noshot 11.0.0__tar.gz → 12.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (82) hide show
  1. {noshot-11.0.0 → noshot-12.0.0}/PKG-INFO +1 -1
  2. {noshot-11.0.0 → noshot-12.0.0}/noshot.egg-info/PKG-INFO +1 -1
  3. noshot-12.0.0/noshot.egg-info/SOURCES.txt +16 -0
  4. {noshot-11.0.0 → noshot-12.0.0}/setup.py +1 -1
  5. noshot-12.0.0/src/noshot/data/DLE FSD BDA/DLE/1. DNN (Image Classification).ipynb +389 -0
  6. noshot-12.0.0/src/noshot/data/DLE FSD BDA/DLE/2. DNN vs CNN.ipynb +516 -0
  7. noshot-12.0.0/src/noshot/data/DLE FSD BDA/DLE/3. CNN (Object Detecrion).ipynb +259 -0
  8. noshot-12.0.0/src/noshot/data/DLE FSD BDA/DLE/4. FCN (Image Segmentaion).ipynb +274 -0
  9. {noshot-11.0.0 → noshot-12.0.0}/src/noshot/main.py +3 -3
  10. noshot-11.0.0/noshot.egg-info/SOURCES.txt +0 -75
  11. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
  12. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
  13. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
  14. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
  15. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  16. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
  17. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
  18. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
  19. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
  20. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
  21. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  22. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
  23. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
  24. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
  25. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  26. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
  27. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  28. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
  29. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
  30. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
  31. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
  32. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
  33. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
  34. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
  35. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
  36. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
  37. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
  38. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
  39. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
  40. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
  41. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
  42. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
  43. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
  44. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
  45. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
  46. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
  47. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
  48. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
  49. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
  50. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
  51. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
  52. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
  53. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
  54. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
  55. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
  56. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
  57. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
  58. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
  59. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
  60. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
  61. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
  62. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
  63. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
  64. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
  65. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
  66. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
  67. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
  68. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
  69. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
  70. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
  71. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
  72. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
  73. noshot-11.0.0/src/noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  74. {noshot-11.0.0 → noshot-12.0.0}/LICENSE.txt +0 -0
  75. {noshot-11.0.0 → noshot-12.0.0}/README.md +0 -0
  76. {noshot-11.0.0 → noshot-12.0.0}/noshot.egg-info/dependency_links.txt +0 -0
  77. {noshot-11.0.0 → noshot-12.0.0}/noshot.egg-info/not-zip-safe +0 -0
  78. {noshot-11.0.0 → noshot-12.0.0}/noshot.egg-info/top_level.txt +0 -0
  79. {noshot-11.0.0 → noshot-12.0.0}/setup.cfg +0 -0
  80. {noshot-11.0.0 → noshot-12.0.0}/src/noshot/__init__.py +0 -0
  81. {noshot-11.0.0 → noshot-12.0.0}/src/noshot/utils/__init__.py +0 -0
  82. {noshot-11.0.0 → noshot-12.0.0}/src/noshot/utils/shell_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 11.0.0
3
+ Version: 12.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 11.0.0
3
+ Version: 12.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -0,0 +1,16 @@
1
+ LICENSE.txt
2
+ README.md
3
+ setup.py
4
+ noshot.egg-info/PKG-INFO
5
+ noshot.egg-info/SOURCES.txt
6
+ noshot.egg-info/dependency_links.txt
7
+ noshot.egg-info/not-zip-safe
8
+ noshot.egg-info/top_level.txt
9
+ src/noshot/__init__.py
10
+ src/noshot/main.py
11
+ src/noshot/data/DLE FSD BDA/DLE/1. DNN (Image Classification).ipynb
12
+ src/noshot/data/DLE FSD BDA/DLE/2. DNN vs CNN.ipynb
13
+ src/noshot/data/DLE FSD BDA/DLE/3. CNN (Object Detecrion).ipynb
14
+ src/noshot/data/DLE FSD BDA/DLE/4. FCN (Image Segmentaion).ipynb
15
+ src/noshot/utils/__init__.py
16
+ src/noshot/utils/shell_utils.py
@@ -5,7 +5,7 @@ with open("README.md", "r", encoding="utf-8") as f:
5
5
 
6
6
  setup(
7
7
  name="noshot",
8
- version="11.0.0",
8
+ version="12.0.0",
9
9
  author="Tim Stan S",
10
10
  description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
11
11
  long_description=long_description,
@@ -0,0 +1,389 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "colab": {
8
+ "base_uri": "https://localhost:8080/"
9
+ },
10
+ "id": "A5s8qm0I9cCt",
11
+ "outputId": "971e6baf-a1d6-48c4-ca19-17ee3c2d577f"
12
+ },
13
+ "outputs": [],
14
+ "source": [
15
+ "from google.colab import drive\n",
16
+ "drive.mount('/content/drive')"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "markdown",
21
+ "metadata": {
22
+ "id": "wtWyceRh9Ynb"
23
+ },
24
+ "source": [
25
+ "Packages"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": null,
31
+ "metadata": {
32
+ "id": "xffzPHEZ9Sb_"
33
+ },
34
+ "outputs": [],
35
+ "source": [
36
+ "import os\n",
37
+ "import pandas as pd\n",
38
+ "import numpy as np\n",
39
+ "import matplotlib.pyplot as plt\n",
40
+ "import tensorflow as tf\n",
41
+ "from tensorflow.keras.preprocessing.image import load_img,img_to_array\n",
42
+ "from tensorflow.keras.utils import to_categorical\n",
43
+ "from sklearn.model_selection import train_test_split\n",
44
+ "from sklearn.preprocessing import LabelEncoder\n",
45
+ "from sklearn.metrics import classification_report,confusion_matrix\n",
46
+ "from tensorflow.keras.models import Sequential\n",
47
+ "from tensorflow.keras.layers import Dense"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "code",
52
+ "execution_count": null,
53
+ "metadata": {
54
+ "id": "CUbFegyj97_n"
55
+ },
56
+ "outputs": [],
57
+ "source": [
58
+ "dataset_path='/content/drive/MyDrive/sem 7/Lab/DL_Lab/Bean_Dataset'"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "markdown",
63
+ "metadata": {
64
+ "id": "s4L5oajJD6i8"
65
+ },
66
+ "source": [
67
+ "Load Images"
68
+ ]
69
+ },
70
+ {
71
+ "cell_type": "code",
72
+ "execution_count": null,
73
+ "metadata": {
74
+ "id": "_ohgIAYk-LJ3"
75
+ },
76
+ "outputs": [],
77
+ "source": [
78
+ "def load_images(file_path,img_size):\n",
79
+ " images=[]\n",
80
+ " labels=[]\n",
81
+ "\n",
82
+ " class_names=os.listdir(file_path)\n",
83
+ "\n",
84
+ " valid_extensions = (\".jpg\", \".jpeg\", \".png\", \".bmp\")\n",
85
+ "\n",
86
+ " for cls in class_names:\n",
87
+ "\n",
88
+ " class_path=os.path.join(file_path,cls)\n",
89
+ "\n",
90
+ " for file_name in os.listdir(class_path):\n",
91
+ "\n",
92
+ " if file_name.lower().endswith(valid_extensions):\n",
93
+ "\n",
94
+ " img=load_img(os.path.join(class_path,file_name),target_size=img_size)\n",
95
+ " img_array=img_to_array(img)/255.0\n",
96
+ " images.append(img_array)\n",
97
+ " labels.append(cls)\n",
98
+ "\n",
99
+ "\n",
100
+ " return np.array(images),np.array(labels),class_names\n",
101
+ "\n",
102
+ "\n",
103
+ "images,labels,cls_names=load_images(dataset_path,(128,128))"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "markdown",
108
+ "metadata": {
109
+ "id": "vvYLDhMzEeov"
110
+ },
111
+ "source": [
112
+ "Train-Test Split"
113
+ ]
114
+ },
115
+ {
116
+ "cell_type": "code",
117
+ "execution_count": null,
118
+ "metadata": {
119
+ "id": "UBgmh_LKEILm"
120
+ },
121
+ "outputs": [],
122
+ "source": [
123
+ "X=images.copy()\n",
124
+ "y=labels.copy()\n",
125
+ "\n",
126
+ "X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "markdown",
131
+ "metadata": {
132
+ "id": "nzq-NVEwFDvG"
133
+ },
134
+ "source": [
135
+ "Flatten for DNN"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "code",
140
+ "execution_count": null,
141
+ "metadata": {
142
+ "id": "fSJCaaTUEhGA"
143
+ },
144
+ "outputs": [],
145
+ "source": [
146
+ "X_train_flat=X_train.reshape(X_train.shape[0],-1)\n",
147
+ "X_test_flat=X_test.reshape(X_test.shape[0],-1)"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "markdown",
152
+ "metadata": {
153
+ "id": "A-iDZOETIHF0"
154
+ },
155
+ "source": [
156
+ "To Categorical"
157
+ ]
158
+ },
159
+ {
160
+ "cell_type": "code",
161
+ "execution_count": null,
162
+ "metadata": {
163
+ "colab": {
164
+ "base_uri": "https://localhost:8080/"
165
+ },
166
+ "id": "VVZE9l0EFFjR",
167
+ "outputId": "7d35989f-b2d4-49e7-d270-4136abd1638a"
168
+ },
169
+ "outputs": [],
170
+ "source": [
171
+ "le=LabelEncoder()\n",
172
+ "y_train=le.fit_transform(y_train)\n",
173
+ "y_test=le.transform(y_test)\n",
174
+ "\n",
175
+ "enc_cls=le.classes_\n",
176
+ "print(enc_cls)\n",
177
+ "\n",
178
+ "num_classes=len(enc_cls)\n",
179
+ "y_train = to_categorical(y_train, num_classes)\n",
180
+ "y_test = to_categorical(y_test, num_classes)"
181
+ ]
182
+ },
183
+ {
184
+ "cell_type": "markdown",
185
+ "metadata": {
186
+ "id": "sAT1wR2QLpZB"
187
+ },
188
+ "source": [
189
+ "Model Creation and Training"
190
+ ]
191
+ },
192
+ {
193
+ "cell_type": "code",
194
+ "execution_count": null,
195
+ "metadata": {
196
+ "colab": {
197
+ "base_uri": "https://localhost:8080/"
198
+ },
199
+ "id": "GS9BazKGIYtT",
200
+ "outputId": "8418f7ae-9289-4666-f3a4-e66bc1c37bc0"
201
+ },
202
+ "outputs": [],
203
+ "source": [
204
+ "model=Sequential([\n",
205
+ " Dense(128,activation='relu',input_shape=(X_train_flat.shape[1],)),\n",
206
+ " Dense(64,activation='relu'),\n",
207
+ " Dense(len(enc_cls),activation='softmax')\n",
208
+ "])"
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "code",
213
+ "execution_count": null,
214
+ "metadata": {
215
+ "id": "qi8dPFoVI4Tz"
216
+ },
217
+ "outputs": [],
218
+ "source": [
219
+ "model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=[\"accuracy\"])"
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "code",
224
+ "execution_count": null,
225
+ "metadata": {
226
+ "colab": {
227
+ "base_uri": "https://localhost:8080/"
228
+ },
229
+ "id": "yyz5A-KDJGna",
230
+ "outputId": "aef382f4-3187-4b2f-9b13-65ac6fb164ea"
231
+ },
232
+ "outputs": [],
233
+ "source": [
234
+ "history=model.fit(X_train_flat,y_train,epochs=5,validation_split=0.2)"
235
+ ]
236
+ },
237
+ {
238
+ "cell_type": "code",
239
+ "execution_count": null,
240
+ "metadata": {
241
+ "colab": {
242
+ "base_uri": "https://localhost:8080/"
243
+ },
244
+ "id": "nBJX14X6J4tx",
245
+ "outputId": "993101c1-e85e-4493-b104-b4961c38174a"
246
+ },
247
+ "outputs": [],
248
+ "source": [
249
+ "loss,acc=model.evaluate(X_test_flat,y_test)\n",
250
+ "print(f'Test Accuracy : {acc*100:.2f}%')\n",
251
+ "print(f'Test Loss : {loss:.2f}')"
252
+ ]
253
+ },
254
+ {
255
+ "cell_type": "code",
256
+ "execution_count": null,
257
+ "metadata": {
258
+ "colab": {
259
+ "base_uri": "https://localhost:8080/"
260
+ },
261
+ "id": "hwpZh90oKS0f",
262
+ "outputId": "d51c180b-35d6-4a4a-9636-54a619186699"
263
+ },
264
+ "outputs": [],
265
+ "source": [
266
+ "y_pred=np.argmax(model.predict(X_test_flat),axis=-1)\n",
267
+ "y_true=np.argmax(y_test,axis=-1)"
268
+ ]
269
+ },
270
+ {
271
+ "cell_type": "markdown",
272
+ "metadata": {
273
+ "id": "nmeo-X4MLl1u"
274
+ },
275
+ "source": [
276
+ "Find Metrics"
277
+ ]
278
+ },
279
+ {
280
+ "cell_type": "code",
281
+ "execution_count": null,
282
+ "metadata": {
283
+ "colab": {
284
+ "base_uri": "https://localhost:8080/"
285
+ },
286
+ "id": "iB7LoayMKn_F",
287
+ "outputId": "1004d40a-6c66-4efb-c328-aa66a309ebb9"
288
+ },
289
+ "outputs": [],
290
+ "source": [
291
+ "print('Classfication Report')\n",
292
+ "print(classification_report(y_true,y_pred,target_names=enc_cls))"
293
+ ]
294
+ },
295
+ {
296
+ "cell_type": "code",
297
+ "execution_count": null,
298
+ "metadata": {
299
+ "colab": {
300
+ "base_uri": "https://localhost:8080/"
301
+ },
302
+ "id": "ZhDzJwIhK14X",
303
+ "outputId": "4e86c8af-9bc4-4b70-a2cb-8ebead766c3e"
304
+ },
305
+ "outputs": [],
306
+ "source": [
307
+ "print('Confusion Matrix')\n",
308
+ "print(confusion_matrix(y_true,y_pred))"
309
+ ]
310
+ },
311
+ {
312
+ "cell_type": "markdown",
313
+ "metadata": {
314
+ "id": "_6DvMr73Li4K"
315
+ },
316
+ "source": [
317
+ "Plot Accuracy and Loss"
318
+ ]
319
+ },
320
+ {
321
+ "cell_type": "code",
322
+ "execution_count": null,
323
+ "metadata": {
324
+ "colab": {
325
+ "base_uri": "https://localhost:8080/",
326
+ "height": 472
327
+ },
328
+ "id": "bKh8b3rPLCXA",
329
+ "outputId": "77ee2360-71be-44d6-a572-e5678ffc68ea"
330
+ },
331
+ "outputs": [],
332
+ "source": [
333
+ "plt.plot(history.history['accuracy'],label='train_accuracy')\n",
334
+ "plt.plot(history.history['val_accuracy'],label='val_accuracy')\n",
335
+ "plt.title('Model Accuracy')\n",
336
+ "plt.xlabel('Epochs')\n",
337
+ "plt.ylabel('Accuracy')\n",
338
+ "plt.legend()\n",
339
+ "plt.show()"
340
+ ]
341
+ },
342
+ {
343
+ "cell_type": "code",
344
+ "execution_count": null,
345
+ "metadata": {
346
+ "colab": {
347
+ "base_uri": "https://localhost:8080/",
348
+ "height": 472
349
+ },
350
+ "id": "EiWN8lzvLZek",
351
+ "outputId": "89863716-ea8e-42a1-f07c-d37b58d33df0"
352
+ },
353
+ "outputs": [],
354
+ "source": [
355
+ "plt.plot(history.history['loss'],label='train_loss')\n",
356
+ "plt.plot(history.history['val_loss'],label='val_loss')\n",
357
+ "plt.title('Model loss')\n",
358
+ "plt.xlabel('Epochs')\n",
359
+ "plt.ylabel('loss')\n",
360
+ "plt.legend()\n",
361
+ "plt.show()"
362
+ ]
363
+ }
364
+ ],
365
+ "metadata": {
366
+ "colab": {
367
+ "provenance": []
368
+ },
369
+ "kernelspec": {
370
+ "display_name": "Python 3 (ipykernel)",
371
+ "language": "python",
372
+ "name": "python3"
373
+ },
374
+ "language_info": {
375
+ "codemirror_mode": {
376
+ "name": "ipython",
377
+ "version": 3
378
+ },
379
+ "file_extension": ".py",
380
+ "mimetype": "text/x-python",
381
+ "name": "python",
382
+ "nbconvert_exporter": "python",
383
+ "pygments_lexer": "ipython3",
384
+ "version": "3.12.4"
385
+ }
386
+ },
387
+ "nbformat": 4,
388
+ "nbformat_minor": 4
389
+ }