noshot 0.1.8__tar.gz → 0.2.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {noshot-0.1.8 → noshot-0.2.0}/PKG-INFO +2 -2
- {noshot-0.1.8 → noshot-0.2.0}/README.md +1 -1
- {noshot-0.1.8 → noshot-0.2.0}/noshot.egg-info/PKG-INFO +2 -2
- {noshot-0.1.8 → noshot-0.2.0}/noshot.egg-info/SOURCES.txt +11 -0
- {noshot-0.1.8 → noshot-0.2.0}/setup.py +1 -1
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +2 -2
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +5 -5
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +1 -1
- noshot-0.2.0/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +87 -0
- noshot-0.2.0/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +247 -0
- noshot-0.2.0/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
- noshot-0.2.0/src/noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +183 -0
- noshot-0.2.0/src/noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +172 -0
- noshot-0.2.0/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +146 -0
- noshot-0.2.0/src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
- noshot-0.2.0/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +173 -0
- noshot-0.2.0/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
- noshot-0.2.0/src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
- noshot-0.2.0/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +77 -0
- noshot-0.2.0/src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
- noshot-0.1.8/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +0 -129
- {noshot-0.1.8 → noshot-0.2.0}/LICENSE.txt +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/noshot.egg-info/dependency_links.txt +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/noshot.egg-info/not-zip-safe +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/noshot.egg-info/top_level.txt +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/setup.cfg +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/__init__.py +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/main.py +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/utils/__init__.py +0 -0
- {noshot-0.1.8 → noshot-0.2.0}/src/noshot/utils/shell_utils.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: noshot
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.2.0
|
4
4
|
Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
|
5
5
|
Author: Tim Stan S
|
6
6
|
License: MIT
|
@@ -52,4 +52,4 @@ Dynamic: summary
|
|
52
52
|
## 📦 **Installation**
|
53
53
|
Install latest version via `pip`:
|
54
54
|
```sh
|
55
|
-
pip install noshot==0.
|
55
|
+
pip install noshot==0.2.0
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: noshot
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.2.0
|
4
4
|
Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
|
5
5
|
Author: Tim Stan S
|
6
6
|
License: MIT
|
@@ -52,4 +52,4 @@ Dynamic: summary
|
|
52
52
|
## 📦 **Installation**
|
53
53
|
Install latest version via `pip`:
|
54
54
|
```sh
|
55
|
-
pip install noshot==0.
|
55
|
+
pip install noshot==0.2.0
|
@@ -23,5 +23,16 @@ src/noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb
|
|
23
23
|
src/noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv
|
24
24
|
src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb
|
25
25
|
src/noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv
|
26
|
+
src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb
|
27
|
+
src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv
|
28
|
+
src/noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb
|
29
|
+
src/noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb
|
30
|
+
src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb
|
31
|
+
src/noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv
|
32
|
+
src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb
|
33
|
+
src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv
|
34
|
+
src/noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv
|
35
|
+
src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb
|
36
|
+
src/noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv
|
26
37
|
src/noshot/utils/__init__.py
|
27
38
|
src/noshot/utils/shell_utils.py
|
@@ -5,7 +5,7 @@ with open("README.md", "r", encoding="utf-8") as f:
|
|
5
5
|
|
6
6
|
setup(
|
7
7
|
name="noshot",
|
8
|
-
version="0.
|
8
|
+
version="0.2.0",
|
9
9
|
author="Tim Stan S",
|
10
10
|
description="Support library for Artificial Intelligence, Machine Learning and Data Science tools",
|
11
11
|
long_description=long_description,
|
@@ -5,7 +5,7 @@
|
|
5
5
|
"id": "8c414eda",
|
6
6
|
"metadata": {},
|
7
7
|
"source": [
|
8
|
-
"
|
8
|
+
"##### __Machine learnings Laboratory First Lab Basic EDA and Principle components analysis__"
|
9
9
|
]
|
10
10
|
},
|
11
11
|
{
|
@@ -102,7 +102,7 @@
|
|
102
102
|
"id": "3b033918",
|
103
103
|
"metadata": {},
|
104
104
|
"source": [
|
105
|
-
"
|
105
|
+
"##### __PCA__"
|
106
106
|
]
|
107
107
|
},
|
108
108
|
{
|
@@ -5,7 +5,7 @@
|
|
5
5
|
"id": "def24f4a",
|
6
6
|
"metadata": {},
|
7
7
|
"source": [
|
8
|
-
"
|
8
|
+
"##### __Balance Scale Dataset__"
|
9
9
|
]
|
10
10
|
},
|
11
11
|
{
|
@@ -72,7 +72,7 @@
|
|
72
72
|
"id": "6702687e",
|
73
73
|
"metadata": {},
|
74
74
|
"source": [
|
75
|
-
"
|
75
|
+
"##### __class for [1,1,1,1] = R (predicted)__"
|
76
76
|
]
|
77
77
|
},
|
78
78
|
{
|
@@ -91,7 +91,7 @@
|
|
91
91
|
"id": "13d70944",
|
92
92
|
"metadata": {},
|
93
93
|
"source": [
|
94
|
-
"
|
94
|
+
"##### __Iris Dataset__"
|
95
95
|
]
|
96
96
|
},
|
97
97
|
{
|
@@ -151,7 +151,7 @@
|
|
151
151
|
"id": "06559281",
|
152
152
|
"metadata": {},
|
153
153
|
"source": [
|
154
|
-
"
|
154
|
+
"##### __class for [5.2,3.5,1.1,0.2] = virginica (predicted)__"
|
155
155
|
]
|
156
156
|
},
|
157
157
|
{
|
@@ -170,7 +170,7 @@
|
|
170
170
|
"id": "cdd56944",
|
171
171
|
"metadata": {},
|
172
172
|
"source": [
|
173
|
-
"
|
173
|
+
"##### __Iris Dataset Visualization__"
|
174
174
|
]
|
175
175
|
},
|
176
176
|
{
|
@@ -0,0 +1,87 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "939c616d-2779-4e21-adcf-1d070898d65b",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"from sklearn import datasets\n",
|
11
|
+
"from sklearn.metrics import confusion_matrix\n",
|
12
|
+
"from sklearn.model_selection import train_test_split\n",
|
13
|
+
"from sklearn.naive_bayes import GaussianNB"
|
14
|
+
]
|
15
|
+
},
|
16
|
+
{
|
17
|
+
"cell_type": "code",
|
18
|
+
"execution_count": null,
|
19
|
+
"id": "17720a0d-e788-4b1d-b2b2-a542f6b824a2",
|
20
|
+
"metadata": {},
|
21
|
+
"outputs": [],
|
22
|
+
"source": [
|
23
|
+
"wine = datasets.load_wine()"
|
24
|
+
]
|
25
|
+
},
|
26
|
+
{
|
27
|
+
"cell_type": "code",
|
28
|
+
"execution_count": null,
|
29
|
+
"id": "a050923e-4382-4ff7-93bf-446b117c0ef5",
|
30
|
+
"metadata": {},
|
31
|
+
"outputs": [],
|
32
|
+
"source": [
|
33
|
+
"X = wine.data\n",
|
34
|
+
"X"
|
35
|
+
]
|
36
|
+
},
|
37
|
+
{
|
38
|
+
"cell_type": "code",
|
39
|
+
"execution_count": null,
|
40
|
+
"id": "9f1a4355-718e-40ed-b892-3e3d03c4ef3c",
|
41
|
+
"metadata": {},
|
42
|
+
"outputs": [],
|
43
|
+
"source": [
|
44
|
+
"y = wine.target\n",
|
45
|
+
"y"
|
46
|
+
]
|
47
|
+
},
|
48
|
+
{
|
49
|
+
"cell_type": "code",
|
50
|
+
"execution_count": null,
|
51
|
+
"id": "dd3f31ef-c0d2-48dd-9fb7-338c10f9fbf9",
|
52
|
+
"metadata": {},
|
53
|
+
"outputs": [],
|
54
|
+
"source": [
|
55
|
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)\n",
|
56
|
+
"\n",
|
57
|
+
"gnb = GaussianNB().fit(X_train, y_train)\n",
|
58
|
+
"gnb_predictions = gnb.predict(X_test)\n",
|
59
|
+
"accuracy = gnb.score(X_test, y_test)\n",
|
60
|
+
"accuracy\n",
|
61
|
+
"cm = confusion_matrix(y_test, gnb_predictions)\n",
|
62
|
+
"cm"
|
63
|
+
]
|
64
|
+
}
|
65
|
+
],
|
66
|
+
"metadata": {
|
67
|
+
"kernelspec": {
|
68
|
+
"display_name": "Python 3 (ipykernel)",
|
69
|
+
"language": "python",
|
70
|
+
"name": "python3"
|
71
|
+
},
|
72
|
+
"language_info": {
|
73
|
+
"codemirror_mode": {
|
74
|
+
"name": "ipython",
|
75
|
+
"version": 3
|
76
|
+
},
|
77
|
+
"file_extension": ".py",
|
78
|
+
"mimetype": "text/x-python",
|
79
|
+
"name": "python",
|
80
|
+
"nbconvert_exporter": "python",
|
81
|
+
"pygments_lexer": "ipython3",
|
82
|
+
"version": "3.12.4"
|
83
|
+
}
|
84
|
+
},
|
85
|
+
"nbformat": 4,
|
86
|
+
"nbformat_minor": 5
|
87
|
+
}
|
noshot-0.2.0/src/noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb
ADDED
@@ -0,0 +1,247 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "markdown",
|
5
|
+
"id": "6b192e2a-14e9-4707-b1c1-e8f5aa32a919",
|
6
|
+
"metadata": {},
|
7
|
+
"source": [
|
8
|
+
"### __Import Required Libraries__"
|
9
|
+
]
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"cell_type": "code",
|
13
|
+
"execution_count": null,
|
14
|
+
"id": "95be04fa-500c-4308-9784-b07bb42d5232",
|
15
|
+
"metadata": {},
|
16
|
+
"outputs": [],
|
17
|
+
"source": [
|
18
|
+
"import pandas as pd\n",
|
19
|
+
"import matplotlib.pyplot as plt"
|
20
|
+
]
|
21
|
+
},
|
22
|
+
{
|
23
|
+
"cell_type": "markdown",
|
24
|
+
"id": "e5ff8a35-769d-4eda-b5f3-d3c9ba7a2dce",
|
25
|
+
"metadata": {},
|
26
|
+
"source": [
|
27
|
+
"##### __1. Importing the dataset__"
|
28
|
+
]
|
29
|
+
},
|
30
|
+
{
|
31
|
+
"cell_type": "code",
|
32
|
+
"execution_count": null,
|
33
|
+
"id": "69caa184-219d-4b01-8a30-1ea9ba61dcff",
|
34
|
+
"metadata": {},
|
35
|
+
"outputs": [],
|
36
|
+
"source": [
|
37
|
+
"df = pd.read_csv('raw_sales.csv', index_col = 'datesold')\n",
|
38
|
+
"print(df.shape)"
|
39
|
+
]
|
40
|
+
},
|
41
|
+
{
|
42
|
+
"cell_type": "markdown",
|
43
|
+
"id": "f8273eed-a0e9-4d52-a183-350a7393a290",
|
44
|
+
"metadata": {},
|
45
|
+
"source": [
|
46
|
+
"##### __2. Display the first few rows to peek at the data, the last few rows__"
|
47
|
+
]
|
48
|
+
},
|
49
|
+
{
|
50
|
+
"cell_type": "code",
|
51
|
+
"execution_count": null,
|
52
|
+
"id": "490892d7-df7d-4c0f-9f8a-63883ce7432f",
|
53
|
+
"metadata": {},
|
54
|
+
"outputs": [],
|
55
|
+
"source": [
|
56
|
+
"df.head()"
|
57
|
+
]
|
58
|
+
},
|
59
|
+
{
|
60
|
+
"cell_type": "code",
|
61
|
+
"execution_count": null,
|
62
|
+
"id": "24ae00c8-949b-4047-80ed-4f0631992c3f",
|
63
|
+
"metadata": {},
|
64
|
+
"outputs": [],
|
65
|
+
"source": [
|
66
|
+
"df.tail()"
|
67
|
+
]
|
68
|
+
},
|
69
|
+
{
|
70
|
+
"cell_type": "markdown",
|
71
|
+
"id": "9c24bbd0-75f0-4eb6-863d-7960337bcb77",
|
72
|
+
"metadata": {},
|
73
|
+
"source": [
|
74
|
+
"##### __3. Print the summary statistics__"
|
75
|
+
]
|
76
|
+
},
|
77
|
+
{
|
78
|
+
"cell_type": "code",
|
79
|
+
"execution_count": null,
|
80
|
+
"id": "bf0037dd-41b5-4c55-ae5c-8dfa5cb11f90",
|
81
|
+
"metadata": {},
|
82
|
+
"outputs": [],
|
83
|
+
"source": [
|
84
|
+
"df.describe().T"
|
85
|
+
]
|
86
|
+
},
|
87
|
+
{
|
88
|
+
"cell_type": "markdown",
|
89
|
+
"id": "fb7299b8-90fe-4dae-93a1-496129bc928a",
|
90
|
+
"metadata": {},
|
91
|
+
"source": [
|
92
|
+
"##### __4. Filter data for a specific year__"
|
93
|
+
]
|
94
|
+
},
|
95
|
+
{
|
96
|
+
"cell_type": "code",
|
97
|
+
"execution_count": null,
|
98
|
+
"id": "6a533c7b-6786-4789-9a18-0f19125de32d",
|
99
|
+
"metadata": {},
|
100
|
+
"outputs": [],
|
101
|
+
"source": [
|
102
|
+
"df.index = pd.to_datetime(df.index)\n",
|
103
|
+
"df['price'][df.index.year == 2007].mean()"
|
104
|
+
]
|
105
|
+
},
|
106
|
+
{
|
107
|
+
"cell_type": "markdown",
|
108
|
+
"id": "111029b6-fcc9-4f5e-a9d8-833ae27c039e",
|
109
|
+
"metadata": {},
|
110
|
+
"source": [
|
111
|
+
"##### __5. Plot the average price per year__"
|
112
|
+
]
|
113
|
+
},
|
114
|
+
{
|
115
|
+
"cell_type": "code",
|
116
|
+
"execution_count": null,
|
117
|
+
"id": "71212203-c3e5-49ca-aa07-bbc12a2e0de6",
|
118
|
+
"metadata": {},
|
119
|
+
"outputs": [],
|
120
|
+
"source": [
|
121
|
+
"group = df['price'].groupby(df.index.year).mean()\n",
|
122
|
+
"plt.plot(group.index, group.values, color = 'r', label = 'Average_Price/Yr')\n",
|
123
|
+
"plt.title('Average Price Year Wise')\n",
|
124
|
+
"plt.legend()\n",
|
125
|
+
"plt.show()"
|
126
|
+
]
|
127
|
+
},
|
128
|
+
{
|
129
|
+
"cell_type": "markdown",
|
130
|
+
"id": "0405f26e-b564-48a2-9fb5-6d89311a363e",
|
131
|
+
"metadata": {},
|
132
|
+
"source": [
|
133
|
+
"##### __6. Count of properties sold per year__"
|
134
|
+
]
|
135
|
+
},
|
136
|
+
{
|
137
|
+
"cell_type": "code",
|
138
|
+
"execution_count": null,
|
139
|
+
"id": "7e1cb0fb-f494-49b1-adbc-89824b7e3855",
|
140
|
+
"metadata": {},
|
141
|
+
"outputs": [],
|
142
|
+
"source": [
|
143
|
+
"group = df.groupby(df.index.year).count()\n",
|
144
|
+
"plt.bar(group.index, group.values[:, 0], color = 'g', label = 'Property_Sold/Yr')\n",
|
145
|
+
"plt.title('Property\\'s Sold Year Wise')\n",
|
146
|
+
"plt.legend()\n",
|
147
|
+
"plt.show()"
|
148
|
+
]
|
149
|
+
},
|
150
|
+
{
|
151
|
+
"cell_type": "markdown",
|
152
|
+
"id": "d9b4c518-05ec-41ba-956d-e145efc958fd",
|
153
|
+
"metadata": {},
|
154
|
+
"source": [
|
155
|
+
"##### __7. Query for a specific date range (e.g., Jan 2010 to Dec 2015)__"
|
156
|
+
]
|
157
|
+
},
|
158
|
+
{
|
159
|
+
"cell_type": "code",
|
160
|
+
"execution_count": null,
|
161
|
+
"id": "17f1f390-9e5b-4bc1-882a-88d0331e3a12",
|
162
|
+
"metadata": {},
|
163
|
+
"outputs": [],
|
164
|
+
"source": [
|
165
|
+
"df2 = df[(df.index > '1/1/2010') & (df.index <= '31/12/2015')]\n",
|
166
|
+
"df2"
|
167
|
+
]
|
168
|
+
},
|
169
|
+
{
|
170
|
+
"cell_type": "markdown",
|
171
|
+
"id": "28c84984-a5f0-4c46-963f-5c6e3336aed9",
|
172
|
+
"metadata": {},
|
173
|
+
"source": [
|
174
|
+
"##### __8. Calculate the mean price month-wise (use Groupby)__"
|
175
|
+
]
|
176
|
+
},
|
177
|
+
{
|
178
|
+
"cell_type": "code",
|
179
|
+
"execution_count": null,
|
180
|
+
"id": "db344276-03ab-4fb5-bb62-5dbc0fc11852",
|
181
|
+
"metadata": {},
|
182
|
+
"outputs": [],
|
183
|
+
"source": [
|
184
|
+
"df2['price'].groupby(df2.index.month).mean()"
|
185
|
+
]
|
186
|
+
},
|
187
|
+
{
|
188
|
+
"cell_type": "markdown",
|
189
|
+
"id": "3f1afa45-d234-4f01-bf63-ea2a5a73f708",
|
190
|
+
"metadata": {},
|
191
|
+
"source": [
|
192
|
+
"##### __9. Perform a histogram plot__"
|
193
|
+
]
|
194
|
+
},
|
195
|
+
{
|
196
|
+
"cell_type": "code",
|
197
|
+
"execution_count": null,
|
198
|
+
"id": "f0d19cd6-8800-4b7b-b827-6c8fb43d72d9",
|
199
|
+
"metadata": {},
|
200
|
+
"outputs": [],
|
201
|
+
"source": [
|
202
|
+
"plt.plot(df['price'])\n",
|
203
|
+
"plt.title('Price Distribution Time-Series')\n",
|
204
|
+
"plt.show()"
|
205
|
+
]
|
206
|
+
},
|
207
|
+
{
|
208
|
+
"cell_type": "markdown",
|
209
|
+
"id": "b33230fa-a886-4639-926a-cb60f0398745",
|
210
|
+
"metadata": {},
|
211
|
+
"source": [
|
212
|
+
"##### __10. Print the property price > 5Lakhs__"
|
213
|
+
]
|
214
|
+
},
|
215
|
+
{
|
216
|
+
"cell_type": "code",
|
217
|
+
"execution_count": null,
|
218
|
+
"id": "42695276-9e68-4e56-90a6-02a10e78ed14",
|
219
|
+
"metadata": {},
|
220
|
+
"outputs": [],
|
221
|
+
"source": [
|
222
|
+
"df[df['price'] > 500000]"
|
223
|
+
]
|
224
|
+
}
|
225
|
+
],
|
226
|
+
"metadata": {
|
227
|
+
"kernelspec": {
|
228
|
+
"display_name": "Python 3 (ipykernel)",
|
229
|
+
"language": "python",
|
230
|
+
"name": "python3"
|
231
|
+
},
|
232
|
+
"language_info": {
|
233
|
+
"codemirror_mode": {
|
234
|
+
"name": "ipython",
|
235
|
+
"version": 3
|
236
|
+
},
|
237
|
+
"file_extension": ".py",
|
238
|
+
"mimetype": "text/x-python",
|
239
|
+
"name": "python",
|
240
|
+
"nbconvert_exporter": "python",
|
241
|
+
"pygments_lexer": "ipython3",
|
242
|
+
"version": "3.12.4"
|
243
|
+
}
|
244
|
+
},
|
245
|
+
"nbformat": 4,
|
246
|
+
"nbformat_minor": 5
|
247
|
+
}
|