noshot 0.1.8__tar.gz → 0.2.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. {noshot-0.1.8 → noshot-0.2.0}/PKG-INFO +2 -2
  2. {noshot-0.1.8 → noshot-0.2.0}/README.md +1 -1
  3. {noshot-0.1.8 → noshot-0.2.0}/noshot.egg-info/PKG-INFO +2 -2
  4. {noshot-0.1.8 → noshot-0.2.0}/noshot.egg-info/SOURCES.txt +11 -0
  5. {noshot-0.1.8 → noshot-0.2.0}/setup.py +1 -1
  6. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +2 -2
  7. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +5 -5
  8. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +1 -1
  9. noshot-0.2.0/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +87 -0
  10. noshot-0.2.0/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +247 -0
  11. noshot-0.2.0/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
  12. noshot-0.2.0/src/noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +183 -0
  13. noshot-0.2.0/src/noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +172 -0
  14. noshot-0.2.0/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +146 -0
  15. noshot-0.2.0/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
  16. noshot-0.2.0/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +173 -0
  17. noshot-0.2.0/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
  18. noshot-0.2.0/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
  19. noshot-0.2.0/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +77 -0
  20. noshot-0.2.0/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
  21. noshot-0.1.8/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +0 -129
  22. {noshot-0.1.8 → noshot-0.2.0}/LICENSE.txt +0 -0
  23. {noshot-0.1.8 → noshot-0.2.0}/noshot.egg-info/dependency_links.txt +0 -0
  24. {noshot-0.1.8 → noshot-0.2.0}/noshot.egg-info/not-zip-safe +0 -0
  25. {noshot-0.1.8 → noshot-0.2.0}/noshot.egg-info/top_level.txt +0 -0
  26. {noshot-0.1.8 → noshot-0.2.0}/setup.cfg +0 -0
  27. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/__init__.py +0 -0
  28. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +0 -0
  29. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +0 -0
  30. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +0 -0
  31. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +0 -0
  32. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +0 -0
  33. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +0 -0
  34. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +0 -0
  35. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +0 -0
  36. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +0 -0
  37. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +0 -0
  38. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +0 -0
  39. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/main.py +0 -0
  40. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/utils/__init__.py +0 -0
  41. {noshot-0.1.8 → noshot-0.2.0}/src/noshot/utils/shell_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: noshot
3
- Version: 0.1.8
3
+ Version: 0.2.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -52,4 +52,4 @@ Dynamic: summary
52
52
  ## 📦 **Installation**
53
53
  Install latest version via `pip`:
54
54
  ```sh
55
- pip install noshot==0.1.8
55
+ pip install noshot==0.2.0
@@ -27,4 +27,4 @@
27
27
  ## 📦 **Installation**
28
28
  Install latest version via `pip`:
29
29
  ```sh
30
- pip install noshot==0.1.8
30
+ pip install noshot==0.2.0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: noshot
3
- Version: 0.1.8
3
+ Version: 0.2.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -52,4 +52,4 @@ Dynamic: summary
52
52
  ## 📦 **Installation**
53
53
  Install latest version via `pip`:
54
54
  ```sh
55
- pip install noshot==0.1.8
55
+ pip install noshot==0.2.0
@@ -23,5 +23,16 @@ src/noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb
23
23
  src/noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv
24
24
  src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb
25
25
  src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv
26
+ src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb
27
+ src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv
28
+ src/noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb
29
+ src/noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb
30
+ src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb
31
+ src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv
32
+ src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb
33
+ src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv
34
+ src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv
35
+ src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb
36
+ src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv
26
37
  src/noshot/utils/__init__.py
27
38
  src/noshot/utils/shell_utils.py
@@ -5,7 +5,7 @@ with open("README.md", "r", encoding="utf-8") as f:
5
5
 
6
6
  setup(
7
7
  name="noshot",
8
- version="0.1.8",
8
+ version="0.2.0",
9
9
  author="Tim Stan S",
10
10
  description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
11
11
  long_description=long_description,
@@ -5,7 +5,7 @@
5
5
  "id": "8c414eda",
6
6
  "metadata": {},
7
7
  "source": [
8
- "# Machine learnings Laboratory First Lab Basic EDA and Principle components analysis"
8
+ "##### __Machine learnings Laboratory First Lab Basic EDA and Principle components analysis__"
9
9
  ]
10
10
  },
11
11
  {
@@ -102,7 +102,7 @@
102
102
  "id": "3b033918",
103
103
  "metadata": {},
104
104
  "source": [
105
- "# PCA"
105
+ "##### __PCA__"
106
106
  ]
107
107
  },
108
108
  {
@@ -5,7 +5,7 @@
5
5
  "id": "def24f4a",
6
6
  "metadata": {},
7
7
  "source": [
8
- "### __Balance Scale Dataset__"
8
+ "##### __Balance Scale Dataset__"
9
9
  ]
10
10
  },
11
11
  {
@@ -72,7 +72,7 @@
72
72
  "id": "6702687e",
73
73
  "metadata": {},
74
74
  "source": [
75
- "#### __class for [1,1,1,1] = R (predicted)__"
75
+ "##### __class for [1,1,1,1] = R (predicted)__"
76
76
  ]
77
77
  },
78
78
  {
@@ -91,7 +91,7 @@
91
91
  "id": "13d70944",
92
92
  "metadata": {},
93
93
  "source": [
94
- "### __Iris Dataset__"
94
+ "##### __Iris Dataset__"
95
95
  ]
96
96
  },
97
97
  {
@@ -151,7 +151,7 @@
151
151
  "id": "06559281",
152
152
  "metadata": {},
153
153
  "source": [
154
- "#### __class for [5.2,3.5,1.1,0.2] = virginica (predicted)__"
154
+ "##### __class for [5.2,3.5,1.1,0.2] = virginica (predicted)__"
155
155
  ]
156
156
  },
157
157
  {
@@ -170,7 +170,7 @@
170
170
  "id": "cdd56944",
171
171
  "metadata": {},
172
172
  "source": [
173
- "#### __Iris Dataset Visualization__"
173
+ "##### __Iris Dataset Visualization__"
174
174
  ]
175
175
  },
176
176
  {
@@ -32,7 +32,7 @@
32
32
  "id": "ac328950-540f-4a27-b9d4-0880058064f5",
33
33
  "metadata": {},
34
34
  "source": [
35
- "### __LDA__"
35
+ "##### __LDA__"
36
36
  ]
37
37
  },
38
38
  {
@@ -0,0 +1,87 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "939c616d-2779-4e21-adcf-1d070898d65b",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "from sklearn import datasets\n",
11
+ "from sklearn.metrics import confusion_matrix\n",
12
+ "from sklearn.model_selection import train_test_split\n",
13
+ "from sklearn.naive_bayes import GaussianNB"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": null,
19
+ "id": "17720a0d-e788-4b1d-b2b2-a542f6b824a2",
20
+ "metadata": {},
21
+ "outputs": [],
22
+ "source": [
23
+ "wine = datasets.load_wine()"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": null,
29
+ "id": "a050923e-4382-4ff7-93bf-446b117c0ef5",
30
+ "metadata": {},
31
+ "outputs": [],
32
+ "source": [
33
+ "X = wine.data\n",
34
+ "X"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "id": "9f1a4355-718e-40ed-b892-3e3d03c4ef3c",
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "y = wine.target\n",
45
+ "y"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": null,
51
+ "id": "dd3f31ef-c0d2-48dd-9fb7-338c10f9fbf9",
52
+ "metadata": {},
53
+ "outputs": [],
54
+ "source": [
55
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)\n",
56
+ "\n",
57
+ "gnb = GaussianNB().fit(X_train, y_train)\n",
58
+ "gnb_predictions = gnb.predict(X_test)\n",
59
+ "accuracy = gnb.score(X_test, y_test)\n",
60
+ "accuracy\n",
61
+ "cm = confusion_matrix(y_test, gnb_predictions)\n",
62
+ "cm"
63
+ ]
64
+ }
65
+ ],
66
+ "metadata": {
67
+ "kernelspec": {
68
+ "display_name": "Python 3 (ipykernel)",
69
+ "language": "python",
70
+ "name": "python3"
71
+ },
72
+ "language_info": {
73
+ "codemirror_mode": {
74
+ "name": "ipython",
75
+ "version": 3
76
+ },
77
+ "file_extension": ".py",
78
+ "mimetype": "text/x-python",
79
+ "name": "python",
80
+ "nbconvert_exporter": "python",
81
+ "pygments_lexer": "ipython3",
82
+ "version": "3.12.4"
83
+ }
84
+ },
85
+ "nbformat": 4,
86
+ "nbformat_minor": 5
87
+ }
@@ -0,0 +1,247 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "6b192e2a-14e9-4707-b1c1-e8f5aa32a919",
6
+ "metadata": {},
7
+ "source": [
8
+ "### __Import Required Libraries__"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": null,
14
+ "id": "95be04fa-500c-4308-9784-b07bb42d5232",
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "import pandas as pd\n",
19
+ "import matplotlib.pyplot as plt"
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "markdown",
24
+ "id": "e5ff8a35-769d-4eda-b5f3-d3c9ba7a2dce",
25
+ "metadata": {},
26
+ "source": [
27
+ "##### __1. Importing the dataset__"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "id": "69caa184-219d-4b01-8a30-1ea9ba61dcff",
34
+ "metadata": {},
35
+ "outputs": [],
36
+ "source": [
37
+ "df = pd.read_csv('raw_sales.csv', index_col = 'datesold')\n",
38
+ "print(df.shape)"
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "markdown",
43
+ "id": "f8273eed-a0e9-4d52-a183-350a7393a290",
44
+ "metadata": {},
45
+ "source": [
46
+ "##### __2. Display the first few rows to peek at the data, the last few rows__"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": null,
52
+ "id": "490892d7-df7d-4c0f-9f8a-63883ce7432f",
53
+ "metadata": {},
54
+ "outputs": [],
55
+ "source": [
56
+ "df.head()"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": null,
62
+ "id": "24ae00c8-949b-4047-80ed-4f0631992c3f",
63
+ "metadata": {},
64
+ "outputs": [],
65
+ "source": [
66
+ "df.tail()"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "markdown",
71
+ "id": "9c24bbd0-75f0-4eb6-863d-7960337bcb77",
72
+ "metadata": {},
73
+ "source": [
74
+ "##### __3. Print the summary statistics__"
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": null,
80
+ "id": "bf0037dd-41b5-4c55-ae5c-8dfa5cb11f90",
81
+ "metadata": {},
82
+ "outputs": [],
83
+ "source": [
84
+ "df.describe().T"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "markdown",
89
+ "id": "fb7299b8-90fe-4dae-93a1-496129bc928a",
90
+ "metadata": {},
91
+ "source": [
92
+ "##### __4. Filter data for a specific year__"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "code",
97
+ "execution_count": null,
98
+ "id": "6a533c7b-6786-4789-9a18-0f19125de32d",
99
+ "metadata": {},
100
+ "outputs": [],
101
+ "source": [
102
+ "df.index = pd.to_datetime(df.index)\n",
103
+ "df['price'][df.index.year == 2007].mean()"
104
+ ]
105
+ },
106
+ {
107
+ "cell_type": "markdown",
108
+ "id": "111029b6-fcc9-4f5e-a9d8-833ae27c039e",
109
+ "metadata": {},
110
+ "source": [
111
+ "##### __5. Plot the average price per year__"
112
+ ]
113
+ },
114
+ {
115
+ "cell_type": "code",
116
+ "execution_count": null,
117
+ "id": "71212203-c3e5-49ca-aa07-bbc12a2e0de6",
118
+ "metadata": {},
119
+ "outputs": [],
120
+ "source": [
121
+ "group = df['price'].groupby(df.index.year).mean()\n",
122
+ "plt.plot(group.index, group.values, color = 'r', label = 'Average_Price/Yr')\n",
123
+ "plt.title('Average Price Year Wise')\n",
124
+ "plt.legend()\n",
125
+ "plt.show()"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "markdown",
130
+ "id": "0405f26e-b564-48a2-9fb5-6d89311a363e",
131
+ "metadata": {},
132
+ "source": [
133
+ "##### __6. Count of properties sold per year__"
134
+ ]
135
+ },
136
+ {
137
+ "cell_type": "code",
138
+ "execution_count": null,
139
+ "id": "7e1cb0fb-f494-49b1-adbc-89824b7e3855",
140
+ "metadata": {},
141
+ "outputs": [],
142
+ "source": [
143
+ "group = df.groupby(df.index.year).count()\n",
144
+ "plt.bar(group.index, group.values[:, 0], color = 'g', label = 'Property_Sold/Yr')\n",
145
+ "plt.title('Property\\'s Sold Year Wise')\n",
146
+ "plt.legend()\n",
147
+ "plt.show()"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "markdown",
152
+ "id": "d9b4c518-05ec-41ba-956d-e145efc958fd",
153
+ "metadata": {},
154
+ "source": [
155
+ "##### __7. Query for a specific date range (e.g., Jan 2010 to Dec 2015)__"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": null,
161
+ "id": "17f1f390-9e5b-4bc1-882a-88d0331e3a12",
162
+ "metadata": {},
163
+ "outputs": [],
164
+ "source": [
165
+ "df2 = df[(df.index > '1/1/2010') & (df.index <= '31/12/2015')]\n",
166
+ "df2"
167
+ ]
168
+ },
169
+ {
170
+ "cell_type": "markdown",
171
+ "id": "28c84984-a5f0-4c46-963f-5c6e3336aed9",
172
+ "metadata": {},
173
+ "source": [
174
+ "##### __8. Calculate the mean price month-wise (use Groupby)__"
175
+ ]
176
+ },
177
+ {
178
+ "cell_type": "code",
179
+ "execution_count": null,
180
+ "id": "db344276-03ab-4fb5-bb62-5dbc0fc11852",
181
+ "metadata": {},
182
+ "outputs": [],
183
+ "source": [
184
+ "df2['price'].groupby(df2.index.month).mean()"
185
+ ]
186
+ },
187
+ {
188
+ "cell_type": "markdown",
189
+ "id": "3f1afa45-d234-4f01-bf63-ea2a5a73f708",
190
+ "metadata": {},
191
+ "source": [
192
+ "##### __9. Perform a histogram plot__"
193
+ ]
194
+ },
195
+ {
196
+ "cell_type": "code",
197
+ "execution_count": null,
198
+ "id": "f0d19cd6-8800-4b7b-b827-6c8fb43d72d9",
199
+ "metadata": {},
200
+ "outputs": [],
201
+ "source": [
202
+ "plt.plot(df['price'])\n",
203
+ "plt.title('Price Distribution Time-Series')\n",
204
+ "plt.show()"
205
+ ]
206
+ },
207
+ {
208
+ "cell_type": "markdown",
209
+ "id": "b33230fa-a886-4639-926a-cb60f0398745",
210
+ "metadata": {},
211
+ "source": [
212
+ "##### __10. Print the property price > 5Lakhs__"
213
+ ]
214
+ },
215
+ {
216
+ "cell_type": "code",
217
+ "execution_count": null,
218
+ "id": "42695276-9e68-4e56-90a6-02a10e78ed14",
219
+ "metadata": {},
220
+ "outputs": [],
221
+ "source": [
222
+ "df[df['price'] > 500000]"
223
+ ]
224
+ }
225
+ ],
226
+ "metadata": {
227
+ "kernelspec": {
228
+ "display_name": "Python 3 (ipykernel)",
229
+ "language": "python",
230
+ "name": "python3"
231
+ },
232
+ "language_info": {
233
+ "codemirror_mode": {
234
+ "name": "ipython",
235
+ "version": 3
236
+ },
237
+ "file_extension": ".py",
238
+ "mimetype": "text/x-python",
239
+ "name": "python",
240
+ "nbconvert_exporter": "python",
241
+ "pygments_lexer": "ipython3",
242
+ "version": "3.12.4"
243
+ }
244
+ },
245
+ "nbformat": 4,
246
+ "nbformat_minor": 5
247
+ }