nomic 3.3.0__tar.gz → 3.3.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nomic might be problematic. Click here for more details.

nomic-3.3.2/PKG-INFO ADDED
@@ -0,0 +1,247 @@
1
+ Metadata-Version: 2.1
2
+ Name: nomic
3
+ Version: 3.3.2
4
+ Summary: The official Nomic python client.
5
+ Home-page: https://github.com/nomic-ai/nomic
6
+ Author: nomic.ai
7
+ Author-email: support@nomic.ai
8
+ License: UNKNOWN
9
+ Platform: UNKNOWN
10
+ Classifier: License :: OSI Approved :: Apache Software License
11
+ Classifier: Programming Language :: Python :: 3
12
+ Description-Content-Type: text/markdown
13
+ Provides-Extra: local
14
+ Provides-Extra: aws
15
+ Provides-Extra: all
16
+ Provides-Extra: dev
17
+
18
+ <h1 align="center">Nomic Atlas Python Client</h1>
19
+ <h3 align="center">Explore, label, search and share massive datasets in your web browser.</h3>
20
+ <p>This repository contains Python bindings for working with <a href="https://atlas.nomic.ai/">Nomic Atlas</a>, the world’s most powerful unstructured data interaction platform. Atlas supports datasets from hundreds to tens of millions of points, and supports data modalities ranging from text to image to audio to video. </p>
21
+
22
+ With Nomic Atlas, you can:
23
+
24
+ - Generate, store and retrieve embeddings for your unstructured data.
25
+ - Find insights in your unstructured data and embeddings all from your web browser.
26
+ - Share and present your datasets and data findings to anyone.
27
+
28
+ ### Where to find us?
29
+
30
+ [https://atlas.nomic.ai/](https://atlas.nomic.ai/)
31
+
32
+
33
+
34
+ ## Table of Contents
35
+
36
+ - [Quick resources](#quick-resources)
37
+ - [Example maps](#example-maps)
38
+ - [Features](#features)
39
+ - [Quickstart](#quickstart)
40
+ - [Installation](#installation)
41
+ - [Make your first map](#make-your-first-map)
42
+ - [Atlas usage examples](#atlas-usage-examples)
43
+ - [Access your embeddings](#access-your-embeddings)
44
+ - [View your data's topic model](#view-your-datas-topic-model)
45
+ - [Search for data semantically](#search-for-data-semantically)
46
+ - [Documentation](#documentation)
47
+ - [Discussion](#discussion)
48
+ - [Community](#community)
49
+
50
+ ## Quick Resources
51
+
52
+ <p >
53
+ Try the <a href="https://colab.research.google.com/drive/1CZBo3LV0FoRTVRN3v068tvNJgbeWpcSX?usp=sharing">:notebook: Colab Demo</a> to get started in Python
54
+ </p>
55
+
56
+ <p>
57
+ Read the <a href="https://docs.nomic.ai">:closed_book: Atlas Docs</a>
58
+ </p>
59
+
60
+ <p>
61
+ Join our <a href="https://discord.gg/myY5YDR8z8">:hut: Discord</a> to start chatting and get help
62
+ </p>
63
+
64
+ #### Example maps
65
+
66
+ <a href="https://atlas.nomic.ai/map/twitter">:world_map: Map of Twitter</a> (5.4 million tweets)
67
+ <br> <br>
68
+ <a href="https://atlas.nomic.ai/map/stablediffusion">:world_map: Map of StableDiffusion Generations</a> (6.4 million images)
69
+ <br> <br>
70
+ <a href="https://atlas.nomic.ai/map/neurips">:world_map: Map of NeurIPS Proceedings</a> (16,623 abstracts)
71
+
72
+ </p>
73
+
74
+ ## Features
75
+
76
+ Here are just a few of the features which Atlas offers:
77
+
78
+ - Organize your **text, image, and embedding data**
79
+ - Create **beautiful and shareable** maps **with or without coding knowledge**
80
+ - Have easy access to both **high-level data structures** and **individual datapoints**
81
+ - **Search** millions of datapoints **instantly**
82
+ - **Cluster data** into semantic topics
83
+ - **Tag and clean** your dataset
84
+ - **Deduplicate** text, images, video, audio
85
+
86
+
87
+
88
+ ## Quickstart
89
+
90
+ ### Installation
91
+
92
+ 1. Install the Nomic library
93
+
94
+ ```bash
95
+ pip install nomic
96
+ ```
97
+
98
+ 2. Login or create your Nomic account:
99
+
100
+ ```bash
101
+ nomic login
102
+ ```
103
+
104
+ 3. Follow the instructions to obtain your access token.
105
+
106
+ ```bash
107
+ nomic login [token]
108
+ ```
109
+
110
+ ### Make your first map
111
+
112
+ ```python
113
+ from nomic import atlas
114
+ import numpy as np
115
+
116
+ # Randomly generate a set of 10,000 high-dimensional embeddings
117
+ num_embeddings = 10000
118
+ embeddings = np.random.rand(num_embeddings, 256)
119
+
120
+ # Create Atlas project
121
+ dataset = atlas.map_data(embeddings=embeddings)
122
+
123
+ print(dataset)
124
+ ```
125
+
126
+ ## Atlas usage examples
127
+
128
+ ### Access your embeddings
129
+
130
+ Atlas stores, manages and generates embeddings for your unstructured data.
131
+
132
+ You can access Atlas latent embeddings (e.g. high dimensional) or the two-dimensional embeddings generated for web display.
133
+
134
+ ```python
135
+ # Access your Atlas map and download your embeddings
136
+ map = dataset.maps[0]
137
+
138
+ projected_embeddings = map.embeddings.projected
139
+ latent_embeddings = map.embeddings.latent
140
+ ```
141
+
142
+ ```python
143
+ print(projected_embeddings)
144
+ ```
145
+
146
+ ```
147
+ # Response:
148
+ id x y
149
+ 0 9.815330 -8.105308
150
+ 1 -8.725819 5.980628
151
+ 2 13.199472 -1.103389
152
+ ... ... ... ...
153
+ ```
154
+
155
+ ```python
156
+ print(latent_embeddings)
157
+ ```
158
+
159
+ ```
160
+ # Response:
161
+ n x d numpy.ndarray where n = number of datapoints and d = number of latent dimensions
162
+ ```
163
+
164
+ ### View your data’s topic model
165
+
166
+ Atlas automatically organizes your data into topics informed by the latent contents of your embeddings. Visually, these are represented by regions of homogenous color on an Atlas map.
167
+
168
+ You can access and operate on topics programmatically by using the `topics` attribute
169
+ of an AtlasMap.
170
+
171
+ ```python
172
+ # Access your Atlas map
173
+ map = dataset.maps[0]
174
+
175
+ # Access a pandas DataFrame associating each datum on your map to their topics at each topic depth.
176
+ topic_df = map.topics.df
177
+
178
+ print(map.topics.df)
179
+
180
+ ```
181
+
182
+ ```
183
+ Response:
184
+
185
+ id topic_depth_1 topic_depth_2
186
+ 0 Oil Prices mergers and acquisitions
187
+ 1 Iraq War Trial of Thatcher
188
+ 2 Oil Prices Economic Growth
189
+ ... ... ... ...
190
+ 9997 Oil Prices Economic Growth
191
+ 9998 Baseball Giambi's contract
192
+ 9999 Olympic Gold Medal European Football
193
+
194
+ ```
195
+
196
+ ### Search for data semantically
197
+
198
+ Use Atlas to automatically find nearest neighbors in your vector database.
199
+
200
+ ```python
201
+ # Load map and perform vector search for the five nearest neighbors of datum with id "my_query_point"
202
+ map = dataset.maps[0]
203
+
204
+ with dataset.wait_for_dataset_lock():
205
+ neighbors, _ = map.embeddings.vector_search(ids=['my_query_point'], k=5)
206
+
207
+ # Return similar data points
208
+ similar_datapoints = dataset.get_data(ids=neighbors[0])
209
+
210
+ print(similar_datapoints)
211
+ ```
212
+
213
+ ```
214
+ Response:
215
+
216
+ Original query point:
217
+ "Intel abandons digital TV chip project NEW YORK, October 22 (newratings.com) - Global semiconductor giant Intel Corporation (INTC.NAS) has called off its plan to develop a new chip for the digital projection televisions."
218
+
219
+ Nearest neighbors:
220
+ "Intel awaits government move on expensing options Figuring it's had enough of fighting over options, the chip giant is waiting to see what Congress comes up with."
221
+ "Citigroup Takes On Intel The financial services giant takes over non-memory semiconductor chip production."
222
+ "Intel Seen Readying New Wi-Fi Chips SAN FRANCISCO (Reuters) - Intel Corp. this week is expected to introduce a chip that adds support for a relatively obscure version of Wi-Fi, analysts said on Monday, in a move that could help ease congestion on wireless networks."
223
+ "Intel pledges to bring Itanic down to Xeon price-point EM64T a stand-in until the real anti-AMD64 kit arrives"
224
+ ```
225
+
226
+ ## Background
227
+
228
+ Atlas is developed by the [Nomic AI](https://home.nomic.ai/) team, which is based in NYC. Nomic also developed and maintains [GPT4All](https://gpt4all.io/index.html), an open-source LLM chatbot ecosystem.
229
+
230
+ ## Discussion
231
+
232
+ Join the discussion on our [:hut: Discord](https://discord.gg/myY5YDR8z8) to ask questions, get help, and chat with others about Atlas, Nomic, GPT4All, and related topics. Our doors are open to enthusiasts of all skill levels.
233
+
234
+ ## Community
235
+
236
+ - Blog: [https://blog.nomic.ai/](https://blog.nomic.ai/)
237
+ - Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)
238
+ - Nomic Website: [https://home.nomic.ai/](https://home.nomic.ai/)
239
+ - Atlas Website: [https://atlas.nomic.ai/](https://atlas.nomic.ai/)
240
+ - GPT4All Website: [https://gpt4all.io/index.html](https://gpt4all.io/index.html)
241
+ - LinkedIn: [https://www.linkedin.com/company/nomic-ai](https://www.linkedin.com/company/nomic-ai)
242
+
243
+ <br>
244
+
245
+ [Go to top](#)
246
+
247
+
@@ -1688,42 +1688,9 @@ class AtlasDataset(AtlasClass):
1688
1688
 
1689
1689
  """
1690
1690
 
1691
- # Validate data
1692
- if self.modality == "embedding" and embeddings is None:
1693
- msg = "Please specify embeddings for updating an embedding project"
1694
- raise ValueError(msg)
1695
-
1696
- if self.modality == "text" and embeddings is not None:
1697
- msg = "Please dont specify embeddings for updating a text project"
1698
- raise ValueError(msg)
1699
-
1700
- if embeddings is not None and len(data) != embeddings.shape[0]:
1701
- msg = (
1702
- "Expected data and embeddings to be the same length but found lengths {} and {} respectively.".format()
1703
- )
1704
- raise ValueError(msg)
1705
-
1706
- shard_size = 2000 # TODO someone removed shard size from params and didn't update
1707
- # Add new data
1708
- logger.info("Uploading data to Nomic's neural database Atlas.")
1709
- with tqdm(total=len(data) // shard_size) as pbar:
1710
- for i in range(0, len(data), MAX_MEMORY_CHUNK):
1711
- if self.modality == "embedding" and embeddings is not None:
1712
- self._add_embeddings(
1713
- embeddings=embeddings[i : i + MAX_MEMORY_CHUNK, :],
1714
- data=data[i : i + MAX_MEMORY_CHUNK],
1715
- pbar=pbar,
1716
- )
1717
- else:
1718
- self._add_text(
1719
- data=data[i : i + MAX_MEMORY_CHUNK],
1720
- pbar=pbar,
1721
- )
1722
- logger.info("Upload succeeded.")
1723
-
1724
- # Update maps
1725
- # finally, update all the indices
1726
- return self.update_indices()
1691
+ raise DeprecationWarning(
1692
+ f"The function AtlasDataset.update_maps is deprecated. Use AtlasDataset.add_data() instead."
1693
+ )
1727
1694
 
1728
1695
  def update_indices(self, rebuild_topic_models: bool = False):
1729
1696
  """
@@ -1734,10 +1701,6 @@ class AtlasDataset(AtlasClass):
1734
1701
  rebuild_topic_models: (Default False) - If true, will create new topic models when updating these indices.
1735
1702
  """
1736
1703
 
1737
- response = requests.post(
1738
- self.atlas_api_path + "/v1/project/update_indices",
1739
- headers=self.header,
1740
- json={"project_id": self.id, "rebuild_topic_models": rebuild_topic_models},
1704
+ raise DeprecationWarning(
1705
+ f"The function AtlasDataset.update_indices is deprecated. Use AtlasDataset.add_data() instead."
1741
1706
  )
1742
-
1743
- logger.info(f"Updating maps in dataset `{self.identifier}`")
@@ -0,0 +1,247 @@
1
+ Metadata-Version: 2.1
2
+ Name: nomic
3
+ Version: 3.3.2
4
+ Summary: The official Nomic python client.
5
+ Home-page: https://github.com/nomic-ai/nomic
6
+ Author: nomic.ai
7
+ Author-email: support@nomic.ai
8
+ License: UNKNOWN
9
+ Platform: UNKNOWN
10
+ Classifier: License :: OSI Approved :: Apache Software License
11
+ Classifier: Programming Language :: Python :: 3
12
+ Description-Content-Type: text/markdown
13
+ Provides-Extra: local
14
+ Provides-Extra: aws
15
+ Provides-Extra: all
16
+ Provides-Extra: dev
17
+
18
+ <h1 align="center">Nomic Atlas Python Client</h1>
19
+ <h3 align="center">Explore, label, search and share massive datasets in your web browser.</h3>
20
+ <p>This repository contains Python bindings for working with <a href="https://atlas.nomic.ai/">Nomic Atlas</a>, the world’s most powerful unstructured data interaction platform. Atlas supports datasets from hundreds to tens of millions of points, and supports data modalities ranging from text to image to audio to video. </p>
21
+
22
+ With Nomic Atlas, you can:
23
+
24
+ - Generate, store and retrieve embeddings for your unstructured data.
25
+ - Find insights in your unstructured data and embeddings all from your web browser.
26
+ - Share and present your datasets and data findings to anyone.
27
+
28
+ ### Where to find us?
29
+
30
+ [https://atlas.nomic.ai/](https://atlas.nomic.ai/)
31
+
32
+
33
+
34
+ ## Table of Contents
35
+
36
+ - [Quick resources](#quick-resources)
37
+ - [Example maps](#example-maps)
38
+ - [Features](#features)
39
+ - [Quickstart](#quickstart)
40
+ - [Installation](#installation)
41
+ - [Make your first map](#make-your-first-map)
42
+ - [Atlas usage examples](#atlas-usage-examples)
43
+ - [Access your embeddings](#access-your-embeddings)
44
+ - [View your data's topic model](#view-your-datas-topic-model)
45
+ - [Search for data semantically](#search-for-data-semantically)
46
+ - [Documentation](#documentation)
47
+ - [Discussion](#discussion)
48
+ - [Community](#community)
49
+
50
+ ## Quick Resources
51
+
52
+ <p >
53
+ Try the <a href="https://colab.research.google.com/drive/1CZBo3LV0FoRTVRN3v068tvNJgbeWpcSX?usp=sharing">:notebook: Colab Demo</a> to get started in Python
54
+ </p>
55
+
56
+ <p>
57
+ Read the <a href="https://docs.nomic.ai">:closed_book: Atlas Docs</a>
58
+ </p>
59
+
60
+ <p>
61
+ Join our <a href="https://discord.gg/myY5YDR8z8">:hut: Discord</a> to start chatting and get help
62
+ </p>
63
+
64
+ #### Example maps
65
+
66
+ <a href="https://atlas.nomic.ai/map/twitter">:world_map: Map of Twitter</a> (5.4 million tweets)
67
+ <br> <br>
68
+ <a href="https://atlas.nomic.ai/map/stablediffusion">:world_map: Map of StableDiffusion Generations</a> (6.4 million images)
69
+ <br> <br>
70
+ <a href="https://atlas.nomic.ai/map/neurips">:world_map: Map of NeurIPS Proceedings</a> (16,623 abstracts)
71
+
72
+ </p>
73
+
74
+ ## Features
75
+
76
+ Here are just a few of the features which Atlas offers:
77
+
78
+ - Organize your **text, image, and embedding data**
79
+ - Create **beautiful and shareable** maps **with or without coding knowledge**
80
+ - Have easy access to both **high-level data structures** and **individual datapoints**
81
+ - **Search** millions of datapoints **instantly**
82
+ - **Cluster data** into semantic topics
83
+ - **Tag and clean** your dataset
84
+ - **Deduplicate** text, images, video, audio
85
+
86
+
87
+
88
+ ## Quickstart
89
+
90
+ ### Installation
91
+
92
+ 1. Install the Nomic library
93
+
94
+ ```bash
95
+ pip install nomic
96
+ ```
97
+
98
+ 2. Login or create your Nomic account:
99
+
100
+ ```bash
101
+ nomic login
102
+ ```
103
+
104
+ 3. Follow the instructions to obtain your access token.
105
+
106
+ ```bash
107
+ nomic login [token]
108
+ ```
109
+
110
+ ### Make your first map
111
+
112
+ ```python
113
+ from nomic import atlas
114
+ import numpy as np
115
+
116
+ # Randomly generate a set of 10,000 high-dimensional embeddings
117
+ num_embeddings = 10000
118
+ embeddings = np.random.rand(num_embeddings, 256)
119
+
120
+ # Create Atlas project
121
+ dataset = atlas.map_data(embeddings=embeddings)
122
+
123
+ print(dataset)
124
+ ```
125
+
126
+ ## Atlas usage examples
127
+
128
+ ### Access your embeddings
129
+
130
+ Atlas stores, manages and generates embeddings for your unstructured data.
131
+
132
+ You can access Atlas latent embeddings (e.g. high dimensional) or the two-dimensional embeddings generated for web display.
133
+
134
+ ```python
135
+ # Access your Atlas map and download your embeddings
136
+ map = dataset.maps[0]
137
+
138
+ projected_embeddings = map.embeddings.projected
139
+ latent_embeddings = map.embeddings.latent
140
+ ```
141
+
142
+ ```python
143
+ print(projected_embeddings)
144
+ ```
145
+
146
+ ```
147
+ # Response:
148
+ id x y
149
+ 0 9.815330 -8.105308
150
+ 1 -8.725819 5.980628
151
+ 2 13.199472 -1.103389
152
+ ... ... ... ...
153
+ ```
154
+
155
+ ```python
156
+ print(latent_embeddings)
157
+ ```
158
+
159
+ ```
160
+ # Response:
161
+ n x d numpy.ndarray where n = number of datapoints and d = number of latent dimensions
162
+ ```
163
+
164
+ ### View your data’s topic model
165
+
166
+ Atlas automatically organizes your data into topics informed by the latent contents of your embeddings. Visually, these are represented by regions of homogenous color on an Atlas map.
167
+
168
+ You can access and operate on topics programmatically by using the `topics` attribute
169
+ of an AtlasMap.
170
+
171
+ ```python
172
+ # Access your Atlas map
173
+ map = dataset.maps[0]
174
+
175
+ # Access a pandas DataFrame associating each datum on your map to their topics at each topic depth.
176
+ topic_df = map.topics.df
177
+
178
+ print(map.topics.df)
179
+
180
+ ```
181
+
182
+ ```
183
+ Response:
184
+
185
+ id topic_depth_1 topic_depth_2
186
+ 0 Oil Prices mergers and acquisitions
187
+ 1 Iraq War Trial of Thatcher
188
+ 2 Oil Prices Economic Growth
189
+ ... ... ... ...
190
+ 9997 Oil Prices Economic Growth
191
+ 9998 Baseball Giambi's contract
192
+ 9999 Olympic Gold Medal European Football
193
+
194
+ ```
195
+
196
+ ### Search for data semantically
197
+
198
+ Use Atlas to automatically find nearest neighbors in your vector database.
199
+
200
+ ```python
201
+ # Load map and perform vector search for the five nearest neighbors of datum with id "my_query_point"
202
+ map = dataset.maps[0]
203
+
204
+ with dataset.wait_for_dataset_lock():
205
+ neighbors, _ = map.embeddings.vector_search(ids=['my_query_point'], k=5)
206
+
207
+ # Return similar data points
208
+ similar_datapoints = dataset.get_data(ids=neighbors[0])
209
+
210
+ print(similar_datapoints)
211
+ ```
212
+
213
+ ```
214
+ Response:
215
+
216
+ Original query point:
217
+ "Intel abandons digital TV chip project NEW YORK, October 22 (newratings.com) - Global semiconductor giant Intel Corporation (INTC.NAS) has called off its plan to develop a new chip for the digital projection televisions."
218
+
219
+ Nearest neighbors:
220
+ "Intel awaits government move on expensing options Figuring it's had enough of fighting over options, the chip giant is waiting to see what Congress comes up with."
221
+ "Citigroup Takes On Intel The financial services giant takes over non-memory semiconductor chip production."
222
+ "Intel Seen Readying New Wi-Fi Chips SAN FRANCISCO (Reuters) - Intel Corp. this week is expected to introduce a chip that adds support for a relatively obscure version of Wi-Fi, analysts said on Monday, in a move that could help ease congestion on wireless networks."
223
+ "Intel pledges to bring Itanic down to Xeon price-point EM64T a stand-in until the real anti-AMD64 kit arrives"
224
+ ```
225
+
226
+ ## Background
227
+
228
+ Atlas is developed by the [Nomic AI](https://home.nomic.ai/) team, which is based in NYC. Nomic also developed and maintains [GPT4All](https://gpt4all.io/index.html), an open-source LLM chatbot ecosystem.
229
+
230
+ ## Discussion
231
+
232
+ Join the discussion on our [:hut: Discord](https://discord.gg/myY5YDR8z8) to ask questions, get help, and chat with others about Atlas, Nomic, GPT4All, and related topics. Our doors are open to enthusiasts of all skill levels.
233
+
234
+ ## Community
235
+
236
+ - Blog: [https://blog.nomic.ai/](https://blog.nomic.ai/)
237
+ - Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)
238
+ - Nomic Website: [https://home.nomic.ai/](https://home.nomic.ai/)
239
+ - Atlas Website: [https://atlas.nomic.ai/](https://atlas.nomic.ai/)
240
+ - GPT4All Website: [https://gpt4all.io/index.html](https://gpt4all.io/index.html)
241
+ - LinkedIn: [https://www.linkedin.com/company/nomic-ai](https://www.linkedin.com/company/nomic-ai)
242
+
243
+ <br>
244
+
245
+ [Go to top](#)
246
+
247
+
@@ -6,12 +6,28 @@ from setuptools import setup, find_packages
6
6
 
7
7
  description = "The official Nomic python client."
8
8
 
9
+ # Read README.md and remove tables and images
10
+ with open("README.md") as f:
11
+ content = f.read()
12
+ # Remove table sections including content
13
+ while "<table>" in content and "</table>" in content:
14
+ start = content.find("<table>")
15
+ end = content.find("</table>") + 8
16
+ content = content[:start] + content[end:]
17
+ # Remove img tags and content
18
+ while "<img" in content and ">" in content:
19
+ start = content.find("<img")
20
+ end = content.find(">", start) + 1
21
+ content = content[:start] + content[end:]
22
+ long_description = content
23
+
9
24
  setup(
10
25
  name="nomic",
11
- version="3.3.0",
26
+ version="3.3.2",
12
27
  url="https://github.com/nomic-ai/nomic",
13
28
  description=description,
14
- long_description=description,
29
+ long_description=long_description,
30
+ long_description_content_type="text/markdown",
15
31
  packages=find_packages(include=["nomic", "nomic.*"]),
16
32
  author_email="support@nomic.ai",
17
33
  author="nomic.ai",
nomic-3.3.0/PKG-INFO DELETED
@@ -1,18 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: nomic
3
- Version: 3.3.0
4
- Summary: The official Nomic python client.
5
- Home-page: https://github.com/nomic-ai/nomic
6
- Author: nomic.ai
7
- Author-email: support@nomic.ai
8
- License: UNKNOWN
9
- Platform: UNKNOWN
10
- Classifier: License :: OSI Approved :: Apache Software License
11
- Classifier: Programming Language :: Python :: 3
12
- Provides-Extra: local
13
- Provides-Extra: aws
14
- Provides-Extra: all
15
- Provides-Extra: dev
16
-
17
- The official Nomic python client.
18
-
@@ -1,18 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: nomic
3
- Version: 3.3.0
4
- Summary: The official Nomic python client.
5
- Home-page: https://github.com/nomic-ai/nomic
6
- Author: nomic.ai
7
- Author-email: support@nomic.ai
8
- License: UNKNOWN
9
- Platform: UNKNOWN
10
- Classifier: License :: OSI Approved :: Apache Software License
11
- Classifier: Programming Language :: Python :: 3
12
- Provides-Extra: local
13
- Provides-Extra: aws
14
- Provides-Extra: all
15
- Provides-Extra: dev
16
-
17
- The official Nomic python client.
18
-
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes