noshot 0.3.2__tar.gz → 0.3.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. {noshot-0.3.2 → noshot-0.3.3}/PKG-INFO +1 -1
  2. {noshot-0.3.2 → noshot-0.3.3}/noshot.egg-info/PKG-INFO +1 -1
  3. noshot-0.3.3/noshot.egg-info/SOURCES.txt +33 -0
  4. {noshot-0.3.2 → noshot-0.3.3}/setup.py +1 -1
  5. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb → noshot-0.3.3/src/noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb +2 -2
  6. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb → noshot-0.3.3/src/noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb +2 -2
  7. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb → noshot-0.3.3/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb +2 -2
  8. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb → noshot-0.3.3/src/noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb +1 -1
  9. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb → noshot-0.3.3/src/noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb +28 -14
  10. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb → noshot-0.3.3/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb +7 -5
  11. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb → noshot-0.3.3/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +1 -1
  12. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb → noshot-0.3.3/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +1 -1
  13. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb → noshot-0.3.3/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +1 -1
  14. noshot-0.3.3/src/noshot/data/ML TS XAI/TS/AllinOne.ipynb +1416 -0
  15. noshot-0.3.2/noshot.egg-info/SOURCES.txt +0 -39
  16. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +0 -626
  17. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +0 -625
  18. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +0 -626
  19. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +0 -625
  20. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +0 -179
  21. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +0 -3651
  22. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -12676
  23. {noshot-0.3.2 → noshot-0.3.3}/LICENSE.txt +0 -0
  24. {noshot-0.3.2 → noshot-0.3.3}/README.md +0 -0
  25. {noshot-0.3.2 → noshot-0.3.3}/noshot.egg-info/dependency_links.txt +0 -0
  26. {noshot-0.3.2 → noshot-0.3.3}/noshot.egg-info/not-zip-safe +0 -0
  27. {noshot-0.3.2 → noshot-0.3.3}/noshot.egg-info/top_level.txt +0 -0
  28. {noshot-0.3.2 → noshot-0.3.3}/setup.cfg +0 -0
  29. {noshot-0.3.2 → noshot-0.3.3}/src/noshot/__init__.py +0 -0
  30. {noshot-0.3.2/src/noshot/data/ML TS XAI/ML/1. PCA - EDA → noshot-0.3.3/src/noshot/data/ML TS XAI/ML/data}/balance-scale.csv +0 -0
  31. /noshot-0.3.2/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt → /noshot-0.3.3/src/noshot/data/ML TS XAI/ML/data/balance-scale.txt +0 -0
  32. {noshot-0.3.2/src/noshot/data/ML TS XAI/ML/4. Linear Regression → noshot-0.3.3/src/noshot/data/ML TS XAI/ML/data}/machine-data.csv +0 -0
  33. {noshot-0.3.2/src/noshot/data/ML TS XAI/ML/5. Logistic Regression → noshot-0.3.3/src/noshot/data/ML TS XAI/ML/data}/wine-dataset.csv +0 -0
  34. /noshot-0.3.2/src/noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb → /noshot-0.3.3/src/noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -0
  35. /noshot-0.3.2/src/noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb → /noshot-0.3.3/src/noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -0
  36. /noshot-0.3.2/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb → /noshot-0.3.3/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -0
  37. {noshot-0.3.2/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality → noshot-0.3.3/src/noshot/data/ML TS XAI/TS/data}/daily-min-temperatures.csv +0 -0
  38. {noshot-0.3.2/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality → noshot-0.3.3/src/noshot/data/ML TS XAI/TS/data}/daily-total-female-births.csv +0 -0
  39. {noshot-0.3.2/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data → noshot-0.3.3/src/noshot/data/ML TS XAI/TS/data}/raw_sales.csv +0 -0
  40. {noshot-0.3.2/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation → noshot-0.3.3/src/noshot/data/ML TS XAI/TS/data}/shampoo_sales.csv +0 -0
  41. {noshot-0.3.2 → noshot-0.3.3}/src/noshot/main.py +0 -0
  42. {noshot-0.3.2 → noshot-0.3.3}/src/noshot/utils/__init__.py +0 -0
  43. {noshot-0.3.2 → noshot-0.3.3}/src/noshot/utils/shell_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: noshot
3
- Version: 0.3.2
3
+ Version: 0.3.3
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: noshot
3
- Version: 0.3.2
3
+ Version: 0.3.3
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -0,0 +1,33 @@
1
+ LICENSE.txt
2
+ README.md
3
+ setup.py
4
+ noshot.egg-info/PKG-INFO
5
+ noshot.egg-info/SOURCES.txt
6
+ noshot.egg-info/dependency_links.txt
7
+ noshot.egg-info/not-zip-safe
8
+ noshot.egg-info/top_level.txt
9
+ src/noshot/__init__.py
10
+ src/noshot/main.py
11
+ src/noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb
12
+ src/noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb
13
+ src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb
14
+ src/noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb
15
+ src/noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb
16
+ src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb
17
+ src/noshot/data/ML TS XAI/ML/data/balance-scale.csv
18
+ src/noshot/data/ML TS XAI/ML/data/balance-scale.txt
19
+ src/noshot/data/ML TS XAI/ML/data/machine-data.csv
20
+ src/noshot/data/ML TS XAI/ML/data/wine-dataset.csv
21
+ src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb
22
+ src/noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb
23
+ src/noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb
24
+ src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb
25
+ src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb
26
+ src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb
27
+ src/noshot/data/ML TS XAI/TS/AllinOne.ipynb
28
+ src/noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv
29
+ src/noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv
30
+ src/noshot/data/ML TS XAI/TS/data/raw_sales.csv
31
+ src/noshot/data/ML TS XAI/TS/data/shampoo_sales.csv
32
+ src/noshot/utils/__init__.py
33
+ src/noshot/utils/shell_utils.py
@@ -5,7 +5,7 @@ with open("README.md", "r", encoding="utf-8") as f:
5
5
 
6
6
  setup(
7
7
  name="noshot",
8
- version="0.3.2",
8
+ version="0.3.3",
9
9
  author="Tim Stan S",
10
10
  description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
11
11
  long_description=long_description,
@@ -31,8 +31,8 @@
31
31
  "metadata": {},
32
32
  "outputs": [],
33
33
  "source": [
34
- "df = pd.read_table('input.txt', delimiter = ',', names = ['class name', 'left-weight', 'left-distance', 'right-weight', 'right-distance'])\n",
35
- "#df = pd.read_csv('balance-scale.csv')\n",
34
+ "df = pd.read_table('data/balance-scale.txt', delimiter = ',', names = ['class name', 'left-weight', 'left-distance', 'right-weight', 'right-distance'])\n",
35
+ "#df = pd.read_csv('data/balance-scale.csv')\n",
36
36
  "df.head()"
37
37
  ]
38
38
  },
@@ -32,8 +32,8 @@
32
32
  "metadata": {},
33
33
  "outputs": [],
34
34
  "source": [
35
- "df = pd.read_csv('input.txt', delimiter = ',', names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
36
- "#df = pd.read_csv('balance-scale.csv')\n",
35
+ "df = pd.read_csv('data/balance-scale.txt', delimiter = ',', names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
36
+ "#df = pd.read_csv('data/balance-scale.csv')\n",
37
37
  "df.head()"
38
38
  ]
39
39
  },
@@ -22,8 +22,8 @@
22
22
  "metadata": {},
23
23
  "outputs": [],
24
24
  "source": [
25
- "df = pd.read_table('input.txt', delimiter = \",\", names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
26
- "df = pd.read_csv('balance-scale.csv')\n",
25
+ "df = pd.read_table('data/balance-scale.txt', delimiter = \",\", names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
26
+ "#df = pd.read_csv('data/balance-scale.csv')\n",
27
27
  "df.head()"
28
28
  ]
29
29
  },
@@ -21,7 +21,7 @@
21
21
  "metadata": {},
22
22
  "outputs": [],
23
23
  "source": [
24
- "df = pd.read_csv('machine-data.csv')\n",
24
+ "df = pd.read_csv('data/machine-data.csv')\n",
25
25
  "df.head()"
26
26
  ]
27
27
  },
@@ -25,8 +25,18 @@
25
25
  "metadata": {},
26
26
  "outputs": [],
27
27
  "source": [
28
- "wine = datasets.load_wine()\n",
29
- "type(wine)"
28
+ "wine = pd.read_csv('data/wine-dataset.csv')\n",
29
+ "print(wine.shape)"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": null,
35
+ "id": "c4e953da-6941-43f2-a9ce-aab907876d45",
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "wine.columns"
30
40
  ]
31
41
  },
32
42
  {
@@ -36,18 +46,19 @@
36
46
  "metadata": {},
37
47
  "outputs": [],
38
48
  "source": [
39
- "wine.data[:5,:]"
49
+ "X = wine.iloc[:, :13]\n",
50
+ "X.head()"
40
51
  ]
41
52
  },
42
53
  {
43
54
  "cell_type": "code",
44
55
  "execution_count": null,
45
- "id": "3eed721d-7956-40fb-9831-1a79f73cb906",
56
+ "id": "5cfd2fe6-3825-4d95-b606-3b3e2ef685b2",
46
57
  "metadata": {},
47
58
  "outputs": [],
48
59
  "source": [
49
- "print(type(wine.feature_names))\n",
50
- "wine.feature_names"
60
+ "y = wine.iloc[:, 13]\n",
61
+ "y"
51
62
  ]
52
63
  },
53
64
  {
@@ -57,7 +68,7 @@
57
68
  "metadata": {},
58
69
  "outputs": [],
59
70
  "source": [
60
- "X_train,X_test,y_train,y_test = train_test_split(wine.data, wine.target, test_size=0.30, random_state=7)\n",
71
+ "X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.30, random_state=7)\n",
61
72
  "\n",
62
73
  "log_reg_model = linear_model.LogisticRegression()\n",
63
74
  "log_reg_model.fit(X_train,y_train)"
@@ -88,21 +99,24 @@
88
99
  {
89
100
  "cell_type": "code",
90
101
  "execution_count": null,
91
- "id": "2fcd6449-feca-4b90-828f-420ba5bb8bcf",
92
- "metadata": {},
102
+ "id": "600ec8f2-34e1-4be7-8ef5-fe53ff673f41",
103
+ "metadata": {
104
+ "scrolled": true
105
+ },
93
106
  "outputs": [],
94
107
  "source": [
95
- "X = wine.data[:,:2]\n",
96
- "Y = wine.target\n",
108
+ "X = X.iloc[:, :2]\n",
109
+ "Y = y\n",
110
+ "\n",
97
111
  "log_reg_model.fit(X,Y)\n",
98
- "x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5\n",
99
- "y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5\n",
112
+ "x_min, x_max = X.iloc[:, 0].min() - .5, X.iloc[:, 0].max() + .5\n",
113
+ "y_min, y_max = X.iloc[:, 1].min() - .5, X.iloc[:, 1].max() + .5\n",
100
114
  "xx, yy = np.meshgrid(np.arange(x_min, x_max, .01), np.arange(y_min, y_max, .01))\n",
101
115
  "Z = log_reg_model.predict(np.c_[xx.ravel(), yy.ravel()])\n",
102
116
  "Z = Z.reshape(xx.shape)\n",
103
117
  "plt.figure(1, figsize = (4, 3))\n",
104
118
  "plt.pcolormesh(xx, yy, Z, cmap = plt.cm.Paired)\n",
105
- "plt.scatter(X[:, 0], X[:, 1], c = Y, edgecolors = 'k', cmap = plt.cm.Paired)\n",
119
+ "plt.scatter(X.iloc[:, 0], X.iloc[:, 1], c = Y, edgecolors = 'k', cmap = plt.cm.Paired)\n",
106
120
  "plt.xlabel('X')\n",
107
121
  "plt.ylabel('Y')\n",
108
122
  "plt.xlim(xx.min(), xx.max())\n",
@@ -10,7 +10,8 @@
10
10
  "from sklearn import datasets\n",
11
11
  "from sklearn.metrics import confusion_matrix\n",
12
12
  "from sklearn.model_selection import train_test_split\n",
13
- "from sklearn.naive_bayes import GaussianNB"
13
+ "from sklearn.naive_bayes import GaussianNB\n",
14
+ "import pandas as pd"
14
15
  ]
15
16
  },
16
17
  {
@@ -20,7 +21,8 @@
20
21
  "metadata": {},
21
22
  "outputs": [],
22
23
  "source": [
23
- "wine = datasets.load_wine()"
24
+ "wine = pd.read_csv('data/wine-dataset.csv')\n",
25
+ "print(wine.shape)"
24
26
  ]
25
27
  },
26
28
  {
@@ -30,8 +32,8 @@
30
32
  "metadata": {},
31
33
  "outputs": [],
32
34
  "source": [
33
- "X = wine.data\n",
34
- "X"
35
+ "X = wine.iloc[:, :13]\n",
36
+ "X.head()"
35
37
  ]
36
38
  },
37
39
  {
@@ -41,7 +43,7 @@
41
43
  "metadata": {},
42
44
  "outputs": [],
43
45
  "source": [
44
- "y = wine.target\n",
46
+ "y = wine.iloc[:, 13]\n",
45
47
  "y"
46
48
  ]
47
49
  },
@@ -34,7 +34,7 @@
34
34
  "metadata": {},
35
35
  "outputs": [],
36
36
  "source": [
37
- "df = pd.read_csv('raw_sales.csv', index_col = 'datesold')\n",
37
+ "df = pd.read_csv('data/raw_sales.csv', index_col = 'datesold')\n",
38
38
  "print(df.shape)"
39
39
  ]
40
40
  },
@@ -23,7 +23,7 @@
23
23
  "metadata": {},
24
24
  "outputs": [],
25
25
  "source": [
26
- "df = pd.read_csv(\"daily-total-female-births.csv\", parse_dates = ['Date'], index_col='Date')\n",
26
+ "df = pd.read_csv(\"data/daily-total-female-births.csv\", parse_dates = ['Date'], index_col='Date')\n",
27
27
  "print(f\"Shape: {df.shape}\")\n",
28
28
  "df.head()"
29
29
  ]
@@ -20,7 +20,7 @@
20
20
  "metadata": {},
21
21
  "outputs": [],
22
22
  "source": [
23
- "df = pd.read_csv('daily-min-temperatures.csv')\n",
23
+ "df = pd.read_csv('data/daily-min-temperatures.csv')\n",
24
24
  "print(df.shape)\n",
25
25
  "df.head()"
26
26
  ]