noshot 14.0.0__tar.gz → 15.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (58) hide show
  1. {noshot-14.0.0 → noshot-15.0.0}/PKG-INFO +1 -1
  2. {noshot-14.0.0 → noshot-15.0.0}/noshot.egg-info/PKG-INFO +1 -1
  3. {noshot-14.0.0 → noshot-15.0.0}/noshot.egg-info/SOURCES.txt +3 -17
  4. {noshot-14.0.0 → noshot-15.0.0}/setup.py +1 -1
  5. noshot-15.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. Yolo Object Detection.ipynb +231 -0
  6. noshot-15.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/5. Auto Encoder.ipynb +190 -0
  7. noshot-15.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex5.ipynb +190 -0
  8. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/input.txt +0 -1
  9. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/mapper.py +0 -6
  10. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/reducer.py +0 -22
  11. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/Weatherdataset.csv +0 -200
  12. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/mapper.py +0 -20
  13. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/reducer.py +0 -32
  14. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/BF_Map.py +0 -11
  15. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/BF_Red.py +0 -30
  16. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter.py +0 -71
  17. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter_mapper.py +0 -71
  18. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter_reducer.py +0 -71
  19. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/weblog.csv +0 -100
  20. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/FMA_mapper.py +0 -14
  21. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/FMA_reducer.py +0 -14
  22. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/Tweets.csv +0 -92
  23. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Instructions.txt +0 -56
  24. noshot-14.0.0/src/noshot/data/DLE FSD BDA/BDA/BDA Lab.iso +0 -0
  25. {noshot-14.0.0 → noshot-15.0.0}/LICENSE.txt +0 -0
  26. {noshot-14.0.0 → noshot-15.0.0}/README.md +0 -0
  27. {noshot-14.0.0 → noshot-15.0.0}/noshot.egg-info/dependency_links.txt +0 -0
  28. {noshot-14.0.0 → noshot-15.0.0}/noshot.egg-info/not-zip-safe +0 -0
  29. {noshot-14.0.0 → noshot-15.0.0}/noshot.egg-info/top_level.txt +0 -0
  30. {noshot-14.0.0 → noshot-15.0.0}/setup.cfg +0 -0
  31. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/__init__.py +0 -0
  32. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb +0 -0
  33. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb +0 -0
  34. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb +0 -0
  35. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb +0 -0
  36. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb +0 -0
  37. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb +0 -0
  38. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb +0 -0
  39. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb +0 -0
  40. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb +0 -0
  41. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/3 Bounding Boxes.ipynb +0 -0
  42. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb +0 -0
  43. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb +0 -0
  44. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb +0 -0
  45. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb +0 -0
  46. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb +0 -0
  47. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb +0 -0
  48. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb +0 -0
  49. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb +0 -0
  50. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb +0 -0
  51. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb +0 -0
  52. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb +0 -0
  53. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb +0 -0
  54. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb +0 -0
  55. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb +0 -0
  56. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/main.py +0 -0
  57. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/utils/__init__.py +0 -0
  58. {noshot-14.0.0 → noshot-15.0.0}/src/noshot/utils/shell_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 14.0.0
3
+ Version: 15.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 14.0.0
3
+ Version: 15.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -8,27 +8,12 @@ noshot.egg-info/not-zip-safe
8
8
  noshot.egg-info/top_level.txt
9
9
  src/noshot/__init__.py
10
10
  src/noshot/main.py
11
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab.iso
12
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Instructions.txt
13
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/input.txt
14
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/mapper.py
15
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex1/reducer.py
16
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/Weatherdataset.csv
17
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/mapper.py
18
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex2/reducer.py
19
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/BF_Map.py
20
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/BF_Red.py
21
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter.py
22
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter_mapper.py
23
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/bloom_filter_reducer.py
24
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex3/weblog.csv
25
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/FMA_mapper.py
26
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/FMA_reducer.py
27
- src/noshot/data/DLE FSD BDA/BDA/BDA Lab/Ex4/Tweets.csv
28
11
  src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb
29
12
  src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb
30
13
  src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb
14
+ src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. Yolo Object Detection.ipynb
31
15
  src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb
16
+ src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/5. Auto Encoder.ipynb
32
17
  src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb
33
18
  src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb
34
19
  src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb
@@ -42,6 +27,7 @@ src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb
42
27
  src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb
43
28
  src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb
44
29
  src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb
30
+ src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex5.ipynb
45
31
  src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb
46
32
  src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb
47
33
  src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb
@@ -5,7 +5,7 @@ with open("README.md", "r", encoding="utf-8") as f:
5
5
 
6
6
  setup(
7
7
  name="noshot",
8
- version="14.0.0",
8
+ version="15.0.0",
9
9
  author="Tim Stan S",
10
10
  description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
11
11
  long_description=long_description,
@@ -0,0 +1,231 @@
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "gpuType": "T4"
8
+ },
9
+ "kernelspec": {
10
+ "name": "python3",
11
+ "display_name": "Python 3"
12
+ },
13
+ "language_info": {
14
+ "name": "python"
15
+ },
16
+ "accelerator": "GPU"
17
+ },
18
+ "cells": [
19
+ {
20
+ "cell_type": "code",
21
+ "source": [
22
+ "pip install ultralytics"
23
+ ],
24
+ "metadata": {
25
+ "colab": {
26
+ "base_uri": "https://localhost:8080/"
27
+ },
28
+ "id": "okrAbLmdTUrP",
29
+ "outputId": "39ded965-c6cf-4596-99c5-262653e91d78"
30
+ },
31
+ "execution_count": 20,
32
+ "outputs": [
33
+ {
34
+ "output_type": "stream",
35
+ "name": "stdout",
36
+ "text": [
37
+ "Requirement already satisfied: ultralytics in /usr/local/lib/python3.12/dist-packages (8.3.197)\n",
38
+ "Requirement already satisfied: numpy>=1.23.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.0.2)\n",
39
+ "Requirement already satisfied: matplotlib>=3.3.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (3.10.0)\n",
40
+ "Requirement already satisfied: opencv-python>=4.6.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (4.12.0.88)\n",
41
+ "Requirement already satisfied: pillow>=7.1.2 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (11.3.0)\n",
42
+ "Requirement already satisfied: pyyaml>=5.3.1 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (6.0.2)\n",
43
+ "Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.32.4)\n",
44
+ "Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (1.16.1)\n",
45
+ "Requirement already satisfied: torch>=1.8.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.8.0+cu126)\n",
46
+ "Requirement already satisfied: torchvision>=0.9.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (0.23.0+cu126)\n",
47
+ "Requirement already satisfied: psutil in /usr/local/lib/python3.12/dist-packages (from ultralytics) (5.9.5)\n",
48
+ "Requirement already satisfied: polars in /usr/local/lib/python3.12/dist-packages (from ultralytics) (1.25.2)\n",
49
+ "Requirement already satisfied: ultralytics-thop>=2.0.0 in /usr/local/lib/python3.12/dist-packages (from ultralytics) (2.0.17)\n",
50
+ "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.3.3)\n",
51
+ "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n",
52
+ "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (4.59.2)\n",
53
+ "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.4.9)\n",
54
+ "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (25.0)\n",
55
+ "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (3.2.3)\n",
56
+ "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.12/dist-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0.post0)\n",
57
+ "Requirement already satisfied: charset_normalizer<4,>=2 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (3.4.3)\n",
58
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (3.10)\n",
59
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (2.5.0)\n",
60
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.12/dist-packages (from requests>=2.23.0->ultralytics) (2025.8.3)\n",
61
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.19.1)\n",
62
+ "Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (4.15.0)\n",
63
+ "Requirement already satisfied: setuptools in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (75.2.0)\n",
64
+ "Requirement already satisfied: sympy>=1.13.3 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (1.13.3)\n",
65
+ "Requirement already satisfied: networkx in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.5)\n",
66
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.1.6)\n",
67
+ "Requirement already satisfied: fsspec in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (2025.3.0)\n",
68
+ "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.6.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.77)\n",
69
+ "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.6.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.77)\n",
70
+ "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.6.80 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.80)\n",
71
+ "Requirement already satisfied: nvidia-cudnn-cu12==9.10.2.21 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (9.10.2.21)\n",
72
+ "Requirement already satisfied: nvidia-cublas-cu12==12.6.4.1 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.4.1)\n",
73
+ "Requirement already satisfied: nvidia-cufft-cu12==11.3.0.4 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (11.3.0.4)\n",
74
+ "Requirement already satisfied: nvidia-curand-cu12==10.3.7.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (10.3.7.77)\n",
75
+ "Requirement already satisfied: nvidia-cusolver-cu12==11.7.1.2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (11.7.1.2)\n",
76
+ "Requirement already satisfied: nvidia-cusparse-cu12==12.5.4.2 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.5.4.2)\n",
77
+ "Requirement already satisfied: nvidia-cusparselt-cu12==0.7.1 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (0.7.1)\n",
78
+ "Requirement already satisfied: nvidia-nccl-cu12==2.27.3 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (2.27.3)\n",
79
+ "Requirement already satisfied: nvidia-nvtx-cu12==12.6.77 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.77)\n",
80
+ "Requirement already satisfied: nvidia-nvjitlink-cu12==12.6.85 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (12.6.85)\n",
81
+ "Requirement already satisfied: nvidia-cufile-cu12==1.11.1.6 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (1.11.1.6)\n",
82
+ "Requirement already satisfied: triton==3.4.0 in /usr/local/lib/python3.12/dist-packages (from torch>=1.8.0->ultralytics) (3.4.0)\n",
83
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.17.0)\n",
84
+ "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.12/dist-packages (from sympy>=1.13.3->torch>=1.8.0->ultralytics) (1.3.0)\n",
85
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.12/dist-packages (from jinja2->torch>=1.8.0->ultralytics) (3.0.2)\n"
86
+ ]
87
+ }
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "source": [
93
+ "!unzip \"Object detection dataset (1).zip\""
94
+ ],
95
+ "metadata": {
96
+ "colab": {
97
+ "base_uri": "https://localhost:8080/"
98
+ },
99
+ "id": "RpCw7yD1k6zC",
100
+ "outputId": "7caf76a3-92cf-48a2-c5ca-da11bcafcc5d"
101
+ },
102
+ "execution_count": 21,
103
+ "outputs": [
104
+ {
105
+ "output_type": "stream",
106
+ "name": "stdout",
107
+ "text": [
108
+ "unzip: cannot find or open Object detection dataset (1).zip, Object detection dataset (1).zip.zip or Object detection dataset (1).zip.ZIP.\n"
109
+ ]
110
+ }
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "source": [
116
+ "from ultralytics import YOLO\n",
117
+ "import os\n",
118
+ "import glob"
119
+ ],
120
+ "metadata": {
121
+ "id": "PVdbYKuaTM7a"
122
+ },
123
+ "execution_count": 22,
124
+ "outputs": []
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "source": [
129
+ "model=YOLO('yolov8n.pt')"
130
+ ],
131
+ "metadata": {
132
+ "id": "3XIDWbufTi4U"
133
+ },
134
+ "execution_count": 23,
135
+ "outputs": []
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "source": [
140
+ "image_folder = 'Object detection dataset/train/train'\n",
141
+ "output_folder = 'output1'\n",
142
+ "os.makedirs(output_folder, exist_ok=True)"
143
+ ],
144
+ "metadata": {
145
+ "id": "rShfURYelBg1"
146
+ },
147
+ "execution_count": 24,
148
+ "outputs": []
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "source": [
153
+ "image_paths = glob.glob(os.path.join(image_folder, '*.png')) + glob.glob(os.path.join(image_folder, '*.jpg'))\n"
154
+ ],
155
+ "metadata": {
156
+ "id": "Pd-i76a1lI1R"
157
+ },
158
+ "execution_count": 25,
159
+ "outputs": []
160
+ },
161
+ {
162
+ "cell_type": "code",
163
+ "source": [
164
+ "for img_path in image_paths:\n",
165
+ " r = model(img_path)\n",
166
+ "\n",
167
+ " # Save output image\n",
168
+ " out_path = os.path.join(output_folder, os.path.basename(img_path))\n",
169
+ " r[0].save(out_path)"
170
+ ],
171
+ "metadata": {
172
+ "id": "LkmIUkotlOui"
173
+ },
174
+ "execution_count": 26,
175
+ "outputs": []
176
+ },
177
+ {
178
+ "cell_type": "code",
179
+ "source": [
180
+ "import os\n",
181
+ "from IPython.display import Image, display"
182
+ ],
183
+ "metadata": {
184
+ "id": "B4ibhsIilZGX"
185
+ },
186
+ "execution_count": 27,
187
+ "outputs": []
188
+ },
189
+ {
190
+ "cell_type": "code",
191
+ "source": [
192
+ "output_files = os.listdir(output_folder)\n",
193
+ "\n",
194
+ "image_files = [f for f in output_files if f.endswith('.jpg') or f.endswith('.png')]\n",
195
+ "\n",
196
+ "if image_files:\n",
197
+ " first_image_path = os.path.join(output_folder, image_files[0])\n",
198
+ " print(f\"Displaying: {first_image_path}\")\n",
199
+ " display(Image(filename=first_image_path))\n",
200
+ "else:\n",
201
+ " print(\"No image files found in the output folder.\")"
202
+ ],
203
+ "metadata": {
204
+ "colab": {
205
+ "base_uri": "https://localhost:8080/"
206
+ },
207
+ "id": "jo1XjaASlaNN",
208
+ "outputId": "c2a50c9e-8ce7-462a-e4d5-c29405dc691d"
209
+ },
210
+ "execution_count": 28,
211
+ "outputs": [
212
+ {
213
+ "output_type": "stream",
214
+ "name": "stdout",
215
+ "text": [
216
+ "No image files found in the output folder.\n"
217
+ ]
218
+ }
219
+ ]
220
+ },
221
+ {
222
+ "cell_type": "code",
223
+ "source": [],
224
+ "metadata": {
225
+ "id": "BYLCoI5Olcoo"
226
+ },
227
+ "execution_count": 28,
228
+ "outputs": []
229
+ }
230
+ ]
231
+ }
@@ -0,0 +1,190 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "id": "IQb02ekPErC1"
8
+ },
9
+ "outputs": [],
10
+ "source": [
11
+ "import numpy as np\n",
12
+ "import pandas as pd\n",
13
+ "import tensorflow as tf\n",
14
+ "from tensorflow.keras.datasets import mnist\n",
15
+ "from tensorflow.keras.models import Model\n",
16
+ "from tensorflow.keras.layers import Input,Dense"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": null,
22
+ "metadata": {
23
+ "id": "JKrxqZpvFW4X"
24
+ },
25
+ "outputs": [],
26
+ "source": [
27
+ "(X_train, _),(X_test, _)=mnist.load_data()"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "metadata": {
34
+ "colab": {
35
+ "base_uri": "https://localhost:8080/"
36
+ },
37
+ "id": "FmNHIehxFgna",
38
+ "outputId": "d5a6d856-094b-436d-c63b-a4b318e2dddc"
39
+ },
40
+ "outputs": [],
41
+ "source": [
42
+ "print(X_train)"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": null,
48
+ "metadata": {
49
+ "colab": {
50
+ "base_uri": "https://localhost:8080/"
51
+ },
52
+ "id": "ue7nZ4rVHRm8",
53
+ "outputId": "132813b9-4c0f-42ee-ceb2-e1108b87ba1a"
54
+ },
55
+ "outputs": [],
56
+ "source": [
57
+ "X_train=X_train.astype('float32')/255.0\n",
58
+ "X_test=X_test.astype('float32')/255.0\n",
59
+ "print(X_train)"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": null,
65
+ "metadata": {
66
+ "id": "fje2VkFHHrPw"
67
+ },
68
+ "outputs": [],
69
+ "source": [
70
+ "X_train=X_train.reshape((len(X_train),np.prod((X_train.shape[1:]))))\n",
71
+ "X_test=X_test.reshape((len(X_test),np.prod((X_test.shape[1:]))))"
72
+ ]
73
+ },
74
+ {
75
+ "cell_type": "code",
76
+ "execution_count": null,
77
+ "metadata": {
78
+ "id": "HfKxKikFIaSR"
79
+ },
80
+ "outputs": [],
81
+ "source": [
82
+ "input_dims=X_train.shape[1]\n",
83
+ "encoded_dims=32\n",
84
+ "input_layer=Input(shape=(input_dims,))\n",
85
+ "\n",
86
+ "encoded=Dense(encoded_dims,activation='relu')(input_layer)\n",
87
+ "\n",
88
+ "decoded=Dense(input_dims,activation='sigmoid')(encoded)"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "execution_count": null,
94
+ "metadata": {
95
+ "id": "7rTRxX8kKsif"
96
+ },
97
+ "outputs": [],
98
+ "source": [
99
+ "encoder=Model(input_layer,encoded)\n",
100
+ "autoencoder=Model(input_layer,decoded)"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": null,
106
+ "metadata": {
107
+ "colab": {
108
+ "base_uri": "https://localhost:8080/"
109
+ },
110
+ "id": "V4bP4-RDK7LH",
111
+ "outputId": "769c12fc-49e4-4376-d501-4d4159138d17"
112
+ },
113
+ "outputs": [],
114
+ "source": [
115
+ "autoencoder.compile(optimizer='adam',loss='binary_crossentropy')\n",
116
+ "\n",
117
+ "autoencoder.fit(X_train,X_train,epochs=5,batch_size=32,validation_data=(X_test,X_test))\n"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": null,
123
+ "metadata": {
124
+ "colab": {
125
+ "base_uri": "https://localhost:8080/"
126
+ },
127
+ "id": "CrqJare2KONO",
128
+ "outputId": "67104eb8-4143-4700-85d7-30c05490a74f"
129
+ },
130
+ "outputs": [],
131
+ "source": [
132
+ "encoded_img=encoder.predict(X_test)\n",
133
+ "\n",
134
+ "decoded_imgs=autoencoder.predict(X_test)"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": null,
140
+ "metadata": {
141
+ "colab": {
142
+ "base_uri": "https://localhost:8080/",
143
+ "height": 1000
144
+ },
145
+ "id": "HScdtV42LYBH",
146
+ "outputId": "81059a8f-f806-4f10-cfd3-666e87282085"
147
+ },
148
+ "outputs": [],
149
+ "source": [
150
+ "import matplotlib.pyplot as plt\n",
151
+ "for i in range(10):\n",
152
+ " plt.imshow(X_test[i].reshape(28,28))\n",
153
+ " plt.title('Original Image')\n",
154
+ " plt.show()\n",
155
+ " plt.imshow(decoded_imgs[i].reshape(28,28))\n",
156
+ " plt.title('Reconstructed Image')\n",
157
+ " plt.show()\n",
158
+ " plt.imshow(encoded_img[i].reshape(4,8))\n",
159
+ " plt.title('Encoded Image')\n",
160
+ " plt.show()"
161
+ ]
162
+ }
163
+ ],
164
+ "metadata": {
165
+ "accelerator": "GPU",
166
+ "colab": {
167
+ "gpuType": "T4",
168
+ "provenance": []
169
+ },
170
+ "kernelspec": {
171
+ "display_name": "Python 3 (ipykernel)",
172
+ "language": "python",
173
+ "name": "python3"
174
+ },
175
+ "language_info": {
176
+ "codemirror_mode": {
177
+ "name": "ipython",
178
+ "version": 3
179
+ },
180
+ "file_extension": ".py",
181
+ "mimetype": "text/x-python",
182
+ "name": "python",
183
+ "nbconvert_exporter": "python",
184
+ "pygments_lexer": "ipython3",
185
+ "version": "3.12.4"
186
+ }
187
+ },
188
+ "nbformat": 4,
189
+ "nbformat_minor": 4
190
+ }
@@ -0,0 +1,190 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "id": "IQb02ekPErC1"
8
+ },
9
+ "outputs": [],
10
+ "source": [
11
+ "import numpy as np\n",
12
+ "import pandas as pd\n",
13
+ "import tensorflow as tf\n",
14
+ "from tensorflow.keras.datasets import mnist\n",
15
+ "from tensorflow.keras.models import Model\n",
16
+ "from tensorflow.keras.layers import Input,Dense"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": null,
22
+ "metadata": {
23
+ "id": "JKrxqZpvFW4X"
24
+ },
25
+ "outputs": [],
26
+ "source": [
27
+ "(X_train, _),(X_test, _)=mnist.load_data()"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "metadata": {
34
+ "colab": {
35
+ "base_uri": "https://localhost:8080/"
36
+ },
37
+ "id": "FmNHIehxFgna",
38
+ "outputId": "d5a6d856-094b-436d-c63b-a4b318e2dddc"
39
+ },
40
+ "outputs": [],
41
+ "source": [
42
+ "print(X_train)"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": null,
48
+ "metadata": {
49
+ "colab": {
50
+ "base_uri": "https://localhost:8080/"
51
+ },
52
+ "id": "ue7nZ4rVHRm8",
53
+ "outputId": "132813b9-4c0f-42ee-ceb2-e1108b87ba1a"
54
+ },
55
+ "outputs": [],
56
+ "source": [
57
+ "X_train=X_train.astype('float32')/255.0\n",
58
+ "X_test=X_test.astype('float32')/255.0\n",
59
+ "print(X_train)"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": null,
65
+ "metadata": {
66
+ "id": "fje2VkFHHrPw"
67
+ },
68
+ "outputs": [],
69
+ "source": [
70
+ "X_train=X_train.reshape((len(X_train),np.prod((X_train.shape[1:]))))\n",
71
+ "X_test=X_test.reshape((len(X_test),np.prod((X_test.shape[1:]))))"
72
+ ]
73
+ },
74
+ {
75
+ "cell_type": "code",
76
+ "execution_count": null,
77
+ "metadata": {
78
+ "id": "HfKxKikFIaSR"
79
+ },
80
+ "outputs": [],
81
+ "source": [
82
+ "input_dims=X_train.shape[1]\n",
83
+ "encoded_dims=32\n",
84
+ "input_layer=Input(shape=(input_dims,))\n",
85
+ "\n",
86
+ "encoded=Dense(encoded_dims,activation='relu')(input_layer)\n",
87
+ "\n",
88
+ "decoded=Dense(input_dims,activation='sigmoid')(encoded)"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "execution_count": null,
94
+ "metadata": {
95
+ "id": "7rTRxX8kKsif"
96
+ },
97
+ "outputs": [],
98
+ "source": [
99
+ "encoder=Model(input_layer,encoded)\n",
100
+ "autoencoder=Model(input_layer,decoded)"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": null,
106
+ "metadata": {
107
+ "colab": {
108
+ "base_uri": "https://localhost:8080/"
109
+ },
110
+ "id": "V4bP4-RDK7LH",
111
+ "outputId": "769c12fc-49e4-4376-d501-4d4159138d17"
112
+ },
113
+ "outputs": [],
114
+ "source": [
115
+ "autoencoder.compile(optimizer='adam',loss='binary_crossentropy')\n",
116
+ "\n",
117
+ "autoencoder.fit(X_train,X_train,epochs=5,batch_size=32,validation_data=(X_test,X_test))\n"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": null,
123
+ "metadata": {
124
+ "colab": {
125
+ "base_uri": "https://localhost:8080/"
126
+ },
127
+ "id": "CrqJare2KONO",
128
+ "outputId": "67104eb8-4143-4700-85d7-30c05490a74f"
129
+ },
130
+ "outputs": [],
131
+ "source": [
132
+ "encoded_img=encoder.predict(X_test)\n",
133
+ "\n",
134
+ "decoded_imgs=autoencoder.predict(X_test)"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": null,
140
+ "metadata": {
141
+ "colab": {
142
+ "base_uri": "https://localhost:8080/",
143
+ "height": 1000
144
+ },
145
+ "id": "HScdtV42LYBH",
146
+ "outputId": "81059a8f-f806-4f10-cfd3-666e87282085"
147
+ },
148
+ "outputs": [],
149
+ "source": [
150
+ "import matplotlib.pyplot as plt\n",
151
+ "for i in range(10):\n",
152
+ " plt.imshow(X_test[i].reshape(28,28))\n",
153
+ " plt.title('Original Image')\n",
154
+ " plt.show()\n",
155
+ " plt.imshow(decoded_imgs[i].reshape(28,28))\n",
156
+ " plt.title('Reconstructed Image')\n",
157
+ " plt.show()\n",
158
+ " plt.imshow(encoded_img[i].reshape(4,8))\n",
159
+ " plt.title('Encoded Image')\n",
160
+ " plt.show()"
161
+ ]
162
+ }
163
+ ],
164
+ "metadata": {
165
+ "accelerator": "GPU",
166
+ "colab": {
167
+ "gpuType": "T4",
168
+ "provenance": []
169
+ },
170
+ "kernelspec": {
171
+ "display_name": "Python 3 (ipykernel)",
172
+ "language": "python",
173
+ "name": "python3"
174
+ },
175
+ "language_info": {
176
+ "codemirror_mode": {
177
+ "name": "ipython",
178
+ "version": 3
179
+ },
180
+ "file_extension": ".py",
181
+ "mimetype": "text/x-python",
182
+ "name": "python",
183
+ "nbconvert_exporter": "python",
184
+ "pygments_lexer": "ipython3",
185
+ "version": "3.12.4"
186
+ }
187
+ },
188
+ "nbformat": 4,
189
+ "nbformat_minor": 4
190
+ }
@@ -1 +0,0 @@
1
- The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures.