noshot 7.0.0__tar.gz → 9.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. {noshot-7.0.0 → noshot-9.0.0}/PKG-INFO +1 -1
  2. {noshot-7.0.0 → noshot-9.0.0}/noshot.egg-info/PKG-INFO +1 -1
  3. noshot-9.0.0/noshot.egg-info/SOURCES.txt +74 -0
  4. {noshot-7.0.0 → noshot-9.0.0}/setup.py +1 -1
  5. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +201 -0
  6. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +201 -0
  7. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +409 -0
  8. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +274 -0
  9. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +170 -0
  10. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +1087 -0
  11. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +178 -0
  12. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +185 -0
  13. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +106 -0
  14. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +177 -0
  15. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +195 -0
  16. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +267 -0
  17. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +104 -0
  18. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +109 -0
  19. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +220 -0
  20. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +99 -0
  21. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +211 -0
  22. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +99 -0
  23. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +118 -0
  24. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +603 -0
  25. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +231 -0
  26. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +269 -0
  27. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +274 -0
  28. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +263 -0
  29. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +198 -0
  30. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +201 -0
  31. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +1339 -0
  32. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +151 -0
  33. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +396 -0
  34. noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +650 -0
  35. noshot-7.0.0/noshot.egg-info/SOURCES.txt +0 -44
  36. {noshot-7.0.0 → noshot-9.0.0}/LICENSE.txt +0 -0
  37. {noshot-7.0.0 → noshot-9.0.0}/README.md +0 -0
  38. {noshot-7.0.0 → noshot-9.0.0}/noshot.egg-info/dependency_links.txt +0 -0
  39. {noshot-7.0.0 → noshot-9.0.0}/noshot.egg-info/not-zip-safe +0 -0
  40. {noshot-7.0.0 → noshot-9.0.0}/noshot.egg-info/top_level.txt +0 -0
  41. {noshot-7.0.0 → noshot-9.0.0}/setup.cfg +0 -0
  42. {noshot-7.0.0 → noshot-9.0.0}/src/noshot/__init__.py +0 -0
  43. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -0
  44. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/1. EDA-PCA (Rice Dataset).ipynb +0 -0
  45. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/10. HMM Veterbi.ipynb +0 -0
  46. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/2. KNN (Balance Scale Dataset).ipynb +0 -0
  47. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/2. KNN (Iris Dataset).ipynb +0 -0
  48. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/2. KNN (Sobar-72 Dataset).ipynb +0 -0
  49. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/3. LDA (Balance Scale Dataset).ipynb +0 -0
  50. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -0
  51. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/4. Linear Regression (Machine Dataset).ipynb +0 -0
  52. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/4. Linear Regression (Real Estate Dataset).ipynb +0 -0
  53. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/5. Logistic Regression (Magic04 Dataset).ipynb +0 -0
  54. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/5. Logistic Regression (Wine Dataset).ipynb +0 -0
  55. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -0
  56. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -0
  57. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/7. SVM (Rice Dataset).ipynb +0 -0
  58. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -0
  59. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/9. CNN (Cifar10 Dataset).ipynb +0 -0
  60. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/1. PCA.ipynb +0 -0
  61. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/10. CNN.ipynb +0 -0
  62. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/11. HMM.ipynb +0 -0
  63. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/2. KNN.ipynb +0 -0
  64. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/3. LDA.ipynb +0 -0
  65. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/4. Linear Regression.ipynb +0 -0
  66. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/5. Logistic Regression.ipynb +0 -0
  67. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/6. Naive Bayes (Titanic).ipynb +0 -0
  68. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/6. Naive Bayes (Wine).ipynb +0 -0
  69. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/7. SVM Linear.ipynb +0 -0
  70. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/8. SVM Non-Linear.ipynb +0 -0
  71. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/9. FNN With Regularization.ipynb +0 -0
  72. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/9. FNN Without Regularization.ipynb +0 -0
  73. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-9.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/All in One Lab CIA 1 Q.ipynb +0 -0
  74. {noshot-7.0.0 → noshot-9.0.0}/src/noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -0
  75. {noshot-7.0.0 → noshot-9.0.0}/src/noshot/main.py +0 -0
  76. {noshot-7.0.0 → noshot-9.0.0}/src/noshot/utils/__init__.py +0 -0
  77. {noshot-7.0.0 → noshot-9.0.0}/src/noshot/utils/shell_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 7.0.0
3
+ Version: 9.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 7.0.0
3
+ Version: 9.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -0,0 +1,74 @@
1
+ LICENSE.txt
2
+ README.md
3
+ setup.py
4
+ noshot.egg-info/PKG-INFO
5
+ noshot.egg-info/SOURCES.txt
6
+ noshot.egg-info/dependency_links.txt
7
+ noshot.egg-info/not-zip-safe
8
+ noshot.egg-info/top_level.txt
9
+ src/noshot/__init__.py
10
+ src/noshot/main.py
11
+ src/noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb
12
+ src/noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb
13
+ src/noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb
14
+ src/noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb
15
+ src/noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb
16
+ src/noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb
17
+ src/noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb
18
+ src/noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb
19
+ src/noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb
20
+ src/noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb
21
+ src/noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb
22
+ src/noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb
23
+ src/noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb
24
+ src/noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb
25
+ src/noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb
26
+ src/noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb
27
+ src/noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb
28
+ src/noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb
29
+ src/noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb
30
+ src/noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb
31
+ src/noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb
32
+ src/noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb
33
+ src/noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb
34
+ src/noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb
35
+ src/noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb
36
+ src/noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb
37
+ src/noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb
38
+ src/noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb
39
+ src/noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb
40
+ src/noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb
41
+ src/noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb
42
+ src/noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb
43
+ src/noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb
44
+ src/noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb
45
+ src/noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb
46
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb
47
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb
48
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb
49
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb
50
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb
51
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb
52
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb
53
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb
54
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb
55
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb
56
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb
57
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb
58
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb
59
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb
60
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb
61
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb
62
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb
63
+ src/noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb
64
+ src/noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb
65
+ src/noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb
66
+ src/noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb
67
+ src/noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb
68
+ src/noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb
69
+ src/noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv
70
+ src/noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data
71
+ src/noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv
72
+ src/noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv
73
+ src/noshot/utils/__init__.py
74
+ src/noshot/utils/shell_utils.py
@@ -5,7 +5,7 @@ with open("README.md", "r", encoding="utf-8") as f:
5
5
 
6
6
  setup(
7
7
  name="noshot",
8
- version="7.0.0",
8
+ version="9.0.0",
9
9
  author="Tim Stan S",
10
10
  description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
11
11
  long_description=long_description,
@@ -0,0 +1,201 @@
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": []
7
+ },
8
+ "kernelspec": {
9
+ "name": "python3",
10
+ "display_name": "Python 3"
11
+ },
12
+ "language_info": {
13
+ "name": "python"
14
+ }
15
+ },
16
+ "cells": [
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": 3,
20
+ "metadata": {
21
+ "colab": {
22
+ "base_uri": "https://localhost:8080/"
23
+ },
24
+ "id": "BlWncmICrVwe",
25
+ "outputId": "a7219871-550c-456a-c487-f3a4cfcd4564"
26
+ },
27
+ "outputs": [
28
+ {
29
+ "output_type": "stream",
30
+ "name": "stdout",
31
+ "text": [
32
+ "Found 125 files belonging to 5 classes.\n",
33
+ "Using 100 files for training.\n",
34
+ "Found 125 files belonging to 5 classes.\n",
35
+ "Using 25 files for validation.\n",
36
+ "Epoch 1/10\n"
37
+ ]
38
+ },
39
+ {
40
+ "output_type": "stream",
41
+ "name": "stderr",
42
+ "text": [
43
+ "/usr/local/lib/python3.11/dist-packages/keras/src/layers/preprocessing/tf_data_layer.py:19: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
44
+ " super().__init__(**kwargs)\n"
45
+ ]
46
+ },
47
+ {
48
+ "output_type": "stream",
49
+ "name": "stdout",
50
+ "text": [
51
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 0.5803 - loss: 1.1232 - val_accuracy: 1.0000 - val_loss: 0.0053\n",
52
+ "Epoch 2/10\n",
53
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0041 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
54
+ "Epoch 3/10\n",
55
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 1.8428e-09 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
56
+ "Epoch 4/10\n",
57
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
58
+ "Epoch 5/10\n",
59
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 4s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 3.3379e-08\n",
60
+ "Epoch 6/10\n",
61
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 6.8267e-08 - val_accuracy: 1.0000 - val_loss: 2.5913e-05\n",
62
+ "Epoch 7/10\n",
63
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 2.7628e-05 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
64
+ "Epoch 8/10\n",
65
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
66
+ "Epoch 9/10\n",
67
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
68
+ "Epoch 10/10\n",
69
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n"
70
+ ]
71
+ },
72
+ {
73
+ "output_type": "stream",
74
+ "name": "stderr",
75
+ "text": [
76
+ "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
77
+ ]
78
+ }
79
+ ],
80
+ "source": [
81
+ "import tensorflow as tf\n",
82
+ "from tensorflow.keras import layers, models\n",
83
+ "import os\n",
84
+ "\n",
85
+ "dataset_path = '/content/Dataset'\n",
86
+ "\n",
87
+ "img_height, img_width = 180, 180\n",
88
+ "batch_size = 32\n",
89
+ "\n",
90
+ "train_ds = tf.keras.utils.image_dataset_from_directory(\n",
91
+ " dataset_path,\n",
92
+ " validation_split=0.2,\n",
93
+ " subset=\"training\",\n",
94
+ " seed=123,\n",
95
+ " image_size=(img_height, img_width),\n",
96
+ " batch_size=batch_size)\n",
97
+ "\n",
98
+ "val_ds = tf.keras.utils.image_dataset_from_directory(\n",
99
+ " dataset_path,\n",
100
+ " validation_split=0.2,\n",
101
+ " subset=\"validation\",\n",
102
+ " seed=123,\n",
103
+ " image_size=(img_height, img_width),\n",
104
+ " batch_size=batch_size)\n",
105
+ "\n",
106
+ "model = models.Sequential([\n",
107
+ " layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),\n",
108
+ " layers.Conv2D(32, 3, activation='relu'),\n",
109
+ " layers.MaxPooling2D(),\n",
110
+ " layers.Conv2D(64, 3, activation='relu'),\n",
111
+ " layers.MaxPooling2D(),\n",
112
+ " layers.Conv2D(128, 3, activation='relu'),\n",
113
+ " layers.MaxPooling2D(),\n",
114
+ " layers.Flatten(),\n",
115
+ " layers.Dense(128, activation='relu'),\n",
116
+ " layers.Dense(5)\n",
117
+ "])\n",
118
+ "\n",
119
+ "model.compile(optimizer='adam',\n",
120
+ " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
121
+ " metrics=['accuracy'])\n",
122
+ "\n",
123
+ "epochs = 10\n",
124
+ "history = model.fit(\n",
125
+ " train_ds,\n",
126
+ " validation_data=val_ds,\n",
127
+ " epochs=epochs\n",
128
+ ")\n",
129
+ "\n",
130
+ "model.save('pistachio_classifier.h5')\n"
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "code",
135
+ "source": [
136
+ "import tensorflow as tf\n",
137
+ "import numpy as np\n",
138
+ "from tensorflow.keras.preprocessing import image\n",
139
+ "\n",
140
+ "model = tf.keras.models.load_model('pistachio_classifier.h5')\n",
141
+ "\n",
142
+ "class_names = ['1','2','3','A','B']\n"
143
+ ],
144
+ "metadata": {
145
+ "colab": {
146
+ "base_uri": "https://localhost:8080/"
147
+ },
148
+ "id": "5V8OLPNKsQSq",
149
+ "outputId": "9b62fcc7-fca4-4ee0-8e9e-66b4538d7771"
150
+ },
151
+ "execution_count": 4,
152
+ "outputs": [
153
+ {
154
+ "output_type": "stream",
155
+ "name": "stderr",
156
+ "text": [
157
+ "WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"
158
+ ]
159
+ }
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "source": [
165
+ "\n",
166
+ "img_path = '/content/2.jpg'\n",
167
+ "\n",
168
+ "\n",
169
+ "img = image.load_img(img_path, target_size=(180, 180))\n",
170
+ "img_array = image.img_to_array(img)\n",
171
+ "img_array = tf.expand_dims(img_array, 0)\n",
172
+ "\n",
173
+ "predictions = model.predict(img_array)\n",
174
+ "score = tf.nn.softmax(predictions[0])\n",
175
+ "\n",
176
+ "predicted_class = class_names[np.argmax(score)]\n",
177
+ "confidence = 100 * np.max(score)\n",
178
+ "\n",
179
+ "print(f\"This image most likely belongs to '{predicted_class}' with a {confidence:.2f}% confidence.\")\n"
180
+ ],
181
+ "metadata": {
182
+ "colab": {
183
+ "base_uri": "https://localhost:8080/"
184
+ },
185
+ "id": "Cn_opNultOiQ",
186
+ "outputId": "ed80fd91-4da5-444a-8925-8509b1991727"
187
+ },
188
+ "execution_count": 5,
189
+ "outputs": [
190
+ {
191
+ "output_type": "stream",
192
+ "name": "stdout",
193
+ "text": [
194
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step\n",
195
+ "This image most likely belongs to '2' with a 100.00% confidence.\n"
196
+ ]
197
+ }
198
+ ]
199
+ }
200
+ ]
201
+ }
@@ -0,0 +1,201 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "source": [
6
+ "import tensorflow as tf\n",
7
+ "from tensorflow.keras import layers, models\n",
8
+ "import os\n",
9
+ "\n",
10
+ "dataset_path = '/content/Dataset'\n",
11
+ "\n",
12
+ "img_height, img_width = 180, 180\n",
13
+ "batch_size = 32\n",
14
+ "\n",
15
+ "train_ds = tf.keras.utils.image_dataset_from_directory(\n",
16
+ " dataset_path,\n",
17
+ " validation_split=0.2,\n",
18
+ " subset=\"training\",\n",
19
+ " seed=123,\n",
20
+ " image_size=(img_height, img_width),\n",
21
+ " batch_size=batch_size)\n",
22
+ "\n",
23
+ "val_ds = tf.keras.utils.image_dataset_from_directory(\n",
24
+ " dataset_path,\n",
25
+ " validation_split=0.2,\n",
26
+ " subset=\"validation\",\n",
27
+ " seed=123,\n",
28
+ " image_size=(img_height, img_width),\n",
29
+ " batch_size=batch_size)\n",
30
+ "\n",
31
+ "model = models.Sequential([\n",
32
+ " layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),\n",
33
+ " layers.Conv2D(32, 3, activation='relu'),\n",
34
+ " layers.MaxPooling2D(),\n",
35
+ " layers.Conv2D(64, 3, activation='relu'),\n",
36
+ " layers.MaxPooling2D(),\n",
37
+ " layers.Conv2D(128, 3, activation='relu'),\n",
38
+ " layers.MaxPooling2D(),\n",
39
+ " layers.Flatten(),\n",
40
+ " layers.Dense(128, activation='relu'),\n",
41
+ " layers.Dense(2)\n",
42
+ "])\n",
43
+ "\n",
44
+ "model.compile(optimizer='adam',\n",
45
+ " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
46
+ " metrics=['accuracy'])\n",
47
+ "\n",
48
+ "epochs = 10\n",
49
+ "history = model.fit(\n",
50
+ " train_ds,\n",
51
+ " validation_data=val_ds,\n",
52
+ " epochs=epochs\n",
53
+ ")\n",
54
+ "\n",
55
+ "model.save('pistachio_classifier.h5')\n"
56
+ ],
57
+ "metadata": {
58
+ "colab": {
59
+ "base_uri": "https://localhost:8080/"
60
+ },
61
+ "id": "X5rygqUYn0NL",
62
+ "outputId": "dfb18a11-ecb5-4221-c838-f2b0af4c87c3"
63
+ },
64
+ "execution_count": 1,
65
+ "outputs": [
66
+ {
67
+ "output_type": "stream",
68
+ "name": "stdout",
69
+ "text": [
70
+ "Found 100 files belonging to 2 classes.\n",
71
+ "Using 80 files for training.\n",
72
+ "Found 100 files belonging to 2 classes.\n",
73
+ "Using 20 files for validation.\n"
74
+ ]
75
+ },
76
+ {
77
+ "output_type": "stream",
78
+ "name": "stderr",
79
+ "text": [
80
+ "/usr/local/lib/python3.11/dist-packages/keras/src/layers/preprocessing/tf_data_layer.py:19: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
81
+ " super().__init__(**kwargs)\n"
82
+ ]
83
+ },
84
+ {
85
+ "output_type": "stream",
86
+ "name": "stdout",
87
+ "text": [
88
+ "Epoch 1/10\n",
89
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 0.5469 - loss: 0.7486 - val_accuracy: 0.6000 - val_loss: 0.8673\n",
90
+ "Epoch 2/10\n",
91
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 2s/step - accuracy: 0.5352 - loss: 0.7847 - val_accuracy: 0.6500 - val_loss: 0.6347\n",
92
+ "Epoch 3/10\n",
93
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8211 - loss: 0.4471 - val_accuracy: 0.8000 - val_loss: 0.6110\n",
94
+ "Epoch 4/10\n",
95
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2s/step - accuracy: 0.8797 - loss: 0.3727 - val_accuracy: 0.8500 - val_loss: 0.8057\n",
96
+ "Epoch 5/10\n",
97
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2s/step - accuracy: 0.8742 - loss: 0.3163 - val_accuracy: 0.6500 - val_loss: 0.9343\n",
98
+ "Epoch 6/10\n",
99
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 0.8070 - loss: 0.3726 - val_accuracy: 0.8000 - val_loss: 0.7291\n",
100
+ "Epoch 7/10\n",
101
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8766 - loss: 0.2542 - val_accuracy: 0.8000 - val_loss: 0.6933\n",
102
+ "Epoch 8/10\n",
103
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2s/step - accuracy: 0.9453 - loss: 0.1739 - val_accuracy: 0.8500 - val_loss: 0.6692\n",
104
+ "Epoch 9/10\n",
105
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 0.8969 - loss: 0.1860 - val_accuracy: 0.8500 - val_loss: 0.7117\n",
106
+ "Epoch 10/10\n",
107
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 0.9250 - loss: 0.1766 - val_accuracy: 0.8500 - val_loss: 0.7313\n"
108
+ ]
109
+ },
110
+ {
111
+ "output_type": "stream",
112
+ "name": "stderr",
113
+ "text": [
114
+ "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
115
+ ]
116
+ }
117
+ ]
118
+ },
119
+ {
120
+ "cell_type": "code",
121
+ "source": [
122
+ "import tensorflow as tf\n",
123
+ "import numpy as np\n",
124
+ "from tensorflow.keras.preprocessing import image\n",
125
+ "\n",
126
+ "model = tf.keras.models.load_model('pistachio_classifier.h5')\n",
127
+ "\n",
128
+ "class_names = ['Kirmizi_Pistachio', 'Siirt_Pistachio']\n"
129
+ ],
130
+ "metadata": {
131
+ "colab": {
132
+ "base_uri": "https://localhost:8080/"
133
+ },
134
+ "id": "7GyugRDLpLlN",
135
+ "outputId": "8bad83c9-c088-405a-ec06-ac493f6d7072"
136
+ },
137
+ "execution_count": 2,
138
+ "outputs": [
139
+ {
140
+ "output_type": "stream",
141
+ "name": "stderr",
142
+ "text": [
143
+ "WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"
144
+ ]
145
+ }
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "code",
150
+ "source": [
151
+ "\n",
152
+ "img_path = '/content/siirt (3).jpg'\n",
153
+ "\n",
154
+ "\n",
155
+ "img = image.load_img(img_path, target_size=(180, 180))\n",
156
+ "img_array = image.img_to_array(img)\n",
157
+ "img_array = tf.expand_dims(img_array, 0)\n",
158
+ "\n",
159
+ "predictions = model.predict(img_array)\n",
160
+ "score = tf.nn.softmax(predictions[0])\n",
161
+ "\n",
162
+ "predicted_class = class_names[np.argmax(score)]\n",
163
+ "confidence = 100 * np.max(score)\n",
164
+ "\n",
165
+ "print(f\"This image most likely belongs to '{predicted_class}' with a {confidence:.2f}% confidence.\")\n"
166
+ ],
167
+ "metadata": {
168
+ "colab": {
169
+ "base_uri": "https://localhost:8080/"
170
+ },
171
+ "id": "SwZcLQftpOYI",
172
+ "outputId": "90c61acd-31cd-4c49-97f8-59bc90fc029c"
173
+ },
174
+ "execution_count": 3,
175
+ "outputs": [
176
+ {
177
+ "output_type": "stream",
178
+ "name": "stdout",
179
+ "text": [
180
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 188ms/step\n",
181
+ "This image most likely belongs to 'Kirmizi_Pistachio' with a 94.41% confidence.\n"
182
+ ]
183
+ }
184
+ ]
185
+ }
186
+ ],
187
+ "metadata": {
188
+ "colab": {
189
+ "provenance": []
190
+ },
191
+ "kernelspec": {
192
+ "display_name": "Python 3",
193
+ "name": "python3"
194
+ },
195
+ "language_info": {
196
+ "name": "python"
197
+ }
198
+ },
199
+ "nbformat": 4,
200
+ "nbformat_minor": 0
201
+ }