nmn 0.1.0__tar.gz → 0.1.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nmn-0.1.1/.gitignore ADDED
@@ -0,0 +1,71 @@
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ *.egg-info/
23
+ .installed.cfg
24
+ *.egg
25
+ MANIFEST
26
+
27
+ # PyInstaller
28
+ # Usually these files are written by a python script from a template
29
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
30
+ *.manifest
31
+ *.spec
32
+
33
+ # Installer logs
34
+ pip-log.txt
35
+ pip-delete-this-directory.txt
36
+
37
+ # Unit test / coverage reports
38
+ htmlcov/
39
+ .tox/
40
+ .nox/
41
+ .coverage
42
+ .coverage.*
43
+ .cache
44
+ nosetests.xml
45
+ coverage.xml
46
+ *.cover
47
+ .hypothesis/
48
+ .pytest_cache/
49
+
50
+ # Jupyter Notebook
51
+ .ipynb_checkpoints
52
+
53
+ # pyenv
54
+ .python-version
55
+
56
+ # mypy
57
+ .mypy_cache/
58
+ .dmypy.json
59
+
60
+ # VS Code
61
+ .vscode/
62
+
63
+ # Hatch
64
+ .hatch/
65
+
66
+ # System files
67
+ .DS_Store
68
+ Thumbs.db
69
+
70
+ # GitHub workflows artifacts
71
+ .github/workflows/*.log
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: nmn
3
- Version: 0.1.0
3
+ Version: 0.1.1
4
4
  Summary: a neuron that matter
5
5
  Project-URL: Homepage, https://github.com/mlnomadpy/nmn
6
6
  Project-URL: Bug Tracker, https://github.com/mlnomadpy/my_package/issues
@@ -15,6 +15,15 @@ Description-Content-Type: text/markdown
15
15
  # nmn
16
16
  Not the neurons we want, but the neurons we need
17
17
 
18
+ [![PyPI version](https://img.shields.io/pypi/v/nmn.svg)](https://pypi.org/project/nmn/)
19
+ [![Downloads](https://static.pepy.tech/badge/nmn)](https://pepy.tech/project/nmn)
20
+ [![Downloads/month](https://static.pepy.tech/badge/nmn/month)](https://pepy.tech/project/nmn)
21
+ [![GitHub stars](https://img.shields.io/github/stars/mlnomadpy/nmn?style=social)](https://github.com/mlnomadpy/nmn)
22
+ [![GitHub forks](https://img.shields.io/github/forks/mlnomadpy/nmn?style=social)](https://github.com/mlnomadpy/nmn)
23
+ [![GitHub issues](https://img.shields.io/github/issues/mlnomadpy/nmn)](https://github.com/mlnomadpy/nmn/issues)
24
+ [![PyPI - License](https://img.shields.io/pypi/l/nmn)](https://pypi.org/project/nmn/)
25
+ [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/nmn)](https://pypi.org/project/nmn/)
26
+
18
27
  ## Overview
19
28
 
20
29
  **nmn** provides neural network layers for multiple frameworks (Flax, NNX, Keras, PyTorch, TensorFlow) that do not require activation functions to learn non-linearity. The main goal is to enable deep learning architectures where the layer itself is inherently non-linear, inspired by the paper:
@@ -1,6 +1,15 @@
1
1
  # nmn
2
2
  Not the neurons we want, but the neurons we need
3
3
 
4
+ [![PyPI version](https://img.shields.io/pypi/v/nmn.svg)](https://pypi.org/project/nmn/)
5
+ [![Downloads](https://static.pepy.tech/badge/nmn)](https://pepy.tech/project/nmn)
6
+ [![Downloads/month](https://static.pepy.tech/badge/nmn/month)](https://pepy.tech/project/nmn)
7
+ [![GitHub stars](https://img.shields.io/github/stars/mlnomadpy/nmn?style=social)](https://github.com/mlnomadpy/nmn)
8
+ [![GitHub forks](https://img.shields.io/github/forks/mlnomadpy/nmn?style=social)](https://github.com/mlnomadpy/nmn)
9
+ [![GitHub issues](https://img.shields.io/github/issues/mlnomadpy/nmn)](https://github.com/mlnomadpy/nmn/issues)
10
+ [![PyPI - License](https://img.shields.io/pypi/l/nmn)](https://pypi.org/project/nmn/)
11
+ [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/nmn)](https://pypi.org/project/nmn/)
12
+
4
13
  ## Overview
5
14
 
6
15
  **nmn** provides neural network layers for multiple frameworks (Flax, NNX, Keras, PyTorch, TensorFlow) that do not require activation functions to learn non-linearity. The main goal is to enable deep learning architectures where the layer itself is inherently non-linear, inspired by the paper:
@@ -4,7 +4,7 @@ build-backend = "hatchling.build"
4
4
 
5
5
  [project]
6
6
  name = "nmn"
7
- version = "0.1.0"
7
+ version = "0.1.1"
8
8
  authors = [
9
9
  { name="Taha Bouhsine", email="yat@mlnomads.com" },
10
10
  ]
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes