noshot 7.0.0__tar.gz → 8.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (66) hide show
  1. {noshot-7.0.0 → noshot-8.0.0}/PKG-INFO +1 -1
  2. {noshot-7.0.0 → noshot-8.0.0}/noshot.egg-info/PKG-INFO +1 -1
  3. noshot-8.0.0/noshot.egg-info/SOURCES.txt +63 -0
  4. {noshot-7.0.0 → noshot-8.0.0}/setup.py +1 -1
  5. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +201 -0
  6. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +201 -0
  7. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +274 -0
  8. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +170 -0
  9. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +1087 -0
  10. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +178 -0
  11. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +185 -0
  12. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +106 -0
  13. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +177 -0
  14. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +195 -0
  15. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +267 -0
  16. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +104 -0
  17. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +109 -0
  18. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +220 -0
  19. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +99 -0
  20. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +211 -0
  21. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +99 -0
  22. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +118 -0
  23. noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +603 -0
  24. noshot-7.0.0/noshot.egg-info/SOURCES.txt +0 -44
  25. {noshot-7.0.0 → noshot-8.0.0}/LICENSE.txt +0 -0
  26. {noshot-7.0.0 → noshot-8.0.0}/README.md +0 -0
  27. {noshot-7.0.0 → noshot-8.0.0}/noshot.egg-info/dependency_links.txt +0 -0
  28. {noshot-7.0.0 → noshot-8.0.0}/noshot.egg-info/not-zip-safe +0 -0
  29. {noshot-7.0.0 → noshot-8.0.0}/noshot.egg-info/top_level.txt +0 -0
  30. {noshot-7.0.0 → noshot-8.0.0}/setup.cfg +0 -0
  31. {noshot-7.0.0 → noshot-8.0.0}/src/noshot/__init__.py +0 -0
  32. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -0
  33. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/1. EDA-PCA (Rice Dataset).ipynb +0 -0
  34. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/10. HMM Veterbi.ipynb +0 -0
  35. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/2. KNN (Balance Scale Dataset).ipynb +0 -0
  36. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/2. KNN (Iris Dataset).ipynb +0 -0
  37. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/2. KNN (Sobar-72 Dataset).ipynb +0 -0
  38. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/3. LDA (Balance Scale Dataset).ipynb +0 -0
  39. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -0
  40. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/4. Linear Regression (Machine Dataset).ipynb +0 -0
  41. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/4. Linear Regression (Real Estate Dataset).ipynb +0 -0
  42. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/5. Logistic Regression (Magic04 Dataset).ipynb +0 -0
  43. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/5. Logistic Regression (Wine Dataset).ipynb +0 -0
  44. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -0
  45. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -0
  46. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/7. SVM (Rice Dataset).ipynb +0 -0
  47. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -0
  48. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Tamilan Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 1}/9. CNN (Cifar10 Dataset).ipynb +0 -0
  49. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/1. PCA.ipynb +0 -0
  50. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/10. CNN.ipynb +0 -0
  51. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/11. HMM.ipynb +0 -0
  52. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/2. KNN.ipynb +0 -0
  53. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/3. LDA.ipynb +0 -0
  54. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/4. Linear Regression.ipynb +0 -0
  55. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/5. Logistic Regression.ipynb +0 -0
  56. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/6. Naive Bayes (Titanic).ipynb +0 -0
  57. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/6. Naive Bayes (Wine).ipynb +0 -0
  58. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/7. SVM Linear.ipynb +0 -0
  59. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/8. SVM Non-Linear.ipynb +0 -0
  60. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/9. FNN With Regularization.ipynb +0 -0
  61. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/9. FNN Without Regularization.ipynb +0 -0
  62. {noshot-7.0.0/src/noshot/data/ML TS XAI/ML/Whitefang Code → noshot-8.0.0/src/noshot/data/ML TS XAI/ML/ML 2}/All in One Lab CIA 1 Q.ipynb +0 -0
  63. {noshot-7.0.0 → noshot-8.0.0}/src/noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -0
  64. {noshot-7.0.0 → noshot-8.0.0}/src/noshot/main.py +0 -0
  65. {noshot-7.0.0 → noshot-8.0.0}/src/noshot/utils/__init__.py +0 -0
  66. {noshot-7.0.0 → noshot-8.0.0}/src/noshot/utils/shell_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 7.0.0
3
+ Version: 8.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 7.0.0
3
+ Version: 8.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -0,0 +1,63 @@
1
+ LICENSE.txt
2
+ README.md
3
+ setup.py
4
+ noshot.egg-info/PKG-INFO
5
+ noshot.egg-info/SOURCES.txt
6
+ noshot.egg-info/dependency_links.txt
7
+ noshot.egg-info/not-zip-safe
8
+ noshot.egg-info/top_level.txt
9
+ src/noshot/__init__.py
10
+ src/noshot/main.py
11
+ src/noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb
12
+ src/noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb
13
+ src/noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb
14
+ src/noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb
15
+ src/noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb
16
+ src/noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb
17
+ src/noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb
18
+ src/noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb
19
+ src/noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb
20
+ src/noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb
21
+ src/noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb
22
+ src/noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb
23
+ src/noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb
24
+ src/noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb
25
+ src/noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb
26
+ src/noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb
27
+ src/noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb
28
+ src/noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb
29
+ src/noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb
30
+ src/noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb
31
+ src/noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb
32
+ src/noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb
33
+ src/noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb
34
+ src/noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb
35
+ src/noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb
36
+ src/noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb
37
+ src/noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb
38
+ src/noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb
39
+ src/noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb
40
+ src/noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb
41
+ src/noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb
42
+ src/noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb
43
+ src/noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb
44
+ src/noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb
45
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb
46
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb
47
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb
48
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb
49
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb
50
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb
51
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb
52
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb
53
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb
54
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb
55
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb
56
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb
57
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb
58
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb
59
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb
60
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb
61
+ src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb
62
+ src/noshot/utils/__init__.py
63
+ src/noshot/utils/shell_utils.py
@@ -5,7 +5,7 @@ with open("README.md", "r", encoding="utf-8") as f:
5
5
 
6
6
  setup(
7
7
  name="noshot",
8
- version="7.0.0",
8
+ version="8.0.0",
9
9
  author="Tim Stan S",
10
10
  description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
11
11
  long_description=long_description,
@@ -0,0 +1,201 @@
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": []
7
+ },
8
+ "kernelspec": {
9
+ "name": "python3",
10
+ "display_name": "Python 3"
11
+ },
12
+ "language_info": {
13
+ "name": "python"
14
+ }
15
+ },
16
+ "cells": [
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": 3,
20
+ "metadata": {
21
+ "colab": {
22
+ "base_uri": "https://localhost:8080/"
23
+ },
24
+ "id": "BlWncmICrVwe",
25
+ "outputId": "a7219871-550c-456a-c487-f3a4cfcd4564"
26
+ },
27
+ "outputs": [
28
+ {
29
+ "output_type": "stream",
30
+ "name": "stdout",
31
+ "text": [
32
+ "Found 125 files belonging to 5 classes.\n",
33
+ "Using 100 files for training.\n",
34
+ "Found 125 files belonging to 5 classes.\n",
35
+ "Using 25 files for validation.\n",
36
+ "Epoch 1/10\n"
37
+ ]
38
+ },
39
+ {
40
+ "output_type": "stream",
41
+ "name": "stderr",
42
+ "text": [
43
+ "/usr/local/lib/python3.11/dist-packages/keras/src/layers/preprocessing/tf_data_layer.py:19: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
44
+ " super().__init__(**kwargs)\n"
45
+ ]
46
+ },
47
+ {
48
+ "output_type": "stream",
49
+ "name": "stdout",
50
+ "text": [
51
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 0.5803 - loss: 1.1232 - val_accuracy: 1.0000 - val_loss: 0.0053\n",
52
+ "Epoch 2/10\n",
53
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0041 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
54
+ "Epoch 3/10\n",
55
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 1.8428e-09 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
56
+ "Epoch 4/10\n",
57
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
58
+ "Epoch 5/10\n",
59
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 4s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 3.3379e-08\n",
60
+ "Epoch 6/10\n",
61
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 6.8267e-08 - val_accuracy: 1.0000 - val_loss: 2.5913e-05\n",
62
+ "Epoch 7/10\n",
63
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 2.7628e-05 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
64
+ "Epoch 8/10\n",
65
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
66
+ "Epoch 9/10\n",
67
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n",
68
+ "Epoch 10/10\n",
69
+ "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - val_accuracy: 1.0000 - val_loss: 0.0000e+00\n"
70
+ ]
71
+ },
72
+ {
73
+ "output_type": "stream",
74
+ "name": "stderr",
75
+ "text": [
76
+ "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
77
+ ]
78
+ }
79
+ ],
80
+ "source": [
81
+ "import tensorflow as tf\n",
82
+ "from tensorflow.keras import layers, models\n",
83
+ "import os\n",
84
+ "\n",
85
+ "dataset_path = '/content/Dataset'\n",
86
+ "\n",
87
+ "img_height, img_width = 180, 180\n",
88
+ "batch_size = 32\n",
89
+ "\n",
90
+ "train_ds = tf.keras.utils.image_dataset_from_directory(\n",
91
+ " dataset_path,\n",
92
+ " validation_split=0.2,\n",
93
+ " subset=\"training\",\n",
94
+ " seed=123,\n",
95
+ " image_size=(img_height, img_width),\n",
96
+ " batch_size=batch_size)\n",
97
+ "\n",
98
+ "val_ds = tf.keras.utils.image_dataset_from_directory(\n",
99
+ " dataset_path,\n",
100
+ " validation_split=0.2,\n",
101
+ " subset=\"validation\",\n",
102
+ " seed=123,\n",
103
+ " image_size=(img_height, img_width),\n",
104
+ " batch_size=batch_size)\n",
105
+ "\n",
106
+ "model = models.Sequential([\n",
107
+ " layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),\n",
108
+ " layers.Conv2D(32, 3, activation='relu'),\n",
109
+ " layers.MaxPooling2D(),\n",
110
+ " layers.Conv2D(64, 3, activation='relu'),\n",
111
+ " layers.MaxPooling2D(),\n",
112
+ " layers.Conv2D(128, 3, activation='relu'),\n",
113
+ " layers.MaxPooling2D(),\n",
114
+ " layers.Flatten(),\n",
115
+ " layers.Dense(128, activation='relu'),\n",
116
+ " layers.Dense(5)\n",
117
+ "])\n",
118
+ "\n",
119
+ "model.compile(optimizer='adam',\n",
120
+ " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
121
+ " metrics=['accuracy'])\n",
122
+ "\n",
123
+ "epochs = 10\n",
124
+ "history = model.fit(\n",
125
+ " train_ds,\n",
126
+ " validation_data=val_ds,\n",
127
+ " epochs=epochs\n",
128
+ ")\n",
129
+ "\n",
130
+ "model.save('pistachio_classifier.h5')\n"
131
+ ]
132
+ },
133
+ {
134
+ "cell_type": "code",
135
+ "source": [
136
+ "import tensorflow as tf\n",
137
+ "import numpy as np\n",
138
+ "from tensorflow.keras.preprocessing import image\n",
139
+ "\n",
140
+ "model = tf.keras.models.load_model('pistachio_classifier.h5')\n",
141
+ "\n",
142
+ "class_names = ['1','2','3','A','B']\n"
143
+ ],
144
+ "metadata": {
145
+ "colab": {
146
+ "base_uri": "https://localhost:8080/"
147
+ },
148
+ "id": "5V8OLPNKsQSq",
149
+ "outputId": "9b62fcc7-fca4-4ee0-8e9e-66b4538d7771"
150
+ },
151
+ "execution_count": 4,
152
+ "outputs": [
153
+ {
154
+ "output_type": "stream",
155
+ "name": "stderr",
156
+ "text": [
157
+ "WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"
158
+ ]
159
+ }
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "source": [
165
+ "\n",
166
+ "img_path = '/content/2.jpg'\n",
167
+ "\n",
168
+ "\n",
169
+ "img = image.load_img(img_path, target_size=(180, 180))\n",
170
+ "img_array = image.img_to_array(img)\n",
171
+ "img_array = tf.expand_dims(img_array, 0)\n",
172
+ "\n",
173
+ "predictions = model.predict(img_array)\n",
174
+ "score = tf.nn.softmax(predictions[0])\n",
175
+ "\n",
176
+ "predicted_class = class_names[np.argmax(score)]\n",
177
+ "confidence = 100 * np.max(score)\n",
178
+ "\n",
179
+ "print(f\"This image most likely belongs to '{predicted_class}' with a {confidence:.2f}% confidence.\")\n"
180
+ ],
181
+ "metadata": {
182
+ "colab": {
183
+ "base_uri": "https://localhost:8080/"
184
+ },
185
+ "id": "Cn_opNultOiQ",
186
+ "outputId": "ed80fd91-4da5-444a-8925-8509b1991727"
187
+ },
188
+ "execution_count": 5,
189
+ "outputs": [
190
+ {
191
+ "output_type": "stream",
192
+ "name": "stdout",
193
+ "text": [
194
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 151ms/step\n",
195
+ "This image most likely belongs to '2' with a 100.00% confidence.\n"
196
+ ]
197
+ }
198
+ ]
199
+ }
200
+ ]
201
+ }
@@ -0,0 +1,201 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "source": [
6
+ "import tensorflow as tf\n",
7
+ "from tensorflow.keras import layers, models\n",
8
+ "import os\n",
9
+ "\n",
10
+ "dataset_path = '/content/Dataset'\n",
11
+ "\n",
12
+ "img_height, img_width = 180, 180\n",
13
+ "batch_size = 32\n",
14
+ "\n",
15
+ "train_ds = tf.keras.utils.image_dataset_from_directory(\n",
16
+ " dataset_path,\n",
17
+ " validation_split=0.2,\n",
18
+ " subset=\"training\",\n",
19
+ " seed=123,\n",
20
+ " image_size=(img_height, img_width),\n",
21
+ " batch_size=batch_size)\n",
22
+ "\n",
23
+ "val_ds = tf.keras.utils.image_dataset_from_directory(\n",
24
+ " dataset_path,\n",
25
+ " validation_split=0.2,\n",
26
+ " subset=\"validation\",\n",
27
+ " seed=123,\n",
28
+ " image_size=(img_height, img_width),\n",
29
+ " batch_size=batch_size)\n",
30
+ "\n",
31
+ "model = models.Sequential([\n",
32
+ " layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),\n",
33
+ " layers.Conv2D(32, 3, activation='relu'),\n",
34
+ " layers.MaxPooling2D(),\n",
35
+ " layers.Conv2D(64, 3, activation='relu'),\n",
36
+ " layers.MaxPooling2D(),\n",
37
+ " layers.Conv2D(128, 3, activation='relu'),\n",
38
+ " layers.MaxPooling2D(),\n",
39
+ " layers.Flatten(),\n",
40
+ " layers.Dense(128, activation='relu'),\n",
41
+ " layers.Dense(2)\n",
42
+ "])\n",
43
+ "\n",
44
+ "model.compile(optimizer='adam',\n",
45
+ " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
46
+ " metrics=['accuracy'])\n",
47
+ "\n",
48
+ "epochs = 10\n",
49
+ "history = model.fit(\n",
50
+ " train_ds,\n",
51
+ " validation_data=val_ds,\n",
52
+ " epochs=epochs\n",
53
+ ")\n",
54
+ "\n",
55
+ "model.save('pistachio_classifier.h5')\n"
56
+ ],
57
+ "metadata": {
58
+ "colab": {
59
+ "base_uri": "https://localhost:8080/"
60
+ },
61
+ "id": "X5rygqUYn0NL",
62
+ "outputId": "dfb18a11-ecb5-4221-c838-f2b0af4c87c3"
63
+ },
64
+ "execution_count": 1,
65
+ "outputs": [
66
+ {
67
+ "output_type": "stream",
68
+ "name": "stdout",
69
+ "text": [
70
+ "Found 100 files belonging to 2 classes.\n",
71
+ "Using 80 files for training.\n",
72
+ "Found 100 files belonging to 2 classes.\n",
73
+ "Using 20 files for validation.\n"
74
+ ]
75
+ },
76
+ {
77
+ "output_type": "stream",
78
+ "name": "stderr",
79
+ "text": [
80
+ "/usr/local/lib/python3.11/dist-packages/keras/src/layers/preprocessing/tf_data_layer.py:19: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
81
+ " super().__init__(**kwargs)\n"
82
+ ]
83
+ },
84
+ {
85
+ "output_type": "stream",
86
+ "name": "stdout",
87
+ "text": [
88
+ "Epoch 1/10\n",
89
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 0.5469 - loss: 0.7486 - val_accuracy: 0.6000 - val_loss: 0.8673\n",
90
+ "Epoch 2/10\n",
91
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 2s/step - accuracy: 0.5352 - loss: 0.7847 - val_accuracy: 0.6500 - val_loss: 0.6347\n",
92
+ "Epoch 3/10\n",
93
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8211 - loss: 0.4471 - val_accuracy: 0.8000 - val_loss: 0.6110\n",
94
+ "Epoch 4/10\n",
95
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2s/step - accuracy: 0.8797 - loss: 0.3727 - val_accuracy: 0.8500 - val_loss: 0.8057\n",
96
+ "Epoch 5/10\n",
97
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2s/step - accuracy: 0.8742 - loss: 0.3163 - val_accuracy: 0.6500 - val_loss: 0.9343\n",
98
+ "Epoch 6/10\n",
99
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 0.8070 - loss: 0.3726 - val_accuracy: 0.8000 - val_loss: 0.7291\n",
100
+ "Epoch 7/10\n",
101
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8766 - loss: 0.2542 - val_accuracy: 0.8000 - val_loss: 0.6933\n",
102
+ "Epoch 8/10\n",
103
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2s/step - accuracy: 0.9453 - loss: 0.1739 - val_accuracy: 0.8500 - val_loss: 0.6692\n",
104
+ "Epoch 9/10\n",
105
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 0.8969 - loss: 0.1860 - val_accuracy: 0.8500 - val_loss: 0.7117\n",
106
+ "Epoch 10/10\n",
107
+ "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 2s/step - accuracy: 0.9250 - loss: 0.1766 - val_accuracy: 0.8500 - val_loss: 0.7313\n"
108
+ ]
109
+ },
110
+ {
111
+ "output_type": "stream",
112
+ "name": "stderr",
113
+ "text": [
114
+ "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
115
+ ]
116
+ }
117
+ ]
118
+ },
119
+ {
120
+ "cell_type": "code",
121
+ "source": [
122
+ "import tensorflow as tf\n",
123
+ "import numpy as np\n",
124
+ "from tensorflow.keras.preprocessing import image\n",
125
+ "\n",
126
+ "model = tf.keras.models.load_model('pistachio_classifier.h5')\n",
127
+ "\n",
128
+ "class_names = ['Kirmizi_Pistachio', 'Siirt_Pistachio']\n"
129
+ ],
130
+ "metadata": {
131
+ "colab": {
132
+ "base_uri": "https://localhost:8080/"
133
+ },
134
+ "id": "7GyugRDLpLlN",
135
+ "outputId": "8bad83c9-c088-405a-ec06-ac493f6d7072"
136
+ },
137
+ "execution_count": 2,
138
+ "outputs": [
139
+ {
140
+ "output_type": "stream",
141
+ "name": "stderr",
142
+ "text": [
143
+ "WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"
144
+ ]
145
+ }
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "code",
150
+ "source": [
151
+ "\n",
152
+ "img_path = '/content/siirt (3).jpg'\n",
153
+ "\n",
154
+ "\n",
155
+ "img = image.load_img(img_path, target_size=(180, 180))\n",
156
+ "img_array = image.img_to_array(img)\n",
157
+ "img_array = tf.expand_dims(img_array, 0)\n",
158
+ "\n",
159
+ "predictions = model.predict(img_array)\n",
160
+ "score = tf.nn.softmax(predictions[0])\n",
161
+ "\n",
162
+ "predicted_class = class_names[np.argmax(score)]\n",
163
+ "confidence = 100 * np.max(score)\n",
164
+ "\n",
165
+ "print(f\"This image most likely belongs to '{predicted_class}' with a {confidence:.2f}% confidence.\")\n"
166
+ ],
167
+ "metadata": {
168
+ "colab": {
169
+ "base_uri": "https://localhost:8080/"
170
+ },
171
+ "id": "SwZcLQftpOYI",
172
+ "outputId": "90c61acd-31cd-4c49-97f8-59bc90fc029c"
173
+ },
174
+ "execution_count": 3,
175
+ "outputs": [
176
+ {
177
+ "output_type": "stream",
178
+ "name": "stdout",
179
+ "text": [
180
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 188ms/step\n",
181
+ "This image most likely belongs to 'Kirmizi_Pistachio' with a 94.41% confidence.\n"
182
+ ]
183
+ }
184
+ ]
185
+ }
186
+ ],
187
+ "metadata": {
188
+ "colab": {
189
+ "provenance": []
190
+ },
191
+ "kernelspec": {
192
+ "display_name": "Python 3",
193
+ "name": "python3"
194
+ },
195
+ "language_info": {
196
+ "name": "python"
197
+ }
198
+ },
199
+ "nbformat": 4,
200
+ "nbformat_minor": 0
201
+ }