noshot 11.0.0__tar.gz → 13.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (101) hide show
  1. {noshot-11.0.0 → noshot-13.0.0}/PKG-INFO +1 -1
  2. {noshot-11.0.0 → noshot-13.0.0}/noshot.egg-info/PKG-INFO +1 -1
  3. noshot-13.0.0/noshot.egg-info/SOURCES.txt +35 -0
  4. {noshot-11.0.0 → noshot-13.0.0}/setup.py +1 -1
  5. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb +389 -0
  6. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb +516 -0
  7. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb +259 -0
  8. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb +274 -0
  9. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb +164 -0
  10. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb +94 -0
  11. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb +134 -0
  12. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb +127 -0
  13. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb +123 -0
  14. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb +108 -0
  15. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb +646 -0
  16. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb +553 -0
  17. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb +216 -0
  18. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb +195 -0
  19. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb +427 -0
  20. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb +186 -0
  21. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb +398 -0
  22. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb +171 -0
  23. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb +401 -0
  24. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb +8511 -0
  25. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb +737 -0
  26. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb +591 -0
  27. noshot-13.0.0/src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb +551 -0
  28. {noshot-11.0.0 → noshot-13.0.0}/src/noshot/main.py +3 -3
  29. noshot-11.0.0/noshot.egg-info/SOURCES.txt +0 -75
  30. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
  31. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
  32. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
  33. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
  34. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  35. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
  36. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
  37. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
  38. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
  39. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
  40. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  41. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
  42. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
  43. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
  44. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  45. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
  46. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  47. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
  48. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
  49. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
  50. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
  51. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
  52. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
  53. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
  54. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
  55. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
  56. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
  57. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
  58. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
  59. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
  60. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
  61. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
  62. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
  63. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
  64. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
  65. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
  66. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
  67. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
  68. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
  69. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
  70. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
  71. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
  72. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
  73. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
  74. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
  75. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
  76. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
  77. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
  78. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
  79. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
  80. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
  81. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
  82. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
  83. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
  84. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
  85. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
  86. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
  87. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
  88. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
  89. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
  90. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
  91. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
  92. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  93. {noshot-11.0.0 → noshot-13.0.0}/LICENSE.txt +0 -0
  94. {noshot-11.0.0 → noshot-13.0.0}/README.md +0 -0
  95. {noshot-11.0.0 → noshot-13.0.0}/noshot.egg-info/dependency_links.txt +0 -0
  96. {noshot-11.0.0 → noshot-13.0.0}/noshot.egg-info/not-zip-safe +0 -0
  97. {noshot-11.0.0 → noshot-13.0.0}/noshot.egg-info/top_level.txt +0 -0
  98. {noshot-11.0.0 → noshot-13.0.0}/setup.cfg +0 -0
  99. {noshot-11.0.0 → noshot-13.0.0}/src/noshot/__init__.py +0 -0
  100. {noshot-11.0.0 → noshot-13.0.0}/src/noshot/utils/__init__.py +0 -0
  101. {noshot-11.0.0 → noshot-13.0.0}/src/noshot/utils/shell_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 11.0.0
3
+ Version: 13.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 11.0.0
3
+ Version: 13.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -0,0 +1,35 @@
1
+ LICENSE.txt
2
+ README.md
3
+ setup.py
4
+ noshot.egg-info/PKG-INFO
5
+ noshot.egg-info/SOURCES.txt
6
+ noshot.egg-info/dependency_links.txt
7
+ noshot.egg-info/not-zip-safe
8
+ noshot.egg-info/top_level.txt
9
+ src/noshot/__init__.py
10
+ src/noshot/main.py
11
+ src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb
12
+ src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb
13
+ src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb
14
+ src/noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb
15
+ src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb
16
+ src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb
17
+ src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb
18
+ src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb
19
+ src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb
20
+ src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb
21
+ src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb
22
+ src/noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb
23
+ src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb
24
+ src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb
25
+ src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb
26
+ src/noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb
27
+ src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb
28
+ src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb
29
+ src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb
30
+ src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb
31
+ src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb
32
+ src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb
33
+ src/noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb
34
+ src/noshot/utils/__init__.py
35
+ src/noshot/utils/shell_utils.py
@@ -5,7 +5,7 @@ with open("README.md", "r", encoding="utf-8") as f:
5
5
 
6
6
  setup(
7
7
  name="noshot",
8
- version="11.0.0",
8
+ version="13.0.0",
9
9
  author="Tim Stan S",
10
10
  description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
11
11
  long_description=long_description,
@@ -0,0 +1,389 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "colab": {
8
+ "base_uri": "https://localhost:8080/"
9
+ },
10
+ "id": "A5s8qm0I9cCt",
11
+ "outputId": "971e6baf-a1d6-48c4-ca19-17ee3c2d577f"
12
+ },
13
+ "outputs": [],
14
+ "source": [
15
+ "from google.colab import drive\n",
16
+ "drive.mount('/content/drive')"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "markdown",
21
+ "metadata": {
22
+ "id": "wtWyceRh9Ynb"
23
+ },
24
+ "source": [
25
+ "Packages"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": null,
31
+ "metadata": {
32
+ "id": "xffzPHEZ9Sb_"
33
+ },
34
+ "outputs": [],
35
+ "source": [
36
+ "import os\n",
37
+ "import pandas as pd\n",
38
+ "import numpy as np\n",
39
+ "import matplotlib.pyplot as plt\n",
40
+ "import tensorflow as tf\n",
41
+ "from tensorflow.keras.preprocessing.image import load_img,img_to_array\n",
42
+ "from tensorflow.keras.utils import to_categorical\n",
43
+ "from sklearn.model_selection import train_test_split\n",
44
+ "from sklearn.preprocessing import LabelEncoder\n",
45
+ "from sklearn.metrics import classification_report,confusion_matrix\n",
46
+ "from tensorflow.keras.models import Sequential\n",
47
+ "from tensorflow.keras.layers import Dense"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "code",
52
+ "execution_count": null,
53
+ "metadata": {
54
+ "id": "CUbFegyj97_n"
55
+ },
56
+ "outputs": [],
57
+ "source": [
58
+ "dataset_path='/content/drive/MyDrive/sem 7/Lab/DL_Lab/Bean_Dataset'"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "markdown",
63
+ "metadata": {
64
+ "id": "s4L5oajJD6i8"
65
+ },
66
+ "source": [
67
+ "Load Images"
68
+ ]
69
+ },
70
+ {
71
+ "cell_type": "code",
72
+ "execution_count": null,
73
+ "metadata": {
74
+ "id": "_ohgIAYk-LJ3"
75
+ },
76
+ "outputs": [],
77
+ "source": [
78
+ "def load_images(file_path,img_size):\n",
79
+ " images=[]\n",
80
+ " labels=[]\n",
81
+ "\n",
82
+ " class_names=os.listdir(file_path)\n",
83
+ "\n",
84
+ " valid_extensions = (\".jpg\", \".jpeg\", \".png\", \".bmp\")\n",
85
+ "\n",
86
+ " for cls in class_names:\n",
87
+ "\n",
88
+ " class_path=os.path.join(file_path,cls)\n",
89
+ "\n",
90
+ " for file_name in os.listdir(class_path):\n",
91
+ "\n",
92
+ " if file_name.lower().endswith(valid_extensions):\n",
93
+ "\n",
94
+ " img=load_img(os.path.join(class_path,file_name),target_size=img_size)\n",
95
+ " img_array=img_to_array(img)/255.0\n",
96
+ " images.append(img_array)\n",
97
+ " labels.append(cls)\n",
98
+ "\n",
99
+ "\n",
100
+ " return np.array(images),np.array(labels),class_names\n",
101
+ "\n",
102
+ "\n",
103
+ "images,labels,cls_names=load_images(dataset_path,(128,128))"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "markdown",
108
+ "metadata": {
109
+ "id": "vvYLDhMzEeov"
110
+ },
111
+ "source": [
112
+ "Train-Test Split"
113
+ ]
114
+ },
115
+ {
116
+ "cell_type": "code",
117
+ "execution_count": null,
118
+ "metadata": {
119
+ "id": "UBgmh_LKEILm"
120
+ },
121
+ "outputs": [],
122
+ "source": [
123
+ "X=images.copy()\n",
124
+ "y=labels.copy()\n",
125
+ "\n",
126
+ "X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "markdown",
131
+ "metadata": {
132
+ "id": "nzq-NVEwFDvG"
133
+ },
134
+ "source": [
135
+ "Flatten for DNN"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "code",
140
+ "execution_count": null,
141
+ "metadata": {
142
+ "id": "fSJCaaTUEhGA"
143
+ },
144
+ "outputs": [],
145
+ "source": [
146
+ "X_train_flat=X_train.reshape(X_train.shape[0],-1)\n",
147
+ "X_test_flat=X_test.reshape(X_test.shape[0],-1)"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "markdown",
152
+ "metadata": {
153
+ "id": "A-iDZOETIHF0"
154
+ },
155
+ "source": [
156
+ "To Categorical"
157
+ ]
158
+ },
159
+ {
160
+ "cell_type": "code",
161
+ "execution_count": null,
162
+ "metadata": {
163
+ "colab": {
164
+ "base_uri": "https://localhost:8080/"
165
+ },
166
+ "id": "VVZE9l0EFFjR",
167
+ "outputId": "7d35989f-b2d4-49e7-d270-4136abd1638a"
168
+ },
169
+ "outputs": [],
170
+ "source": [
171
+ "le=LabelEncoder()\n",
172
+ "y_train=le.fit_transform(y_train)\n",
173
+ "y_test=le.transform(y_test)\n",
174
+ "\n",
175
+ "enc_cls=le.classes_\n",
176
+ "print(enc_cls)\n",
177
+ "\n",
178
+ "num_classes=len(enc_cls)\n",
179
+ "y_train = to_categorical(y_train, num_classes)\n",
180
+ "y_test = to_categorical(y_test, num_classes)"
181
+ ]
182
+ },
183
+ {
184
+ "cell_type": "markdown",
185
+ "metadata": {
186
+ "id": "sAT1wR2QLpZB"
187
+ },
188
+ "source": [
189
+ "Model Creation and Training"
190
+ ]
191
+ },
192
+ {
193
+ "cell_type": "code",
194
+ "execution_count": null,
195
+ "metadata": {
196
+ "colab": {
197
+ "base_uri": "https://localhost:8080/"
198
+ },
199
+ "id": "GS9BazKGIYtT",
200
+ "outputId": "8418f7ae-9289-4666-f3a4-e66bc1c37bc0"
201
+ },
202
+ "outputs": [],
203
+ "source": [
204
+ "model=Sequential([\n",
205
+ " Dense(128,activation='relu',input_shape=(X_train_flat.shape[1],)),\n",
206
+ " Dense(64,activation='relu'),\n",
207
+ " Dense(len(enc_cls),activation='softmax')\n",
208
+ "])"
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "code",
213
+ "execution_count": null,
214
+ "metadata": {
215
+ "id": "qi8dPFoVI4Tz"
216
+ },
217
+ "outputs": [],
218
+ "source": [
219
+ "model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=[\"accuracy\"])"
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "code",
224
+ "execution_count": null,
225
+ "metadata": {
226
+ "colab": {
227
+ "base_uri": "https://localhost:8080/"
228
+ },
229
+ "id": "yyz5A-KDJGna",
230
+ "outputId": "aef382f4-3187-4b2f-9b13-65ac6fb164ea"
231
+ },
232
+ "outputs": [],
233
+ "source": [
234
+ "history=model.fit(X_train_flat,y_train,epochs=5,validation_split=0.2)"
235
+ ]
236
+ },
237
+ {
238
+ "cell_type": "code",
239
+ "execution_count": null,
240
+ "metadata": {
241
+ "colab": {
242
+ "base_uri": "https://localhost:8080/"
243
+ },
244
+ "id": "nBJX14X6J4tx",
245
+ "outputId": "993101c1-e85e-4493-b104-b4961c38174a"
246
+ },
247
+ "outputs": [],
248
+ "source": [
249
+ "loss,acc=model.evaluate(X_test_flat,y_test)\n",
250
+ "print(f'Test Accuracy : {acc*100:.2f}%')\n",
251
+ "print(f'Test Loss : {loss:.2f}')"
252
+ ]
253
+ },
254
+ {
255
+ "cell_type": "code",
256
+ "execution_count": null,
257
+ "metadata": {
258
+ "colab": {
259
+ "base_uri": "https://localhost:8080/"
260
+ },
261
+ "id": "hwpZh90oKS0f",
262
+ "outputId": "d51c180b-35d6-4a4a-9636-54a619186699"
263
+ },
264
+ "outputs": [],
265
+ "source": [
266
+ "y_pred=np.argmax(model.predict(X_test_flat),axis=-1)\n",
267
+ "y_true=np.argmax(y_test,axis=-1)"
268
+ ]
269
+ },
270
+ {
271
+ "cell_type": "markdown",
272
+ "metadata": {
273
+ "id": "nmeo-X4MLl1u"
274
+ },
275
+ "source": [
276
+ "Find Metrics"
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "code",
281
+ "execution_count": null,
282
+ "metadata": {
283
+ "colab": {
284
+ "base_uri": "https://localhost:8080/"
285
+ },
286
+ "id": "iB7LoayMKn_F",
287
+ "outputId": "1004d40a-6c66-4efb-c328-aa66a309ebb9"
288
+ },
289
+ "outputs": [],
290
+ "source": [
291
+ "print('Classfication Report')\n",
292
+ "print(classification_report(y_true,y_pred,target_names=enc_cls))"
293
+ ]
294
+ },
295
+ {
296
+ "cell_type": "code",
297
+ "execution_count": null,
298
+ "metadata": {
299
+ "colab": {
300
+ "base_uri": "https://localhost:8080/"
301
+ },
302
+ "id": "ZhDzJwIhK14X",
303
+ "outputId": "4e86c8af-9bc4-4b70-a2cb-8ebead766c3e"
304
+ },
305
+ "outputs": [],
306
+ "source": [
307
+ "print('Confusion Matrix')\n",
308
+ "print(confusion_matrix(y_true,y_pred))"
309
+ ]
310
+ },
311
+ {
312
+ "cell_type": "markdown",
313
+ "metadata": {
314
+ "id": "_6DvMr73Li4K"
315
+ },
316
+ "source": [
317
+ "Plot Accuracy and Loss"
318
+ ]
319
+ },
320
+ {
321
+ "cell_type": "code",
322
+ "execution_count": null,
323
+ "metadata": {
324
+ "colab": {
325
+ "base_uri": "https://localhost:8080/",
326
+ "height": 472
327
+ },
328
+ "id": "bKh8b3rPLCXA",
329
+ "outputId": "77ee2360-71be-44d6-a572-e5678ffc68ea"
330
+ },
331
+ "outputs": [],
332
+ "source": [
333
+ "plt.plot(history.history['accuracy'],label='train_accuracy')\n",
334
+ "plt.plot(history.history['val_accuracy'],label='val_accuracy')\n",
335
+ "plt.title('Model Accuracy')\n",
336
+ "plt.xlabel('Epochs')\n",
337
+ "plt.ylabel('Accuracy')\n",
338
+ "plt.legend()\n",
339
+ "plt.show()"
340
+ ]
341
+ },
342
+ {
343
+ "cell_type": "code",
344
+ "execution_count": null,
345
+ "metadata": {
346
+ "colab": {
347
+ "base_uri": "https://localhost:8080/",
348
+ "height": 472
349
+ },
350
+ "id": "EiWN8lzvLZek",
351
+ "outputId": "89863716-ea8e-42a1-f07c-d37b58d33df0"
352
+ },
353
+ "outputs": [],
354
+ "source": [
355
+ "plt.plot(history.history['loss'],label='train_loss')\n",
356
+ "plt.plot(history.history['val_loss'],label='val_loss')\n",
357
+ "plt.title('Model loss')\n",
358
+ "plt.xlabel('Epochs')\n",
359
+ "plt.ylabel('loss')\n",
360
+ "plt.legend()\n",
361
+ "plt.show()"
362
+ ]
363
+ }
364
+ ],
365
+ "metadata": {
366
+ "colab": {
367
+ "provenance": []
368
+ },
369
+ "kernelspec": {
370
+ "display_name": "Python 3 (ipykernel)",
371
+ "language": "python",
372
+ "name": "python3"
373
+ },
374
+ "language_info": {
375
+ "codemirror_mode": {
376
+ "name": "ipython",
377
+ "version": 3
378
+ },
379
+ "file_extension": ".py",
380
+ "mimetype": "text/x-python",
381
+ "name": "python",
382
+ "nbconvert_exporter": "python",
383
+ "pygments_lexer": "ipython3",
384
+ "version": "3.12.4"
385
+ }
386
+ },
387
+ "nbformat": 4,
388
+ "nbformat_minor": 4
389
+ }