noshot 0.3.0__tar.gz → 0.3.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. {noshot-0.3.0 → noshot-0.3.2}/LICENSE.txt +20 -20
  2. {noshot-0.3.0 → noshot-0.3.2}/PKG-INFO +55 -55
  3. {noshot-0.3.0 → noshot-0.3.2}/README.md +29 -29
  4. {noshot-0.3.0 → noshot-0.3.2}/noshot.egg-info/PKG-INFO +55 -55
  5. noshot-0.3.2/noshot.egg-info/SOURCES.txt +39 -0
  6. {noshot-0.3.0 → noshot-0.3.2}/noshot.egg-info/not-zip-safe +1 -1
  7. {noshot-0.3.0 → noshot-0.3.2}/setup.cfg +4 -4
  8. {noshot-0.3.0 → noshot-0.3.2}/setup.py +32 -32
  9. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
  10. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
  11. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
  12. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
  13. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
  14. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
  15. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
  16. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
  17. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
  18. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
  19. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
  20. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
  21. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
  22. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +87 -0
  23. noshot-0.3.2/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
  24. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +247 -0
  25. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
  26. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +183 -0
  27. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +172 -0
  28. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +146 -0
  29. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
  30. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +173 -0
  31. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
  32. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
  33. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +77 -0
  34. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
  35. noshot-0.3.2/src/noshot/data/ML TS XAI/TS/AllinOne.ipynb +12676 -0
  36. {noshot-0.3.0 → noshot-0.3.2}/src/noshot/main.py +18 -18
  37. {noshot-0.3.0 → noshot-0.3.2}/src/noshot/utils/__init__.py +2 -2
  38. {noshot-0.3.0 → noshot-0.3.2}/src/noshot/utils/shell_utils.py +56 -56
  39. noshot-0.3.0/noshot.egg-info/SOURCES.txt +0 -12
  40. {noshot-0.3.0 → noshot-0.3.2}/noshot.egg-info/dependency_links.txt +0 -0
  41. {noshot-0.3.0 → noshot-0.3.2}/noshot.egg-info/top_level.txt +0 -0
  42. {noshot-0.3.0 → noshot-0.3.2}/src/noshot/__init__.py +0 -0
@@ -1,21 +1,21 @@
1
- MIT License
2
-
3
- Copyright (c) 2025 The author
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
1
+ MIT License
2
+
3
+ Copyright (c) 2025 The author
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
21
  THE SOFTWARE.
@@ -1,55 +1,55 @@
1
- Metadata-Version: 2.2
2
- Name: noshot
3
- Version: 0.3.0
4
- Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
- Author: Tim Stan S
6
- License: MIT
7
- Classifier: Programming Language :: Python :: 3
8
- Classifier: Programming Language :: Python :: 3.7
9
- Classifier: Programming Language :: Python :: 3.8
10
- Classifier: Programming Language :: Python :: 3.9
11
- Classifier: Programming Language :: Python :: 3.10
12
- Classifier: Programming Language :: Python :: 3.11
13
- Classifier: License :: OSI Approved :: MIT License
14
- Classifier: Operating System :: OS Independent
15
- Requires-Python: >=3.7
16
- Description-Content-Type: text/markdown
17
- License-File: LICENSE.txt
18
- Dynamic: author
19
- Dynamic: classifier
20
- Dynamic: description
21
- Dynamic: description-content-type
22
- Dynamic: license
23
- Dynamic: requires-python
24
- Dynamic: summary
25
-
26
- <h1 align="center">No Shot</h1>
27
-
28
- <p align="center">
29
- <img src="https://i.ibb.co/XkjpGzzL/noshot.jpg" alt="No Shot Image" width="400">
30
- </p>
31
-
32
- ![Static Badge](https://img.shields.io/badge/OneShotCoding-NoShot-blue?logoColor=yell)
33
- [![PyPI - Version](https://img.shields.io/pypi/v/noshot)](https://pypi.org/project/noshot)
34
- [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/suganthangnanavelan/one-shot-coding/blob/main/LICENSE.txt)
35
- [![Pepy Total Downloads](https://img.shields.io/pepy/dt/noshot)](https://pepy.tech/projects/noshot)
36
- ![Python Versions](https://img.shields.io/pypi/pyversions/noshot.svg?logo=python&color=yellow)
37
- ![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/suganthangnanavelan/one-shot-coding/test.yml)
38
-
39
- <p align="center">
40
- A powerful support library that enhances the capabilities of NumPy, Pandas, and Matplotlib by providing additional algorithms, visualizations, and utilities.
41
- </p>
42
-
43
- ## 🚀 **Overview**
44
- `NoShot` is a utility library that acts as a **support dependency** for larger modules like **NumPy, Pandas, and Matplotlib**. It enhances their functionality by introducing:
45
- - 📊 **Custom visualizations** built on top of Matplotlib.
46
- - 📈 **Optimized algorithms** for data processing.
47
- - ⚡ **Additional utilities** for working with structured data.
48
-
49
- > [!NOTE]
50
- > This package is **not a replacement** for NumPy or Pandas but extends their features to simplify complex operations.
51
-
52
- ## 📦 **Installation**
53
- Install latest version via `pip`:
54
- ```sh
55
- pip install noshot==0.2.0
1
+ Metadata-Version: 2.2
2
+ Name: noshot
3
+ Version: 0.3.2
4
+ Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
+ Author: Tim Stan S
6
+ License: MIT
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: Programming Language :: Python :: 3.7
9
+ Classifier: Programming Language :: Python :: 3.8
10
+ Classifier: Programming Language :: Python :: 3.9
11
+ Classifier: Programming Language :: Python :: 3.10
12
+ Classifier: Programming Language :: Python :: 3.11
13
+ Classifier: License :: OSI Approved :: MIT License
14
+ Classifier: Operating System :: OS Independent
15
+ Requires-Python: >=3.7
16
+ Description-Content-Type: text/markdown
17
+ License-File: LICENSE.txt
18
+ Dynamic: author
19
+ Dynamic: classifier
20
+ Dynamic: description
21
+ Dynamic: description-content-type
22
+ Dynamic: license
23
+ Dynamic: requires-python
24
+ Dynamic: summary
25
+
26
+ <h1 align="center">No Shot</h1>
27
+
28
+ <p align="center">
29
+ <img src="https://i.ibb.co/XkjpGzzL/noshot.jpg" alt="No Shot Image" width="400">
30
+ </p>
31
+
32
+ ![Static Badge](https://img.shields.io/badge/OneShotCoding-NoShot-blue?logoColor=yell)
33
+ [![PyPI - Version](https://img.shields.io/pypi/v/noshot)](https://pypi.org/project/noshot)
34
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/suganthangnanavelan/one-shot-coding/blob/main/LICENSE.txt)
35
+ [![Pepy Total Downloads](https://img.shields.io/pepy/dt/noshot)](https://pepy.tech/projects/noshot)
36
+ ![Python Versions](https://img.shields.io/pypi/pyversions/noshot.svg?logo=python&color=yellow)
37
+ ![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/suganthangnanavelan/one-shot-coding/test.yml)
38
+
39
+ <p align="center">
40
+ A powerful support library that enhances the capabilities of NumPy, Pandas, and Matplotlib by providing additional algorithms, visualizations, and utilities.
41
+ </p>
42
+
43
+ ## 🚀 **Overview**
44
+ `NoShot` is a utility library that acts as a **support dependency** for larger modules like **NumPy, Pandas, and Matplotlib**. It enhances their functionality by introducing:
45
+ - 📊 **Custom visualizations** built on top of Matplotlib.
46
+ - 📈 **Optimized algorithms** for data processing.
47
+ - ⚡ **Additional utilities** for working with structured data.
48
+
49
+ > [!NOTE]
50
+ > This package is **not a replacement** for NumPy or Pandas but extends their features to simplify complex operations.
51
+
52
+ ## 📦 **Installation**
53
+ Install latest version via `pip`:
54
+ ```sh
55
+ pip install noshot==0.2.0
@@ -1,30 +1,30 @@
1
- <h1 align="center">No Shot</h1>
2
-
3
- <p align="center">
4
- <img src="https://i.ibb.co/XkjpGzzL/noshot.jpg" alt="No Shot Image" width="400">
5
- </p>
6
-
7
- ![Static Badge](https://img.shields.io/badge/OneShotCoding-NoShot-blue?logoColor=yell)
8
- [![PyPI - Version](https://img.shields.io/pypi/v/noshot)](https://pypi.org/project/noshot)
9
- [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/suganthangnanavelan/one-shot-coding/blob/main/LICENSE.txt)
10
- [![Pepy Total Downloads](https://img.shields.io/pepy/dt/noshot)](https://pepy.tech/projects/noshot)
11
- ![Python Versions](https://img.shields.io/pypi/pyversions/noshot.svg?logo=python&color=yellow)
12
- ![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/suganthangnanavelan/one-shot-coding/test.yml)
13
-
14
- <p align="center">
15
- A powerful support library that enhances the capabilities of NumPy, Pandas, and Matplotlib by providing additional algorithms, visualizations, and utilities.
16
- </p>
17
-
18
- ## 🚀 **Overview**
19
- `NoShot` is a utility library that acts as a **support dependency** for larger modules like **NumPy, Pandas, and Matplotlib**. It enhances their functionality by introducing:
20
- - 📊 **Custom visualizations** built on top of Matplotlib.
21
- - 📈 **Optimized algorithms** for data processing.
22
- - ⚡ **Additional utilities** for working with structured data.
23
-
24
- > [!NOTE]
25
- > This package is **not a replacement** for NumPy or Pandas but extends their features to simplify complex operations.
26
-
27
- ## 📦 **Installation**
28
- Install latest version via `pip`:
29
- ```sh
1
+ <h1 align="center">No Shot</h1>
2
+
3
+ <p align="center">
4
+ <img src="https://i.ibb.co/XkjpGzzL/noshot.jpg" alt="No Shot Image" width="400">
5
+ </p>
6
+
7
+ ![Static Badge](https://img.shields.io/badge/OneShotCoding-NoShot-blue?logoColor=yell)
8
+ [![PyPI - Version](https://img.shields.io/pypi/v/noshot)](https://pypi.org/project/noshot)
9
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/suganthangnanavelan/one-shot-coding/blob/main/LICENSE.txt)
10
+ [![Pepy Total Downloads](https://img.shields.io/pepy/dt/noshot)](https://pepy.tech/projects/noshot)
11
+ ![Python Versions](https://img.shields.io/pypi/pyversions/noshot.svg?logo=python&color=yellow)
12
+ ![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/suganthangnanavelan/one-shot-coding/test.yml)
13
+
14
+ <p align="center">
15
+ A powerful support library that enhances the capabilities of NumPy, Pandas, and Matplotlib by providing additional algorithms, visualizations, and utilities.
16
+ </p>
17
+
18
+ ## 🚀 **Overview**
19
+ `NoShot` is a utility library that acts as a **support dependency** for larger modules like **NumPy, Pandas, and Matplotlib**. It enhances their functionality by introducing:
20
+ - 📊 **Custom visualizations** built on top of Matplotlib.
21
+ - 📈 **Optimized algorithms** for data processing.
22
+ - ⚡ **Additional utilities** for working with structured data.
23
+
24
+ > [!NOTE]
25
+ > This package is **not a replacement** for NumPy or Pandas but extends their features to simplify complex operations.
26
+
27
+ ## 📦 **Installation**
28
+ Install latest version via `pip`:
29
+ ```sh
30
30
  pip install noshot==0.2.0
@@ -1,55 +1,55 @@
1
- Metadata-Version: 2.2
2
- Name: noshot
3
- Version: 0.3.0
4
- Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
- Author: Tim Stan S
6
- License: MIT
7
- Classifier: Programming Language :: Python :: 3
8
- Classifier: Programming Language :: Python :: 3.7
9
- Classifier: Programming Language :: Python :: 3.8
10
- Classifier: Programming Language :: Python :: 3.9
11
- Classifier: Programming Language :: Python :: 3.10
12
- Classifier: Programming Language :: Python :: 3.11
13
- Classifier: License :: OSI Approved :: MIT License
14
- Classifier: Operating System :: OS Independent
15
- Requires-Python: >=3.7
16
- Description-Content-Type: text/markdown
17
- License-File: LICENSE.txt
18
- Dynamic: author
19
- Dynamic: classifier
20
- Dynamic: description
21
- Dynamic: description-content-type
22
- Dynamic: license
23
- Dynamic: requires-python
24
- Dynamic: summary
25
-
26
- <h1 align="center">No Shot</h1>
27
-
28
- <p align="center">
29
- <img src="https://i.ibb.co/XkjpGzzL/noshot.jpg" alt="No Shot Image" width="400">
30
- </p>
31
-
32
- ![Static Badge](https://img.shields.io/badge/OneShotCoding-NoShot-blue?logoColor=yell)
33
- [![PyPI - Version](https://img.shields.io/pypi/v/noshot)](https://pypi.org/project/noshot)
34
- [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/suganthangnanavelan/one-shot-coding/blob/main/LICENSE.txt)
35
- [![Pepy Total Downloads](https://img.shields.io/pepy/dt/noshot)](https://pepy.tech/projects/noshot)
36
- ![Python Versions](https://img.shields.io/pypi/pyversions/noshot.svg?logo=python&color=yellow)
37
- ![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/suganthangnanavelan/one-shot-coding/test.yml)
38
-
39
- <p align="center">
40
- A powerful support library that enhances the capabilities of NumPy, Pandas, and Matplotlib by providing additional algorithms, visualizations, and utilities.
41
- </p>
42
-
43
- ## 🚀 **Overview**
44
- `NoShot` is a utility library that acts as a **support dependency** for larger modules like **NumPy, Pandas, and Matplotlib**. It enhances their functionality by introducing:
45
- - 📊 **Custom visualizations** built on top of Matplotlib.
46
- - 📈 **Optimized algorithms** for data processing.
47
- - ⚡ **Additional utilities** for working with structured data.
48
-
49
- > [!NOTE]
50
- > This package is **not a replacement** for NumPy or Pandas but extends their features to simplify complex operations.
51
-
52
- ## 📦 **Installation**
53
- Install latest version via `pip`:
54
- ```sh
55
- pip install noshot==0.2.0
1
+ Metadata-Version: 2.2
2
+ Name: noshot
3
+ Version: 0.3.2
4
+ Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
+ Author: Tim Stan S
6
+ License: MIT
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: Programming Language :: Python :: 3.7
9
+ Classifier: Programming Language :: Python :: 3.8
10
+ Classifier: Programming Language :: Python :: 3.9
11
+ Classifier: Programming Language :: Python :: 3.10
12
+ Classifier: Programming Language :: Python :: 3.11
13
+ Classifier: License :: OSI Approved :: MIT License
14
+ Classifier: Operating System :: OS Independent
15
+ Requires-Python: >=3.7
16
+ Description-Content-Type: text/markdown
17
+ License-File: LICENSE.txt
18
+ Dynamic: author
19
+ Dynamic: classifier
20
+ Dynamic: description
21
+ Dynamic: description-content-type
22
+ Dynamic: license
23
+ Dynamic: requires-python
24
+ Dynamic: summary
25
+
26
+ <h1 align="center">No Shot</h1>
27
+
28
+ <p align="center">
29
+ <img src="https://i.ibb.co/XkjpGzzL/noshot.jpg" alt="No Shot Image" width="400">
30
+ </p>
31
+
32
+ ![Static Badge](https://img.shields.io/badge/OneShotCoding-NoShot-blue?logoColor=yell)
33
+ [![PyPI - Version](https://img.shields.io/pypi/v/noshot)](https://pypi.org/project/noshot)
34
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/suganthangnanavelan/one-shot-coding/blob/main/LICENSE.txt)
35
+ [![Pepy Total Downloads](https://img.shields.io/pepy/dt/noshot)](https://pepy.tech/projects/noshot)
36
+ ![Python Versions](https://img.shields.io/pypi/pyversions/noshot.svg?logo=python&color=yellow)
37
+ ![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/suganthangnanavelan/one-shot-coding/test.yml)
38
+
39
+ <p align="center">
40
+ A powerful support library that enhances the capabilities of NumPy, Pandas, and Matplotlib by providing additional algorithms, visualizations, and utilities.
41
+ </p>
42
+
43
+ ## 🚀 **Overview**
44
+ `NoShot` is a utility library that acts as a **support dependency** for larger modules like **NumPy, Pandas, and Matplotlib**. It enhances their functionality by introducing:
45
+ - 📊 **Custom visualizations** built on top of Matplotlib.
46
+ - 📈 **Optimized algorithms** for data processing.
47
+ - ⚡ **Additional utilities** for working with structured data.
48
+
49
+ > [!NOTE]
50
+ > This package is **not a replacement** for NumPy or Pandas but extends their features to simplify complex operations.
51
+
52
+ ## 📦 **Installation**
53
+ Install latest version via `pip`:
54
+ ```sh
55
+ pip install noshot==0.2.0
@@ -0,0 +1,39 @@
1
+ LICENSE.txt
2
+ README.md
3
+ setup.py
4
+ noshot.egg-info/PKG-INFO
5
+ noshot.egg-info/SOURCES.txt
6
+ noshot.egg-info/dependency_links.txt
7
+ noshot.egg-info/not-zip-safe
8
+ noshot.egg-info/top_level.txt
9
+ src/noshot/__init__.py
10
+ src/noshot/main.py
11
+ src/noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb
12
+ src/noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv
13
+ src/noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt
14
+ src/noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb
15
+ src/noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv
16
+ src/noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt
17
+ src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb
18
+ src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv
19
+ src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt
20
+ src/noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb
21
+ src/noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv
22
+ src/noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb
23
+ src/noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv
24
+ src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb
25
+ src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv
26
+ src/noshot/data/ML TS XAI/TS/AllinOne.ipynb
27
+ src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb
28
+ src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv
29
+ src/noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb
30
+ src/noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb
31
+ src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb
32
+ src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv
33
+ src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb
34
+ src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv
35
+ src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv
36
+ src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb
37
+ src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv
38
+ src/noshot/utils/__init__.py
39
+ src/noshot/utils/shell_utils.py
@@ -1,4 +1,4 @@
1
- [egg_info]
2
- tag_build =
3
- tag_date = 0
4
-
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+
@@ -1,32 +1,32 @@
1
- from setuptools import setup, find_packages, find_namespace_packages
2
-
3
- with open("README.md", "r", encoding="utf-8") as f:
4
- long_description = f.read()
5
-
6
- setup(
7
- name="noshot",
8
- version="0.3.0",
9
- author="Tim Stan S",
10
- description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
11
- long_description=long_description,
12
- long_description_content_type="text/markdown",
13
- license="MIT",
14
- license_files=("LICENSE.txt",),
15
- package_dir={"noshot": "src/noshot"},
16
- package_data = {'noshot':['data/**']},
17
- include_package_data=True,
18
- packages=find_namespace_packages(where='src'),
19
- install_requires=[],
20
- classifiers=[
21
- "Programming Language :: Python :: 3",
22
- "Programming Language :: Python :: 3.7",
23
- "Programming Language :: Python :: 3.8",
24
- "Programming Language :: Python :: 3.9",
25
- "Programming Language :: Python :: 3.10",
26
- "Programming Language :: Python :: 3.11",
27
- "License :: OSI Approved :: MIT License",
28
- "Operating System :: OS Independent",
29
- ],
30
- python_requires=">=3.7",
31
- zip_safe=False,
32
- )
1
+ from setuptools import setup, find_packages, find_namespace_packages
2
+
3
+ with open("README.md", "r", encoding="utf-8") as f:
4
+ long_description = f.read()
5
+
6
+ setup(
7
+ name="noshot",
8
+ version="0.3.2",
9
+ author="Tim Stan S",
10
+ description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
11
+ long_description=long_description,
12
+ long_description_content_type="text/markdown",
13
+ license="MIT",
14
+ license_files=("LICENSE.txt",),
15
+ package_dir={"noshot": "src/noshot"},
16
+ package_data = {'noshot':['data/**']},
17
+ include_package_data=True,
18
+ packages=find_namespace_packages(where='src'),
19
+ install_requires=[],
20
+ classifiers=[
21
+ "Programming Language :: Python :: 3",
22
+ "Programming Language :: Python :: 3.7",
23
+ "Programming Language :: Python :: 3.8",
24
+ "Programming Language :: Python :: 3.9",
25
+ "Programming Language :: Python :: 3.10",
26
+ "Programming Language :: Python :: 3.11",
27
+ "License :: OSI Approved :: MIT License",
28
+ "Operating System :: OS Independent",
29
+ ],
30
+ python_requires=">=3.7",
31
+ zip_safe=False,
32
+ )
@@ -0,0 +1,207 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "8c414eda",
6
+ "metadata": {},
7
+ "source": [
8
+ "##### __Machine learnings Laboratory First Lab Basic EDA and Principle components analysis__"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": null,
14
+ "id": "1919dce4",
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "import pandas as pd\n",
19
+ "import numpy as np\n",
20
+ "import matplotlib.pyplot as plt\n",
21
+ "from sklearn.preprocessing import StandardScaler\n",
22
+ "from sklearn.decomposition import PCA\n",
23
+ "import warnings\n",
24
+ "warnings.filterwarnings('ignore')"
25
+ ]
26
+ },
27
+ {
28
+ "cell_type": "code",
29
+ "execution_count": null,
30
+ "id": "459c19c9",
31
+ "metadata": {},
32
+ "outputs": [],
33
+ "source": [
34
+ "df = pd.read_table('input.txt', delimiter = ',', names = ['class name', 'left-weight', 'left-distance', 'right-weight', 'right-distance'])\n",
35
+ "#df = pd.read_csv('balance-scale.csv')\n",
36
+ "df.head()"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "id": "4a1f3399",
43
+ "metadata": {},
44
+ "outputs": [],
45
+ "source": [
46
+ "print(\"Shape\\t Size\")\n",
47
+ "print(df.shape, df.size)\n",
48
+ "df.dtypes"
49
+ ]
50
+ },
51
+ {
52
+ "cell_type": "code",
53
+ "execution_count": null,
54
+ "id": "ceb17e01",
55
+ "metadata": {},
56
+ "outputs": [],
57
+ "source": [
58
+ "df.describe()"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "code",
63
+ "execution_count": null,
64
+ "id": "c3950e04",
65
+ "metadata": {},
66
+ "outputs": [],
67
+ "source": [
68
+ "df.info()"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": null,
74
+ "id": "e242d2e1",
75
+ "metadata": {},
76
+ "outputs": [],
77
+ "source": [
78
+ "plt.hist(df['class name'], color = 'green', label = 'Frequency Distribution')\n",
79
+ "plt.legend()\n",
80
+ "plt.title(\"Class Wise Count ['L', 'B', 'R']\")\n",
81
+ "plt.show()"
82
+ ]
83
+ },
84
+ {
85
+ "cell_type": "code",
86
+ "execution_count": null,
87
+ "id": "37654636",
88
+ "metadata": {},
89
+ "outputs": [],
90
+ "source": [
91
+ "fig, axs = plt.subplots(2,2)\n",
92
+ "axs[0][0].hist(df['left-weight'], color = 'orange', label = 'Left-Weight')\n",
93
+ "axs[0][1].hist(df['left-distance'], color = 'red', label = 'Lefft-distance')\n",
94
+ "axs[1][0].hist(df['right-weight'], color = 'green',label = 'right-weight')\n",
95
+ "axs[1][1].hist(df['right-distance'], color = 'indigo', label = 'right-distance')\n",
96
+ "fig.legend(loc = 'upper left')\n",
97
+ "fig.suptitle(\"Histogram For Features\")"
98
+ ]
99
+ },
100
+ {
101
+ "cell_type": "markdown",
102
+ "id": "3b033918",
103
+ "metadata": {},
104
+ "source": [
105
+ "##### __PCA__"
106
+ ]
107
+ },
108
+ {
109
+ "cell_type": "code",
110
+ "execution_count": null,
111
+ "id": "b9d4bb7e",
112
+ "metadata": {},
113
+ "outputs": [],
114
+ "source": [
115
+ "feature = ['left-weight','left-distance','right-weight','right-distance']\n",
116
+ "x = df.loc[:, feature]\n",
117
+ "y = df.loc[:, 'class name']"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": null,
123
+ "id": "de2b55cc",
124
+ "metadata": {},
125
+ "outputs": [],
126
+ "source": [
127
+ "x = StandardScaler().fit_transform(x)\n",
128
+ "pca = PCA(n_components = 2)\n",
129
+ "pct = pca.fit_transform(x)"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": null,
135
+ "id": "06bf0d31",
136
+ "metadata": {},
137
+ "outputs": [],
138
+ "source": [
139
+ "principal_df = pd.DataFrame(pct,columns=['pc1','pc2'])\n",
140
+ "print(\"principal-df:\\n\",principal_df)"
141
+ ]
142
+ },
143
+ {
144
+ "cell_type": "code",
145
+ "execution_count": null,
146
+ "id": "7dab85de",
147
+ "metadata": {},
148
+ "outputs": [],
149
+ "source": [
150
+ "finaldf= pd.concat([principal_df,df[['class name']]],axis=1)\n",
151
+ "print(\"finaldf:\\n\",finaldf)"
152
+ ]
153
+ },
154
+ {
155
+ "cell_type": "code",
156
+ "execution_count": null,
157
+ "id": "026ab3b1",
158
+ "metadata": {},
159
+ "outputs": [],
160
+ "source": [
161
+ "finaldf.head()"
162
+ ]
163
+ },
164
+ {
165
+ "cell_type": "code",
166
+ "execution_count": null,
167
+ "id": "53d0455b",
168
+ "metadata": {},
169
+ "outputs": [],
170
+ "source": [
171
+ "fig = plt.figure(figsize = (8, 8))\n",
172
+ "ax = fig.add_subplot(1, 1, 1)\n",
173
+ "ax.set_xlabel('Principal Component 1', fontsize = 15)\n",
174
+ "ax.set_ylabel('Principal Component 2', fontsize = 15)\n",
175
+ "ax.set_title('2 component PCA', fontsize = 20)\n",
176
+ "targets = ['L','B','R']\n",
177
+ "colors = ['r', 'g','b']\n",
178
+ "for target, color in zip(targets, colors):\n",
179
+ " indicesToKeep = finaldf['class name'] == target\n",
180
+ " ax.scatter(finaldf.loc[indicesToKeep, 'pc1'], finaldf.loc[indicesToKeep, 'pc2'], c = color, s = 50)\n",
181
+ "ax.legend(targets)\n",
182
+ "ax.grid()"
183
+ ]
184
+ }
185
+ ],
186
+ "metadata": {
187
+ "kernelspec": {
188
+ "display_name": "Python 3 (ipykernel)",
189
+ "language": "python",
190
+ "name": "python3"
191
+ },
192
+ "language_info": {
193
+ "codemirror_mode": {
194
+ "name": "ipython",
195
+ "version": 3
196
+ },
197
+ "file_extension": ".py",
198
+ "mimetype": "text/x-python",
199
+ "name": "python",
200
+ "nbconvert_exporter": "python",
201
+ "pygments_lexer": "ipython3",
202
+ "version": "3.12.4"
203
+ }
204
+ },
205
+ "nbformat": 4,
206
+ "nbformat_minor": 5
207
+ }