noshot 0.3.7__tar.gz → 0.3.9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. {noshot-0.3.7 → noshot-0.3.9}/PKG-INFO +1 -1
  2. {noshot-0.3.7 → noshot-0.3.9}/noshot.egg-info/PKG-INFO +1 -1
  3. {noshot-0.3.7 → noshot-0.3.9}/noshot.egg-info/SOURCES.txt +9 -0
  4. {noshot-0.3.7 → noshot-0.3.9}/setup.py +1 -1
  5. noshot-0.3.9/src/noshot/data/ML TS XAI/ML Additional/Bank.ipynb +74 -0
  6. noshot-0.3.9/src/noshot/data/ML TS XAI/ML Additional/LR.ipynb +69 -0
  7. noshot-0.3.9/src/noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +2112 -0
  8. noshot-0.3.9/src/noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +206 -0
  9. noshot-0.3.9/src/noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +41189 -0
  10. noshot-0.3.9/src/noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +69 -0
  11. noshot-0.3.9/src/noshot/data/ML TS XAI/ML Additional/obesity.ipynb +78 -0
  12. noshot-0.3.9/src/noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +81 -0
  13. noshot-0.3.9/src/noshot/data/ML TS XAI/ML Lab CIA/1/airfoil_self_noise.dat +1503 -0
  14. {noshot-0.3.7 → noshot-0.3.9}/LICENSE.txt +0 -0
  15. {noshot-0.3.7 → noshot-0.3.9}/README.md +0 -0
  16. {noshot-0.3.7 → noshot-0.3.9}/noshot.egg-info/dependency_links.txt +0 -0
  17. {noshot-0.3.7 → noshot-0.3.9}/noshot.egg-info/not-zip-safe +0 -0
  18. {noshot-0.3.7 → noshot-0.3.9}/noshot.egg-info/top_level.txt +0 -0
  19. {noshot-0.3.7 → noshot-0.3.9}/setup.cfg +0 -0
  20. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/__init__.py +0 -0
  21. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb +0 -0
  22. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb +0 -0
  23. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb +0 -0
  24. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb +0 -0
  25. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb +0 -0
  26. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb +0 -0
  27. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML/data/balance-scale.csv +0 -0
  28. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML/data/balance-scale.txt +0 -0
  29. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML/data/machine-data.csv +0 -0
  30. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML/data/wine-dataset.csv +0 -0
  31. {noshot-0.3.7/src/noshot/data/ML TS XAI/ML Lab CIA/1 → noshot-0.3.9/src/noshot/data/ML TS XAI/ML Additional}/airfoil_self_noise.dat +0 -0
  32. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb +0 -0
  33. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML Lab CIA/1/Question.txt +0 -0
  34. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML Lab CIA/2/2.ipynb +0 -0
  35. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML Lab CIA/2/Question.txt +0 -0
  36. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML Lab CIA/2/pop_failures.dat +0 -0
  37. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML Lab CIA/3/3.ipynb +0 -0
  38. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML Lab CIA/3/Qu.txt +0 -0
  39. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML Lab CIA/3/go_track_tracks.csv +0 -0
  40. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML Lab CIA/4/4.ipynb +0 -0
  41. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML Lab CIA/4/Wilt.csv +0 -0
  42. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/ML Lab CIA/4/qu.txt +0 -0
  43. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -0
  44. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -0
  45. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -0
  46. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -0
  47. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -0
  48. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -0
  49. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -0
  50. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -0
  51. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -0
  52. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -0
  53. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -0
  54. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -0
  55. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -0
  56. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -0
  57. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -0
  58. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -0
  59. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -0
  60. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -0
  61. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -0
  62. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -0
  63. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -0
  64. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
  65. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/main.py +0 -0
  66. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/utils/__init__.py +0 -0
  67. {noshot-0.3.7 → noshot-0.3.9}/src/noshot/utils/shell_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: noshot
3
- Version: 0.3.7
3
+ Version: 0.3.9
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: noshot
3
- Version: 0.3.7
3
+ Version: 0.3.9
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -14,6 +14,15 @@ src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb
14
14
  src/noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb
15
15
  src/noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb
16
16
  src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb
17
+ src/noshot/data/ML TS XAI/ML Additional/Bank.ipynb
18
+ src/noshot/data/ML TS XAI/ML Additional/LR.ipynb
19
+ src/noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv
20
+ src/noshot/data/ML TS XAI/ML Additional/Q4 LR.csv
21
+ src/noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv
22
+ src/noshot/data/ML TS XAI/ML Additional/airfoil.ipynb
23
+ src/noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat
24
+ src/noshot/data/ML TS XAI/ML Additional/obesity.ipynb
25
+ src/noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb
17
26
  src/noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb
18
27
  src/noshot/data/ML TS XAI/ML Lab CIA/1/Question.txt
19
28
  src/noshot/data/ML TS XAI/ML Lab CIA/1/airfoil_self_noise.dat
@@ -5,7 +5,7 @@ with open("README.md", "r", encoding="utf-8") as f:
5
5
 
6
6
  setup(
7
7
  name="noshot",
8
- version="0.3.7",
8
+ version="0.3.9",
9
9
  author="Tim Stan S",
10
10
  description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
11
11
  long_description=long_description,
@@ -0,0 +1,74 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "07c07cfa-8a32-4795-a765-defeee75e225",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "from sklearn.model_selection import train_test_split\n",
13
+ "from sklearn.preprocessing import StandardScaler\n",
14
+ "from sklearn.neighbors import KNeighborsClassifier\n",
15
+ "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis\n",
16
+ "from sklearn.metrics import accuracy_score\n",
17
+ "\n",
18
+ "# Load the dataset\n",
19
+ "data = pd.read_csv('/mnt/data/Q7 BANK DETAILS.csv')\n",
20
+ "\n",
21
+ "# Assuming the last column is the target variable\n",
22
+ "y = data.iloc[:, -1]\n",
23
+ "X = data.iloc[:, :-1]\n",
24
+ "\n",
25
+ "# Standardize the features\n",
26
+ "scaler = StandardScaler()\n",
27
+ "X_scaled = scaler.fit_transform(X)\n",
28
+ "\n",
29
+ "# Split into training and testing sets\n",
30
+ "X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n",
31
+ "\n",
32
+ "# Apply KNN\n",
33
+ "knn = KNeighborsClassifier(n_neighbors=5)\n",
34
+ "knn.fit(X_train, y_train)\n",
35
+ "y_pred_knn = knn.predict(X_test)\n",
36
+ "knn_accuracy = accuracy_score(y_test, y_pred_knn)\n",
37
+ "print(f'KNN Accuracy: {knn_accuracy}')\n",
38
+ "\n",
39
+ "# Apply LDA (reducing to 2 components for visualization purposes)\n",
40
+ "lda = LinearDiscriminantAnalysis(n_components=2)\n",
41
+ "X_train_lda = lda.fit_transform(X_train, y_train)\n",
42
+ "X_test_lda = lda.transform(X_test)\n",
43
+ "\n",
44
+ "# KNN with LDA-transformed data\n",
45
+ "knn_lda = KNeighborsClassifier(n_neighbors=5)\n",
46
+ "knn_lda.fit(X_train_lda, y_train)\n",
47
+ "y_pred_lda = knn_lda.predict(X_test_lda)\n",
48
+ "lda_accuracy = accuracy_score(y_test, y_pred_lda)\n",
49
+ "print(f'KNN with LDA Accuracy: {lda_accuracy}')\n"
50
+ ]
51
+ }
52
+ ],
53
+ "metadata": {
54
+ "kernelspec": {
55
+ "display_name": "Python 3 (ipykernel)",
56
+ "language": "python",
57
+ "name": "python3"
58
+ },
59
+ "language_info": {
60
+ "codemirror_mode": {
61
+ "name": "ipython",
62
+ "version": 3
63
+ },
64
+ "file_extension": ".py",
65
+ "mimetype": "text/x-python",
66
+ "name": "python",
67
+ "nbconvert_exporter": "python",
68
+ "pygments_lexer": "ipython3",
69
+ "version": "3.12.4"
70
+ }
71
+ },
72
+ "nbformat": 4,
73
+ "nbformat_minor": 5
74
+ }
@@ -0,0 +1,69 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "99ea2146-3157-4adc-b656-2f01685a91eb",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "from sklearn.model_selection import train_test_split\n",
13
+ "from sklearn.linear_model import LinearRegression\n",
14
+ "from sklearn.decomposition import PCA\n",
15
+ "from sklearn.metrics import mean_squared_error\n",
16
+ "\n",
17
+ "# Load the dataset\n",
18
+ "data = pd.read_csv('/mnt/data/Q4 LR.csv')\n",
19
+ "\n",
20
+ "# Assuming the last column is the target variable\n",
21
+ "y = data.iloc[:, -1]\n",
22
+ "X = data.iloc[:, :-1]\n",
23
+ "\n",
24
+ "# Split into training and testing sets\n",
25
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
26
+ "\n",
27
+ "# Linear Regression without PCA\n",
28
+ "lr = LinearRegression()\n",
29
+ "lr.fit(X_train, y_train)\n",
30
+ "y_pred = lr.predict(X_test)\n",
31
+ "mse_without_pca = mean_squared_error(y_test, y_pred)\n",
32
+ "print(f'MSE without PCA: {mse_without_pca}')\n",
33
+ "\n",
34
+ "# Applying PCA (reducing to 2 principal components for simplicity)\n",
35
+ "pca = PCA(n_components=2)\n",
36
+ "X_train_pca = pca.fit_transform(X_train)\n",
37
+ "X_test_pca = pca.transform(X_test)\n",
38
+ "\n",
39
+ "# Linear Regression with PCA\n",
40
+ "lr_pca = LinearRegression()\n",
41
+ "lr_pca.fit(X_train_pca, y_train)\n",
42
+ "y_pred_pca = lr_pca.predict(X_test_pca)\n",
43
+ "mse_with_pca = mean_squared_error(y_test, y_pred_pca)\n",
44
+ "print(f'MSE with PCA: {mse_with_pca}')\n"
45
+ ]
46
+ }
47
+ ],
48
+ "metadata": {
49
+ "kernelspec": {
50
+ "display_name": "Python 3 (ipykernel)",
51
+ "language": "python",
52
+ "name": "python3"
53
+ },
54
+ "language_info": {
55
+ "codemirror_mode": {
56
+ "name": "ipython",
57
+ "version": 3
58
+ },
59
+ "file_extension": ".py",
60
+ "mimetype": "text/x-python",
61
+ "name": "python",
62
+ "nbconvert_exporter": "python",
63
+ "pygments_lexer": "ipython3",
64
+ "version": "3.12.4"
65
+ }
66
+ },
67
+ "nbformat": 4,
68
+ "nbformat_minor": 5
69
+ }