noshot 0.3.2__tar.gz → 0.3.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. {noshot-0.3.2 → noshot-0.3.4}/LICENSE.txt +20 -20
  2. {noshot-0.3.2 → noshot-0.3.4}/PKG-INFO +55 -55
  3. {noshot-0.3.2 → noshot-0.3.4}/README.md +30 -30
  4. {noshot-0.3.2 → noshot-0.3.4}/noshot.egg-info/PKG-INFO +55 -55
  5. noshot-0.3.4/noshot.egg-info/SOURCES.txt +33 -0
  6. {noshot-0.3.2 → noshot-0.3.4}/noshot.egg-info/not-zip-safe +1 -1
  7. {noshot-0.3.2 → noshot-0.3.4}/setup.cfg +4 -4
  8. {noshot-0.3.2 → noshot-0.3.4}/setup.py +32 -32
  9. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb → noshot-0.3.4/src/noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb +2 -2
  10. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb → noshot-0.3.4/src/noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb +2 -2
  11. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb → noshot-0.3.4/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb +2 -2
  12. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb → noshot-0.3.4/src/noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb +1 -1
  13. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb → noshot-0.3.4/src/noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb +28 -14
  14. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb → noshot-0.3.4/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb +7 -5
  15. {noshot-0.3.2/src/noshot/data/ML TS XAI/ML/1. PCA - EDA → noshot-0.3.4/src/noshot/data/ML TS XAI/ML/data}/balance-scale.csv +626 -626
  16. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt → noshot-0.3.4/src/noshot/data/ML TS XAI/ML/data/balance-scale.txt +624 -624
  17. {noshot-0.3.2/src/noshot/data/ML TS XAI/ML/4. Linear Regression → noshot-0.3.4/src/noshot/data/ML TS XAI/ML/data}/machine-data.csv +210 -210
  18. {noshot-0.3.2/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier → noshot-0.3.4/src/noshot/data/ML TS XAI/ML/data}/wine-dataset.csv +179 -179
  19. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb → noshot-0.3.4/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +1 -1
  20. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb → noshot-0.3.4/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +1 -1
  21. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb → noshot-0.3.4/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +1 -1
  22. noshot-0.3.4/src/noshot/data/ML TS XAI/TS/AllinOne.ipynb +1416 -0
  23. {noshot-0.3.2/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality → noshot-0.3.4/src/noshot/data/ML TS XAI/TS/data}/daily-min-temperatures.csv +3650 -3650
  24. {noshot-0.3.2/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality → noshot-0.3.4/src/noshot/data/ML TS XAI/TS/data}/daily-total-female-births.csv +365 -365
  25. {noshot-0.3.2/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data → noshot-0.3.4/src/noshot/data/ML TS XAI/TS/data}/raw_sales.csv +29580 -29580
  26. {noshot-0.3.2/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation → noshot-0.3.4/src/noshot/data/ML TS XAI/TS/data}/shampoo_sales.csv +36 -36
  27. {noshot-0.3.2 → noshot-0.3.4}/src/noshot/main.py +18 -18
  28. {noshot-0.3.2 → noshot-0.3.4}/src/noshot/utils/__init__.py +2 -2
  29. {noshot-0.3.2 → noshot-0.3.4}/src/noshot/utils/shell_utils.py +56 -56
  30. noshot-0.3.2/noshot.egg-info/SOURCES.txt +0 -39
  31. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +0 -625
  32. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +0 -626
  33. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +0 -625
  34. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +0 -626
  35. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +0 -179
  36. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +0 -3651
  37. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -12676
  38. {noshot-0.3.2 → noshot-0.3.4}/noshot.egg-info/dependency_links.txt +0 -0
  39. {noshot-0.3.2 → noshot-0.3.4}/noshot.egg-info/top_level.txt +0 -0
  40. {noshot-0.3.2 → noshot-0.3.4}/src/noshot/__init__.py +0 -0
  41. /noshot-0.3.2/src/noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb → /noshot-0.3.4/src/noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -0
  42. /noshot-0.3.2/src/noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb → /noshot-0.3.4/src/noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -0
  43. /noshot-0.3.2/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb → /noshot-0.3.4/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -0
@@ -1,21 +1,21 @@
1
- MIT License
2
-
3
- Copyright (c) 2025 The author
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
1
+ MIT License
2
+
3
+ Copyright (c) 2025 The author
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
21
  THE SOFTWARE.
@@ -1,55 +1,55 @@
1
- Metadata-Version: 2.2
2
- Name: noshot
3
- Version: 0.3.2
4
- Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
- Author: Tim Stan S
6
- License: MIT
7
- Classifier: Programming Language :: Python :: 3
8
- Classifier: Programming Language :: Python :: 3.7
9
- Classifier: Programming Language :: Python :: 3.8
10
- Classifier: Programming Language :: Python :: 3.9
11
- Classifier: Programming Language :: Python :: 3.10
12
- Classifier: Programming Language :: Python :: 3.11
13
- Classifier: License :: OSI Approved :: MIT License
14
- Classifier: Operating System :: OS Independent
15
- Requires-Python: >=3.7
16
- Description-Content-Type: text/markdown
17
- License-File: LICENSE.txt
18
- Dynamic: author
19
- Dynamic: classifier
20
- Dynamic: description
21
- Dynamic: description-content-type
22
- Dynamic: license
23
- Dynamic: requires-python
24
- Dynamic: summary
25
-
26
- <h1 align="center">No Shot</h1>
27
-
28
- <p align="center">
29
- <img src="https://i.ibb.co/XkjpGzzL/noshot.jpg" alt="No Shot Image" width="400">
30
- </p>
31
-
32
- ![Static Badge](https://img.shields.io/badge/OneShotCoding-NoShot-blue?logoColor=yell)
33
- [![PyPI - Version](https://img.shields.io/pypi/v/noshot)](https://pypi.org/project/noshot)
34
- [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/suganthangnanavelan/one-shot-coding/blob/main/LICENSE.txt)
35
- [![Pepy Total Downloads](https://img.shields.io/pepy/dt/noshot)](https://pepy.tech/projects/noshot)
36
- ![Python Versions](https://img.shields.io/pypi/pyversions/noshot.svg?logo=python&color=yellow)
37
- ![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/suganthangnanavelan/one-shot-coding/test.yml)
38
-
39
- <p align="center">
40
- A powerful support library that enhances the capabilities of NumPy, Pandas, and Matplotlib by providing additional algorithms, visualizations, and utilities.
41
- </p>
42
-
43
- ## 🚀 **Overview**
44
- `NoShot` is a utility library that acts as a **support dependency** for larger modules like **NumPy, Pandas, and Matplotlib**. It enhances their functionality by introducing:
45
- - 📊 **Custom visualizations** built on top of Matplotlib.
46
- - 📈 **Optimized algorithms** for data processing.
47
- - ⚡ **Additional utilities** for working with structured data.
48
-
49
- > [!NOTE]
50
- > This package is **not a replacement** for NumPy or Pandas but extends their features to simplify complex operations.
51
-
52
- ## 📦 **Installation**
53
- Install latest version via `pip`:
54
- ```sh
55
- pip install noshot==0.2.0
1
+ Metadata-Version: 2.2
2
+ Name: noshot
3
+ Version: 0.3.4
4
+ Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
+ Author: Tim Stan S
6
+ License: MIT
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: Programming Language :: Python :: 3.7
9
+ Classifier: Programming Language :: Python :: 3.8
10
+ Classifier: Programming Language :: Python :: 3.9
11
+ Classifier: Programming Language :: Python :: 3.10
12
+ Classifier: Programming Language :: Python :: 3.11
13
+ Classifier: License :: OSI Approved :: MIT License
14
+ Classifier: Operating System :: OS Independent
15
+ Requires-Python: >=3.7
16
+ Description-Content-Type: text/markdown
17
+ License-File: LICENSE.txt
18
+ Dynamic: author
19
+ Dynamic: classifier
20
+ Dynamic: description
21
+ Dynamic: description-content-type
22
+ Dynamic: license
23
+ Dynamic: requires-python
24
+ Dynamic: summary
25
+
26
+ <h1 align="center">No Shot</h1>
27
+
28
+ <p align="center">
29
+ <img src="https://i.ibb.co/XkjpGzzL/noshot.jpg" alt="No Shot Image" width="400">
30
+ </p>
31
+
32
+ ![Static Badge](https://img.shields.io/badge/OneShotCoding-NoShot-blue?logoColor=yell)
33
+ [![PyPI - Version](https://img.shields.io/pypi/v/noshot)](https://pypi.org/project/noshot)
34
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/suganthangnanavelan/one-shot-coding/blob/main/LICENSE.txt)
35
+ [![Pepy Total Downloads](https://img.shields.io/pepy/dt/noshot)](https://pepy.tech/projects/noshot)
36
+ ![Python Versions](https://img.shields.io/pypi/pyversions/noshot.svg?logo=python&color=yellow)
37
+ ![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/suganthangnanavelan/one-shot-coding/test.yml)
38
+
39
+ <p align="center">
40
+ A powerful support library that enhances the capabilities of NumPy, Pandas, and Matplotlib by providing additional algorithms, visualizations, and utilities.
41
+ </p>
42
+
43
+ ## 🚀 **Overview**
44
+ `NoShot` is a utility library that acts as a **support dependency** for larger modules like **NumPy, Pandas, and Matplotlib**. It enhances their functionality by introducing:
45
+ - 📊 **Custom visualizations** built on top of Matplotlib.
46
+ - 📈 **Optimized algorithms** for data processing.
47
+ - ⚡ **Additional utilities** for working with structured data.
48
+
49
+ > [!NOTE]
50
+ > This package is **not a replacement** for NumPy or Pandas but extends their features to simplify complex operations.
51
+
52
+ ## 📦 **Installation**
53
+ Install latest version via `pip`:
54
+ ```sh
55
+ pip install noshot
@@ -1,30 +1,30 @@
1
- <h1 align="center">No Shot</h1>
2
-
3
- <p align="center">
4
- <img src="https://i.ibb.co/XkjpGzzL/noshot.jpg" alt="No Shot Image" width="400">
5
- </p>
6
-
7
- ![Static Badge](https://img.shields.io/badge/OneShotCoding-NoShot-blue?logoColor=yell)
8
- [![PyPI - Version](https://img.shields.io/pypi/v/noshot)](https://pypi.org/project/noshot)
9
- [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/suganthangnanavelan/one-shot-coding/blob/main/LICENSE.txt)
10
- [![Pepy Total Downloads](https://img.shields.io/pepy/dt/noshot)](https://pepy.tech/projects/noshot)
11
- ![Python Versions](https://img.shields.io/pypi/pyversions/noshot.svg?logo=python&color=yellow)
12
- ![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/suganthangnanavelan/one-shot-coding/test.yml)
13
-
14
- <p align="center">
15
- A powerful support library that enhances the capabilities of NumPy, Pandas, and Matplotlib by providing additional algorithms, visualizations, and utilities.
16
- </p>
17
-
18
- ## 🚀 **Overview**
19
- `NoShot` is a utility library that acts as a **support dependency** for larger modules like **NumPy, Pandas, and Matplotlib**. It enhances their functionality by introducing:
20
- - 📊 **Custom visualizations** built on top of Matplotlib.
21
- - 📈 **Optimized algorithms** for data processing.
22
- - ⚡ **Additional utilities** for working with structured data.
23
-
24
- > [!NOTE]
25
- > This package is **not a replacement** for NumPy or Pandas but extends their features to simplify complex operations.
26
-
27
- ## 📦 **Installation**
28
- Install latest version via `pip`:
29
- ```sh
30
- pip install noshot==0.2.0
1
+ <h1 align="center">No Shot</h1>
2
+
3
+ <p align="center">
4
+ <img src="https://i.ibb.co/XkjpGzzL/noshot.jpg" alt="No Shot Image" width="400">
5
+ </p>
6
+
7
+ ![Static Badge](https://img.shields.io/badge/OneShotCoding-NoShot-blue?logoColor=yell)
8
+ [![PyPI - Version](https://img.shields.io/pypi/v/noshot)](https://pypi.org/project/noshot)
9
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/suganthangnanavelan/one-shot-coding/blob/main/LICENSE.txt)
10
+ [![Pepy Total Downloads](https://img.shields.io/pepy/dt/noshot)](https://pepy.tech/projects/noshot)
11
+ ![Python Versions](https://img.shields.io/pypi/pyversions/noshot.svg?logo=python&color=yellow)
12
+ ![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/suganthangnanavelan/one-shot-coding/test.yml)
13
+
14
+ <p align="center">
15
+ A powerful support library that enhances the capabilities of NumPy, Pandas, and Matplotlib by providing additional algorithms, visualizations, and utilities.
16
+ </p>
17
+
18
+ ## 🚀 **Overview**
19
+ `NoShot` is a utility library that acts as a **support dependency** for larger modules like **NumPy, Pandas, and Matplotlib**. It enhances their functionality by introducing:
20
+ - 📊 **Custom visualizations** built on top of Matplotlib.
21
+ - 📈 **Optimized algorithms** for data processing.
22
+ - ⚡ **Additional utilities** for working with structured data.
23
+
24
+ > [!NOTE]
25
+ > This package is **not a replacement** for NumPy or Pandas but extends their features to simplify complex operations.
26
+
27
+ ## 📦 **Installation**
28
+ Install latest version via `pip`:
29
+ ```sh
30
+ pip install noshot
@@ -1,55 +1,55 @@
1
- Metadata-Version: 2.2
2
- Name: noshot
3
- Version: 0.3.2
4
- Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
- Author: Tim Stan S
6
- License: MIT
7
- Classifier: Programming Language :: Python :: 3
8
- Classifier: Programming Language :: Python :: 3.7
9
- Classifier: Programming Language :: Python :: 3.8
10
- Classifier: Programming Language :: Python :: 3.9
11
- Classifier: Programming Language :: Python :: 3.10
12
- Classifier: Programming Language :: Python :: 3.11
13
- Classifier: License :: OSI Approved :: MIT License
14
- Classifier: Operating System :: OS Independent
15
- Requires-Python: >=3.7
16
- Description-Content-Type: text/markdown
17
- License-File: LICENSE.txt
18
- Dynamic: author
19
- Dynamic: classifier
20
- Dynamic: description
21
- Dynamic: description-content-type
22
- Dynamic: license
23
- Dynamic: requires-python
24
- Dynamic: summary
25
-
26
- <h1 align="center">No Shot</h1>
27
-
28
- <p align="center">
29
- <img src="https://i.ibb.co/XkjpGzzL/noshot.jpg" alt="No Shot Image" width="400">
30
- </p>
31
-
32
- ![Static Badge](https://img.shields.io/badge/OneShotCoding-NoShot-blue?logoColor=yell)
33
- [![PyPI - Version](https://img.shields.io/pypi/v/noshot)](https://pypi.org/project/noshot)
34
- [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/suganthangnanavelan/one-shot-coding/blob/main/LICENSE.txt)
35
- [![Pepy Total Downloads](https://img.shields.io/pepy/dt/noshot)](https://pepy.tech/projects/noshot)
36
- ![Python Versions](https://img.shields.io/pypi/pyversions/noshot.svg?logo=python&color=yellow)
37
- ![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/suganthangnanavelan/one-shot-coding/test.yml)
38
-
39
- <p align="center">
40
- A powerful support library that enhances the capabilities of NumPy, Pandas, and Matplotlib by providing additional algorithms, visualizations, and utilities.
41
- </p>
42
-
43
- ## 🚀 **Overview**
44
- `NoShot` is a utility library that acts as a **support dependency** for larger modules like **NumPy, Pandas, and Matplotlib**. It enhances their functionality by introducing:
45
- - 📊 **Custom visualizations** built on top of Matplotlib.
46
- - 📈 **Optimized algorithms** for data processing.
47
- - ⚡ **Additional utilities** for working with structured data.
48
-
49
- > [!NOTE]
50
- > This package is **not a replacement** for NumPy or Pandas but extends their features to simplify complex operations.
51
-
52
- ## 📦 **Installation**
53
- Install latest version via `pip`:
54
- ```sh
55
- pip install noshot==0.2.0
1
+ Metadata-Version: 2.2
2
+ Name: noshot
3
+ Version: 0.3.4
4
+ Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
+ Author: Tim Stan S
6
+ License: MIT
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: Programming Language :: Python :: 3.7
9
+ Classifier: Programming Language :: Python :: 3.8
10
+ Classifier: Programming Language :: Python :: 3.9
11
+ Classifier: Programming Language :: Python :: 3.10
12
+ Classifier: Programming Language :: Python :: 3.11
13
+ Classifier: License :: OSI Approved :: MIT License
14
+ Classifier: Operating System :: OS Independent
15
+ Requires-Python: >=3.7
16
+ Description-Content-Type: text/markdown
17
+ License-File: LICENSE.txt
18
+ Dynamic: author
19
+ Dynamic: classifier
20
+ Dynamic: description
21
+ Dynamic: description-content-type
22
+ Dynamic: license
23
+ Dynamic: requires-python
24
+ Dynamic: summary
25
+
26
+ <h1 align="center">No Shot</h1>
27
+
28
+ <p align="center">
29
+ <img src="https://i.ibb.co/XkjpGzzL/noshot.jpg" alt="No Shot Image" width="400">
30
+ </p>
31
+
32
+ ![Static Badge](https://img.shields.io/badge/OneShotCoding-NoShot-blue?logoColor=yell)
33
+ [![PyPI - Version](https://img.shields.io/pypi/v/noshot)](https://pypi.org/project/noshot)
34
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/suganthangnanavelan/one-shot-coding/blob/main/LICENSE.txt)
35
+ [![Pepy Total Downloads](https://img.shields.io/pepy/dt/noshot)](https://pepy.tech/projects/noshot)
36
+ ![Python Versions](https://img.shields.io/pypi/pyversions/noshot.svg?logo=python&color=yellow)
37
+ ![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/suganthangnanavelan/one-shot-coding/test.yml)
38
+
39
+ <p align="center">
40
+ A powerful support library that enhances the capabilities of NumPy, Pandas, and Matplotlib by providing additional algorithms, visualizations, and utilities.
41
+ </p>
42
+
43
+ ## 🚀 **Overview**
44
+ `NoShot` is a utility library that acts as a **support dependency** for larger modules like **NumPy, Pandas, and Matplotlib**. It enhances their functionality by introducing:
45
+ - 📊 **Custom visualizations** built on top of Matplotlib.
46
+ - 📈 **Optimized algorithms** for data processing.
47
+ - ⚡ **Additional utilities** for working with structured data.
48
+
49
+ > [!NOTE]
50
+ > This package is **not a replacement** for NumPy or Pandas but extends their features to simplify complex operations.
51
+
52
+ ## 📦 **Installation**
53
+ Install latest version via `pip`:
54
+ ```sh
55
+ pip install noshot
@@ -0,0 +1,33 @@
1
+ LICENSE.txt
2
+ README.md
3
+ setup.py
4
+ noshot.egg-info/PKG-INFO
5
+ noshot.egg-info/SOURCES.txt
6
+ noshot.egg-info/dependency_links.txt
7
+ noshot.egg-info/not-zip-safe
8
+ noshot.egg-info/top_level.txt
9
+ src/noshot/__init__.py
10
+ src/noshot/main.py
11
+ src/noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb
12
+ src/noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb
13
+ src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb
14
+ src/noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb
15
+ src/noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb
16
+ src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb
17
+ src/noshot/data/ML TS XAI/ML/data/balance-scale.csv
18
+ src/noshot/data/ML TS XAI/ML/data/balance-scale.txt
19
+ src/noshot/data/ML TS XAI/ML/data/machine-data.csv
20
+ src/noshot/data/ML TS XAI/ML/data/wine-dataset.csv
21
+ src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb
22
+ src/noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb
23
+ src/noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb
24
+ src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb
25
+ src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb
26
+ src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb
27
+ src/noshot/data/ML TS XAI/TS/AllinOne.ipynb
28
+ src/noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv
29
+ src/noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv
30
+ src/noshot/data/ML TS XAI/TS/data/raw_sales.csv
31
+ src/noshot/data/ML TS XAI/TS/data/shampoo_sales.csv
32
+ src/noshot/utils/__init__.py
33
+ src/noshot/utils/shell_utils.py
@@ -1,4 +1,4 @@
1
- [egg_info]
2
- tag_build =
3
- tag_date = 0
4
-
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+
@@ -1,32 +1,32 @@
1
- from setuptools import setup, find_packages, find_namespace_packages
2
-
3
- with open("README.md", "r", encoding="utf-8") as f:
4
- long_description = f.read()
5
-
6
- setup(
7
- name="noshot",
8
- version="0.3.2",
9
- author="Tim Stan S",
10
- description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
11
- long_description=long_description,
12
- long_description_content_type="text/markdown",
13
- license="MIT",
14
- license_files=("LICENSE.txt",),
15
- package_dir={"noshot": "src/noshot"},
16
- package_data = {'noshot':['data/**']},
17
- include_package_data=True,
18
- packages=find_namespace_packages(where='src'),
19
- install_requires=[],
20
- classifiers=[
21
- "Programming Language :: Python :: 3",
22
- "Programming Language :: Python :: 3.7",
23
- "Programming Language :: Python :: 3.8",
24
- "Programming Language :: Python :: 3.9",
25
- "Programming Language :: Python :: 3.10",
26
- "Programming Language :: Python :: 3.11",
27
- "License :: OSI Approved :: MIT License",
28
- "Operating System :: OS Independent",
29
- ],
30
- python_requires=">=3.7",
31
- zip_safe=False,
32
- )
1
+ from setuptools import setup, find_packages, find_namespace_packages
2
+
3
+ with open("README.md", "r", encoding="utf-8") as f:
4
+ long_description = f.read()
5
+
6
+ setup(
7
+ name="noshot",
8
+ version="0.3.4",
9
+ author="Tim Stan S",
10
+ description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
11
+ long_description=long_description,
12
+ long_description_content_type="text/markdown",
13
+ license="MIT",
14
+ license_files=("LICENSE.txt",),
15
+ package_dir={"noshot": "src/noshot"},
16
+ package_data = {'noshot':['data/**']},
17
+ include_package_data=True,
18
+ packages=find_namespace_packages(where='src'),
19
+ install_requires=[],
20
+ classifiers=[
21
+ "Programming Language :: Python :: 3",
22
+ "Programming Language :: Python :: 3.7",
23
+ "Programming Language :: Python :: 3.8",
24
+ "Programming Language :: Python :: 3.9",
25
+ "Programming Language :: Python :: 3.10",
26
+ "Programming Language :: Python :: 3.11",
27
+ "License :: OSI Approved :: MIT License",
28
+ "Operating System :: OS Independent",
29
+ ],
30
+ python_requires=">=3.7",
31
+ zip_safe=False,
32
+ )
@@ -31,8 +31,8 @@
31
31
  "metadata": {},
32
32
  "outputs": [],
33
33
  "source": [
34
- "df = pd.read_table('input.txt', delimiter = ',', names = ['class name', 'left-weight', 'left-distance', 'right-weight', 'right-distance'])\n",
35
- "#df = pd.read_csv('balance-scale.csv')\n",
34
+ "df = pd.read_table('data/balance-scale.txt', delimiter = ',', names = ['class name', 'left-weight', 'left-distance', 'right-weight', 'right-distance'])\n",
35
+ "#df = pd.read_csv('data/balance-scale.csv')\n",
36
36
  "df.head()"
37
37
  ]
38
38
  },
@@ -32,8 +32,8 @@
32
32
  "metadata": {},
33
33
  "outputs": [],
34
34
  "source": [
35
- "df = pd.read_csv('input.txt', delimiter = ',', names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
36
- "#df = pd.read_csv('balance-scale.csv')\n",
35
+ "df = pd.read_csv('data/balance-scale.txt', delimiter = ',', names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
36
+ "#df = pd.read_csv('data/balance-scale.csv')\n",
37
37
  "df.head()"
38
38
  ]
39
39
  },
@@ -22,8 +22,8 @@
22
22
  "metadata": {},
23
23
  "outputs": [],
24
24
  "source": [
25
- "df = pd.read_table('input.txt', delimiter = \",\", names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
26
- "df = pd.read_csv('balance-scale.csv')\n",
25
+ "df = pd.read_table('data/balance-scale.txt', delimiter = \",\", names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
26
+ "#df = pd.read_csv('data/balance-scale.csv')\n",
27
27
  "df.head()"
28
28
  ]
29
29
  },
@@ -21,7 +21,7 @@
21
21
  "metadata": {},
22
22
  "outputs": [],
23
23
  "source": [
24
- "df = pd.read_csv('machine-data.csv')\n",
24
+ "df = pd.read_csv('data/machine-data.csv')\n",
25
25
  "df.head()"
26
26
  ]
27
27
  },
@@ -25,8 +25,18 @@
25
25
  "metadata": {},
26
26
  "outputs": [],
27
27
  "source": [
28
- "wine = datasets.load_wine()\n",
29
- "type(wine)"
28
+ "wine = pd.read_csv('data/wine-dataset.csv')\n",
29
+ "print(wine.shape)"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": null,
35
+ "id": "c4e953da-6941-43f2-a9ce-aab907876d45",
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "wine.columns"
30
40
  ]
31
41
  },
32
42
  {
@@ -36,18 +46,19 @@
36
46
  "metadata": {},
37
47
  "outputs": [],
38
48
  "source": [
39
- "wine.data[:5,:]"
49
+ "X = wine.iloc[:, :13]\n",
50
+ "X.head()"
40
51
  ]
41
52
  },
42
53
  {
43
54
  "cell_type": "code",
44
55
  "execution_count": null,
45
- "id": "3eed721d-7956-40fb-9831-1a79f73cb906",
56
+ "id": "5cfd2fe6-3825-4d95-b606-3b3e2ef685b2",
46
57
  "metadata": {},
47
58
  "outputs": [],
48
59
  "source": [
49
- "print(type(wine.feature_names))\n",
50
- "wine.feature_names"
60
+ "y = wine.iloc[:, 13]\n",
61
+ "y"
51
62
  ]
52
63
  },
53
64
  {
@@ -57,7 +68,7 @@
57
68
  "metadata": {},
58
69
  "outputs": [],
59
70
  "source": [
60
- "X_train,X_test,y_train,y_test = train_test_split(wine.data, wine.target, test_size=0.30, random_state=7)\n",
71
+ "X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.30, random_state=7)\n",
61
72
  "\n",
62
73
  "log_reg_model = linear_model.LogisticRegression()\n",
63
74
  "log_reg_model.fit(X_train,y_train)"
@@ -88,21 +99,24 @@
88
99
  {
89
100
  "cell_type": "code",
90
101
  "execution_count": null,
91
- "id": "2fcd6449-feca-4b90-828f-420ba5bb8bcf",
92
- "metadata": {},
102
+ "id": "600ec8f2-34e1-4be7-8ef5-fe53ff673f41",
103
+ "metadata": {
104
+ "scrolled": true
105
+ },
93
106
  "outputs": [],
94
107
  "source": [
95
- "X = wine.data[:,:2]\n",
96
- "Y = wine.target\n",
108
+ "X = X.iloc[:, :2]\n",
109
+ "Y = y\n",
110
+ "\n",
97
111
  "log_reg_model.fit(X,Y)\n",
98
- "x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5\n",
99
- "y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5\n",
112
+ "x_min, x_max = X.iloc[:, 0].min() - .5, X.iloc[:, 0].max() + .5\n",
113
+ "y_min, y_max = X.iloc[:, 1].min() - .5, X.iloc[:, 1].max() + .5\n",
100
114
  "xx, yy = np.meshgrid(np.arange(x_min, x_max, .01), np.arange(y_min, y_max, .01))\n",
101
115
  "Z = log_reg_model.predict(np.c_[xx.ravel(), yy.ravel()])\n",
102
116
  "Z = Z.reshape(xx.shape)\n",
103
117
  "plt.figure(1, figsize = (4, 3))\n",
104
118
  "plt.pcolormesh(xx, yy, Z, cmap = plt.cm.Paired)\n",
105
- "plt.scatter(X[:, 0], X[:, 1], c = Y, edgecolors = 'k', cmap = plt.cm.Paired)\n",
119
+ "plt.scatter(X.iloc[:, 0], X.iloc[:, 1], c = Y, edgecolors = 'k', cmap = plt.cm.Paired)\n",
106
120
  "plt.xlabel('X')\n",
107
121
  "plt.ylabel('Y')\n",
108
122
  "plt.xlim(xx.min(), xx.max())\n",
@@ -10,7 +10,8 @@
10
10
  "from sklearn import datasets\n",
11
11
  "from sklearn.metrics import confusion_matrix\n",
12
12
  "from sklearn.model_selection import train_test_split\n",
13
- "from sklearn.naive_bayes import GaussianNB"
13
+ "from sklearn.naive_bayes import GaussianNB\n",
14
+ "import pandas as pd"
14
15
  ]
15
16
  },
16
17
  {
@@ -20,7 +21,8 @@
20
21
  "metadata": {},
21
22
  "outputs": [],
22
23
  "source": [
23
- "wine = datasets.load_wine()"
24
+ "wine = pd.read_csv('data/wine-dataset.csv')\n",
25
+ "print(wine.shape)"
24
26
  ]
25
27
  },
26
28
  {
@@ -30,8 +32,8 @@
30
32
  "metadata": {},
31
33
  "outputs": [],
32
34
  "source": [
33
- "X = wine.data\n",
34
- "X"
35
+ "X = wine.iloc[:, :13]\n",
36
+ "X.head()"
35
37
  ]
36
38
  },
37
39
  {
@@ -41,7 +43,7 @@
41
43
  "metadata": {},
42
44
  "outputs": [],
43
45
  "source": [
44
- "y = wine.target\n",
46
+ "y = wine.iloc[:, 13]\n",
45
47
  "y"
46
48
  ]
47
49
  },