": "
|
|
140
|
-
"engine": "
|
|
141
|
-
"code":
|
|
142
|
-
|
|
143
|
-
|
|
177
|
+
"name": "final_synthesis_and_creative_writing",
|
|
178
|
+
"engine": "python",
|
|
179
|
+
"code": '''
|
|
180
|
+
# Access outputs from previous steps.
|
|
181
|
+
research_summary = context['initial_llm_research']
|
|
182
|
+
# The output of a declarative jinx call (like 'file_reader') is stored under its step name.
|
|
183
|
+
# The actual content we want is the 'output' of the *last step* within that sub-jinx.
|
|
184
|
+
file_summary = context['read_and_process_source_file'].get('output', 'No file summary available.')
|
|
185
|
+
|
|
186
|
+
prompt = f"""Based on the following information:
|
|
187
|
+
1. Comprehensive Research Summary:
|
|
188
|
+
{research_summary}
|
|
189
|
+
|
|
190
|
+
2. Key Insights from Source File:
|
|
191
|
+
{file_summary}
|
|
192
|
+
|
|
193
|
+
Integrate these findings and write a concise, creative, and poetically styled summary of the literary topic '{context['topic']}'. Emphasize unique perspectives or connections between the research and the file content, as if written by a master of magical realism.
|
|
194
|
+
"""
|
|
195
|
+
llm_result = npc.get_llm_response(prompt, tool_choice=False) # FIX: Passed prompt positionally
|
|
196
|
+
output = llm_result.get('response', 'Failed to generate final creative summary.')
|
|
197
|
+
'''
|
|
144
198
|
}
|
|
145
199
|
]
|
|
146
200
|
})
|
|
147
201
|
|
|
202
|
+
# --- NPC Definitions (unchanged) ---
|
|
148
203
|
ggm = NPC(
|
|
149
204
|
name='Gabriel Garcia Marquez',
|
|
150
205
|
primary_directive='You are Gabriel Garcia Marquez, master of magical realism. Research, analyze, and write with poetic flair.',
|
|
@@ -167,16 +222,24 @@ borges = NPC(
|
|
|
167
222
|
provider='ollama',
|
|
168
223
|
)
|
|
169
224
|
|
|
170
|
-
#
|
|
171
|
-
lit_team = Team(
|
|
225
|
+
# --- Team Setup ---
|
|
226
|
+
lit_team = Team(
|
|
227
|
+
npcs=[ggm, isabel],
|
|
228
|
+
forenpc=borges,
|
|
229
|
+
jinxs=[literary_research_jinx, file_reader_jinx],
|
|
172
230
|
)
|
|
173
231
|
|
|
174
|
-
#
|
|
232
|
+
# --- Orchestration Example ---
|
|
175
233
|
result = lit_team.orchestrate(
|
|
176
|
-
"Research the topic of magical realism,
|
|
234
|
+
"Research the topic of magical realism, using the file './test_data/magical_realism.txt' as a primary source, and provide a comprehensive, creative summary."
|
|
177
235
|
)
|
|
236
|
+
|
|
237
|
+
print("\n--- Orchestration Result Summary ---")
|
|
178
238
|
print(result['debrief']['summary'])
|
|
179
239
|
|
|
240
|
+
print("\n--- Full Orchestration Output ---")
|
|
241
|
+
print(result['output'])
|
|
242
|
+
|
|
180
243
|
```
|
|
181
244
|
```
|
|
182
245
|
• Action chosen: pass_to_npc
|
|
@@ -379,6 +379,8 @@ def execute_llm_command(
|
|
|
379
379
|
"messages": messages,
|
|
380
380
|
"output": "Max attempts reached. Unable to execute the command successfully.",
|
|
381
381
|
}
|
|
382
|
+
|
|
383
|
+
# --- START OF CORRECTED handle_jinx_call ---
|
|
382
384
|
def handle_jinx_call(
|
|
383
385
|
command: str,
|
|
384
386
|
jinx_name: str,
|
|
@@ -391,7 +393,7 @@ def handle_jinx_call(
|
|
|
391
393
|
n_attempts=3,
|
|
392
394
|
attempt=0,
|
|
393
395
|
context=None,
|
|
394
|
-
extra_globals=None,
|
|
396
|
+
extra_globals=None,
|
|
395
397
|
**kwargs
|
|
396
398
|
) -> Union[str, Dict[str, Any]]:
|
|
397
399
|
"""This function handles a jinx call.
|
|
@@ -411,10 +413,13 @@ def handle_jinx_call(
|
|
|
411
413
|
if npc is None and team is None:
|
|
412
414
|
return f"No jinxs are available. "
|
|
413
415
|
else:
|
|
416
|
+
jinx = None
|
|
417
|
+
if npc and hasattr(npc, 'jinxs_dict') and jinx_name in npc.jinxs_dict:
|
|
418
|
+
jinx = npc.jinxs_dict[jinx_name]
|
|
419
|
+
elif team and hasattr(team, 'jinxs_dict') and jinx_name in team.jinxs_dict:
|
|
420
|
+
jinx = team.jinxs_dict[jinx_name]
|
|
414
421
|
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
if jinx_name not in npc.jinxs_dict and jinx_name not in team.jinxs_dict:
|
|
422
|
+
if not jinx:
|
|
418
423
|
print(f"Jinx {jinx_name} not available")
|
|
419
424
|
if attempt < n_attempts:
|
|
420
425
|
print(f"attempt {attempt+1} to generate jinx name failed, trying again")
|
|
@@ -442,16 +447,11 @@ def handle_jinx_call(
|
|
|
442
447
|
"messages": messages,
|
|
443
448
|
}
|
|
444
449
|
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
elif jinx_name in npc.jinxs_dict:
|
|
449
|
-
jinx = npc.jinxs_dict[jinx_name]
|
|
450
|
-
elif jinx_name in team.jinxs_dict:
|
|
451
|
-
jinx = team.jinxs_dict[jinx_name]
|
|
452
|
-
|
|
453
450
|
render_markdown(f"jinx found: {jinx.jinx_name}")
|
|
454
|
-
|
|
451
|
+
|
|
452
|
+
# This jinja_env is for parsing the Jinx's *inputs* from the LLM response, not for Jinx.execute's second pass.
|
|
453
|
+
local_jinja_env_for_input_parsing = Environment(loader=FileSystemLoader("."), undefined=Undefined)
|
|
454
|
+
|
|
455
455
|
example_format = {}
|
|
456
456
|
for inp in jinx.inputs:
|
|
457
457
|
if isinstance(inp, str):
|
|
@@ -563,20 +563,32 @@ def handle_jinx_call(
|
|
|
563
563
|
|
|
564
564
|
render_markdown( "\n".join(['\n - ' + str(key) + ': ' +str(val) for key, val in input_values.items()]))
|
|
565
565
|
|
|
566
|
+
# Initialize jinx_output before the try block to prevent UnboundLocalError
|
|
567
|
+
jinx_output = {"output": "Jinx execution did not complete."}
|
|
568
|
+
|
|
566
569
|
try:
|
|
570
|
+
# --- CRITICAL FIX HERE ---
|
|
571
|
+
# Pass arguments as keyword arguments to avoid positional confusion
|
|
572
|
+
# Use npc.jinja_env for the second-pass rendering
|
|
567
573
|
jinx_output = jinx.execute(
|
|
568
|
-
input_values,
|
|
569
|
-
|
|
570
|
-
npc=npc,
|
|
574
|
+
input_values=input_values,
|
|
575
|
+
npc=npc, # This is the orchestrating NPC
|
|
571
576
|
messages=messages,
|
|
572
|
-
extra_globals=extra_globals
|
|
573
|
-
|
|
577
|
+
extra_globals=extra_globals,
|
|
578
|
+
jinja_env=npc.jinja_env if npc else (team.forenpc.jinja_env if team and team.forenpc else None) # Use NPC's or Team's forenpc's jinja_env
|
|
574
579
|
)
|
|
580
|
+
# Ensure jinx_output is a dict with an 'output' key
|
|
581
|
+
if jinx_output is None:
|
|
582
|
+
jinx_output = {"output": "Jinx executed, but returned no explicit output."}
|
|
583
|
+
elif not isinstance(jinx_output, dict):
|
|
584
|
+
jinx_output = {"output": str(jinx_output)}
|
|
585
|
+
|
|
575
586
|
except Exception as e:
|
|
576
587
|
print(f"An error occurred while executing the jinx: {e}")
|
|
577
588
|
print(f"trying again, attempt {attempt+1}")
|
|
578
589
|
print('command', command)
|
|
579
590
|
if attempt < n_attempts:
|
|
591
|
+
# Recursively call handle_jinx_call for retry
|
|
580
592
|
jinx_output = handle_jinx_call(
|
|
581
593
|
command,
|
|
582
594
|
jinx_name,
|
|
@@ -589,9 +601,15 @@ def handle_jinx_call(
|
|
|
589
601
|
attempt=attempt + 1,
|
|
590
602
|
n_attempts=n_attempts,
|
|
591
603
|
context=f""" \n \n \n "jinx failed: {e} \n \n \n here was the previous attempt: {input_values}""",
|
|
604
|
+
extra_globals=extra_globals
|
|
592
605
|
)
|
|
606
|
+
else:
|
|
607
|
+
# If max attempts reached, set a clear error output
|
|
608
|
+
jinx_output = {"output": f"Jinx '{jinx_name}' failed after {n_attempts} attempts: {e}", "error": True}
|
|
609
|
+
|
|
610
|
+
|
|
593
611
|
if not stream and len(messages) > 0 :
|
|
594
|
-
render_markdown(f""" ## jinx OUTPUT FROM CALLING {jinx_name} \n \n output:{jinx_output
|
|
612
|
+
render_markdown(f""" ## jinx OUTPUT FROM CALLING {jinx_name} \n \n output:{jinx_output.get('output', 'No output.')}""" )
|
|
595
613
|
response = get_llm_response(f"""
|
|
596
614
|
The user had the following request: {command}.
|
|
597
615
|
Here were the jinx outputs from calling {jinx_name}: {jinx_output.get('output', '')}
|
|
@@ -610,7 +628,9 @@ def handle_jinx_call(
|
|
|
610
628
|
response = response.get("response", {})
|
|
611
629
|
return {'messages':messages, 'output':response}
|
|
612
630
|
|
|
613
|
-
return {'messages': messages, 'output': jinx_output
|
|
631
|
+
return {'messages': messages, 'output': jinx_output.get('output', 'No output.')} # Ensure 'output' key exists
|
|
632
|
+
|
|
633
|
+
# --- END OF CORRECTED handle_jinx_call ---
|
|
614
634
|
|
|
615
635
|
|
|
616
636
|
def handle_request_input(
|
|
@@ -670,7 +690,7 @@ def jinx_handler(command, extracted_data, **kwargs):
|
|
|
670
690
|
team=kwargs.get('team'),
|
|
671
691
|
stream=kwargs.get('stream'),
|
|
672
692
|
context=kwargs.get('context'),
|
|
673
|
-
extra_globals=kwargs.get('extra_globals')
|
|
693
|
+
extra_globals=kwargs.get('extra_globals')
|
|
674
694
|
)
|
|
675
695
|
|
|
676
696
|
def answer_handler(command, extracted_data, **kwargs):
|
|
@@ -976,8 +996,8 @@ def execute_multi_step_plan(
|
|
|
976
996
|
images: list = None,
|
|
977
997
|
stream=False,
|
|
978
998
|
context=None,
|
|
979
|
-
|
|
980
999
|
actions: Dict[str, Dict] = None,
|
|
1000
|
+
extra_globals=None,
|
|
981
1001
|
**kwargs,
|
|
982
1002
|
):
|
|
983
1003
|
"""
|
|
@@ -1045,7 +1065,7 @@ def execute_multi_step_plan(
|
|
|
1045
1065
|
render_markdown(
|
|
1046
1066
|
f"- Executing Action: {action_name} \n- Explanation: {action_data.get('explanation')}\n "
|
|
1047
1067
|
)
|
|
1048
|
-
|
|
1068
|
+
|
|
1049
1069
|
result = handler(
|
|
1050
1070
|
command=command,
|
|
1051
1071
|
extracted_data=action_data,
|
|
@@ -1059,7 +1079,7 @@ def execute_multi_step_plan(
|
|
|
1059
1079
|
stream=stream,
|
|
1060
1080
|
context=context+step_context,
|
|
1061
1081
|
images=images,
|
|
1062
|
-
extra_globals=
|
|
1082
|
+
extra_globals=extra_globals
|
|
1063
1083
|
)
|
|
1064
1084
|
except KeyError as e:
|
|
1065
1085
|
|
|
@@ -1862,7 +1882,7 @@ def zoom_in(facts,
|
|
|
1862
1882
|
npc=npc,
|
|
1863
1883
|
context=context,
|
|
1864
1884
|
attempt_number=attempt_number+1,
|
|
1865
|
-
n_tries=n_tries
|
|
1885
|
+
n_tries=n_attempts, # Corrected from n_tries to n_attempts
|
|
1866
1886
|
**kwargs)
|
|
1867
1887
|
return facts
|
|
1868
1888
|
def generate_groups(facts,
|
|
@@ -1945,7 +1965,6 @@ def remove_redundant_groups(groups,
|
|
|
1945
1965
|
response = get_llm_response(prompt,
|
|
1946
1966
|
model=model,
|
|
1947
1967
|
provider=provider,
|
|
1948
|
-
format="json",
|
|
1949
1968
|
npc=npc,
|
|
1950
1969
|
context=context,
|
|
1951
1970
|
**kwargs)
|
|
@@ -2056,17 +2075,18 @@ def get_related_facts_llm(new_fact_statement,
|
|
|
2056
2075
|
npc=npc,
|
|
2057
2076
|
context=context,
|
|
2058
2077
|
**kwargs)
|
|
2059
|
-
if attempt_number
|
|
2060
|
-
|
|
2061
|
-
|
|
2062
|
-
|
|
2063
|
-
|
|
2064
|
-
|
|
2065
|
-
|
|
2066
|
-
|
|
2067
|
-
|
|
2068
|
-
|
|
2069
|
-
|
|
2078
|
+
if attempt_number <= n_attempts: # Corrected logic: retry if attempt_number is within limits
|
|
2079
|
+
if not response["response"].get("related_facts", []): # Only retry if no related facts found
|
|
2080
|
+
print(f" Attempt {attempt_number} to find related facts yielded no results. Retrying...")
|
|
2081
|
+
return get_related_facts_llm(new_fact_statement,
|
|
2082
|
+
existing_fact_statements,
|
|
2083
|
+
model=model,
|
|
2084
|
+
provider=provider,
|
|
2085
|
+
npc=npc,
|
|
2086
|
+
attempt_number=attempt_number+1,
|
|
2087
|
+
n_attempts=n_attempts,
|
|
2088
|
+
context=context,
|
|
2089
|
+
**kwargs)
|
|
2070
2090
|
|
|
2071
2091
|
return response["response"].get("related_facts", [])
|
|
2072
2092
|
|
|
@@ -825,6 +825,31 @@ class CommandHistory:
|
|
|
825
825
|
FROM message_attachments WHERE message_id = :message_id
|
|
826
826
|
"""
|
|
827
827
|
return self._fetch_all(stmt, {"message_id": message_id})
|
|
828
|
+
def delete_message(self, conversation_id, message_id):
|
|
829
|
+
"""Delete a specific message from a conversation"""
|
|
830
|
+
conn = sqlite3.connect(self.db_path)
|
|
831
|
+
cursor = conn.cursor()
|
|
832
|
+
|
|
833
|
+
try:
|
|
834
|
+
# Delete from the messages table
|
|
835
|
+
cursor.execute("""
|
|
836
|
+
DELETE FROM messages
|
|
837
|
+
WHERE conversation_id = ? AND message_id = ?
|
|
838
|
+
""", (conversation_id, message_id))
|
|
839
|
+
|
|
840
|
+
rows_affected = cursor.rowcount
|
|
841
|
+
conn.commit()
|
|
842
|
+
|
|
843
|
+
print(f"[DB] Deleted message {message_id} from conversation {conversation_id}. Rows affected: {rows_affected}")
|
|
844
|
+
|
|
845
|
+
return rows_affected
|
|
846
|
+
|
|
847
|
+
except Exception as e:
|
|
848
|
+
print(f"[DB] Error deleting message: {e}")
|
|
849
|
+
conn.rollback()
|
|
850
|
+
raise
|
|
851
|
+
finally:
|
|
852
|
+
conn.close()
|
|
828
853
|
|
|
829
854
|
def get_attachment_data(self, attachment_id) -> Optional[Tuple[bytes, str, str]]:
|
|
830
855
|
stmt = "SELECT attachment_data, attachment_name, attachment_type FROM message_attachments WHERE id = :attachment_id"
|
|
@@ -1172,4 +1197,4 @@ def get_available_tables(db_path_or_engine: Union[str, Engine]) -> List[Tuple[st
|
|
|
1172
1197
|
return [row[0] for row in result]
|
|
1173
1198
|
except Exception as e:
|
|
1174
1199
|
print(f"Error getting available tables: {e}")
|
|
1175
|
-
return []
|
|
1200
|
+
return []
|